高能束流焊接方法学习要点总结

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实训成绩

批阅教师

日期

高能束流焊接方法学习要点总结

课程名称焊接设备维修实训

专业年级焊接1311

学号2013118526113

学生姓名张华荣

指导教师李飞

2016年4月13日

高能束流焊接方法学习要点总结

一.高能束流焊接方法基本概念:

高能束流焊接是指以激光束、电子束、等离子体为热源,对金属、非金属材料进行焊接的精细加工工艺。

注:(1)高能束流焊接的功率密度(Power Density)达到105W/cm2以上。

(2)高能束流是由单一的电子、光子、电子和离子,或者二种以上的粒子组合而成。(一)电子束焊焊接方法基本概念:

电子束焊是利用会聚的高速电子轰击工作件接缝处所产生的热能,使金属熔合的一种焊接方法。

(二)激光焊焊接方法基本概念:

利用高能量密度的激光束作为热源的一种高效而且精密的焊接方法。它是以聚焦的激光束作为能源轰击焊件所产生的热量而进行焊接的。

聚焦的激光束是指:利用大功率相干单色光子流聚焦而成的激光束。

(三)激光切割基本概念:

激光切割是利用经聚焦的高功率密度激光束照射工件,使被照射的材料迅速熔化、汽化、烧蚀或达到燃点,同时借助与光束同轴的高速气流吹除熔融物质,从而实现将工件割开。(四)等离子弧焊焊焊接方法基本概念:

等离子弧焊是以等离子弧为热源的一种高能速流焊接方法。

二.基本原理和分类

(一)获得高能束流的基本原理:

1.高功率密度激光束的获取

激光器通过谐振腔的方向选择、频率选择以及谐振腔和工作物质共同形成的反馈放大作用,使输出的激光具有良好的方向性、单色性以及很高的亮度。

2.高功率密度电子束的获取

阴极用以发射电子,阳极相对阴极施加高电压以加速电子,控制极用来控制电子束流的强度,聚焦线圈对电子束进行会聚,偏转线圈可使束流产生偏转以满足加工的需要。

3.高能束流的聚焦

(1)激光束的聚集

目前在激光焊中常用的聚集系统有三种:透镜聚集、反射镜聚集和改进型的。

(2)电子束的聚集

电子束聚集是依据于电场和磁场对电子的作用。常用的电子束聚集方法是静电透镜聚集好磁透镜聚集等。其中静电透镜聚集分别为同心球电极聚集。

(二)分类:

1.电子束焊接

2.激光焊

3.激光切割

4.等离子弧焊

(一)电子束焊工作原理:

电子束是从电子枪中产生的。通常电子是以热发射或者场致发射的方式从发射级(阴极)

逸出的。在25~300V的加速电压的作用下,电子被加速到0.3~0.7倍光速,具有一定的动能,经过电子枪中静电透镜和电磁透镜的作用,电子会聚成功率密度很高的电子束。

这种电子束撞击到工件表面,电子的动能就转变为热能,使金属迅速溶化和蒸发。在高压金属蒸气的作用下,熔化的金属被排开,电子束就能继续撞击深处的固态金属。很快在被焊工件上“钻”出一个锁形小孔。小孔的周围被液态金属包围。随着电子束与工件的相对移动,液态金属沿着小孔周围流向熔池后部,逐渐冷却凝固形成了焊缝。

电子束传送到焊接接头的热量和其熔化金属的效果与束流强度、加速电压、焊接速度、电子束斑点质量,以及被焊接材料的性能等因素有密切的关系。

分类:

1.被焊工件所处的环境和真空度可以分为三种:高真空电子束焊、低真空电子束焊、非真空电子束焊。

2.电子束焊按照加速电压状态分类:高压型(大于80 kV);中压型(40~60 kV);低压型(小于等于30 kV)。

(二)激光焊接的原理:

光子轰击金属表面形成蒸汽,蒸发的金属可防止剩余能量被金属反射掉。如果被焊金属有良好的导热性能,则会得到较大的熔深。激光在材料表面的反射、透射和吸收,本质上是光波的电磁场与材料相互作用的结果。激光光波入射材料时,材料中的带电粒子依着光波电矢量的步调振动,使光子的辐射能变成了电子的动能。物质吸收激光后,首先产生的是某些质点的过量能量,如自由电子的动能,束缚电子的激发能或者还有过量的声子,这些原始激发能经过一定过程在转化为热能。

分类:

1.按照激光器输出能量方式的不同来区分,激光焊可以分为:脉冲激光焊,连续激光焊(包括高频脉冲连续激光焊)。

2.按照激光聚焦后光斑上功率密度的不同,激光焊可分为:传热焊,深熔焊。

1)传热焊定义:传热焊又叫热导焊。传热焊所用采用的激光光斑功率密度较低,(一般情况下,激光的光斑功率密度小于105W/cm2),当激光功率密度介于105W/cm2~106W/cm2的时候,也被认为是传热焊。

2)传热焊过程机理分析:工件吸收激光后,激光将金属表面加热到熔点与沸点之间,焊接的时候,金属材料表面将所吸收的激光转变为热能,使得金属表面温度升高而熔化,但是仅仅达到表面熔化的程度。然后通过热传导方式,把热能向金属工件内部传递,使得熔化区域逐渐扩大形成熔池。凝固后形成焊点或者焊缝,熔深轮廓近似半球形。这种焊接机理称为传热焊。它类似与TIG 焊等钨极电弧焊原理。这种焊接模式熔深浅,深宽比较小。

3)传热焊的主要特点:传热焊激光光斑的功率密度小,很大一部分光被金属表面反射,光的吸收效率低,焊接熔深浅,焊接速度慢,主要用于厚度小于1mm的薄板以及小零件的焊接加工。

4)深熔焊定义:深熔焊采用的激光光斑功率密度比较高。当激光光斑的功率度大于等于106W/cm2(通常介于106W/cm2~107W/cm2)的时候,被认为是深熔焊。

(三)激光切割

可分为激光汽化切割、激光熔化切割、激光氧气切割和激光划片与控制断裂四类。

1.激光汽化切割原理

利用高能量密度的激光束加热工件,使温度迅速上升,在非常短的时间内达到材料的沸点,材料开始汽化,形成蒸气。这些蒸气的喷出速度很大,在蒸气喷出的同时,在材料上形成切口。材料的汽化热一般很大,所以激光汽化切割时需要很大的功率和功率密度。

激光汽化切割多用于极薄金属材料和非金属材料(如纸、布、木材、塑料和橡皮等)的切

相关文档
最新文档