图像分析与理解

合集下载

计算机图像处理与分析

计算机图像处理与分析

计算机图像处理与分析计算机图像处理与分析是指利用计算机技术对图像进行处理、分析和理解的过程。

它涉及到数字图像处理、计算机视觉、图像识别等多个领域,是计算机科学和工程领域的一个重要研究方向。

以下是计算机图像处理与分析的一些基本知识点:1.数字图像处理:将模拟图像转换为数字图像,并进行各种处理,如图像增强、滤波、边缘检测、图像分割、图像配准等。

2.图像分析:对图像进行量化、描述和解释,包括特征提取、目标检测、形状分析、纹理分析等。

3.计算机视觉:通过模拟人类的视觉系统,使计算机能够理解和解释图像和视频。

包括图像识别、场景重建、视觉伺服等。

4.图像识别:识别图像中的对象、场景和个体,是计算机视觉的一个重要任务。

包括监督学习、非监督学习、深度学习等方法。

5.图像编码和压缩:为了节省存储空间和带宽,需要对图像进行编码和压缩。

包括JPEG、PNG、H.264等编码标准。

6.图像重建:从多个图像中重建三维模型或场景,应用于医学、工业等领域。

7.图像处理与分析的应用:包括图像处理软件、计算机辅助设计、机器人视觉、遥感图像处理、医学图像分析等。

8.数学基础:包括线性代数、概率论和数理统计、微积分等,这些数学工具在图像处理与分析中起到重要作用。

9.编程语言和工具:熟悉常用的编程语言,如Python、MATLAB、C++等,以及图像处理库,如OpenCV、MATLAB的Image Processing Toolbox等。

10.硬件设备:图像处理与分析需要高性能的计算机和专业的图像采集设备,如摄像头、扫描仪等。

计算机图像处理与分析是一门综合性的学科,需要掌握多个领域的知识和技能。

通过学习和实践,可以更好地理解和应用图像处理与分析的技术。

习题及方法:1.习题:图像增强的目的是什么?解题方法:回顾图像增强的定义和目的,增强图像的视觉效果,提高图像的质量和清晰度,以便更好地进行图像分析和识别。

答案:图像增强的目的是提高图像的质量和清晰度,以便更好地进行图像分析和识别。

使用计算机视觉技术进行图像分析的步骤

使用计算机视觉技术进行图像分析的步骤

使用计算机视觉技术进行图像分析的步骤图像分析是利用计算机视觉技术对图像进行解析、提取信息和获取有用知识的过程。

通过图像分析,我们可以理解图像中的内容、结构、特征,并为后续的处理和决策提供参考。

图像分析的步骤可以分为以下几个方面:1. 图像获取和预处理在进行图像分析之前,首先需要获取图像数据。

图像可以通过不同的传感器设备或者采集系统获得,比如数字相机、摄像机、扫描仪等。

获取到的图像数据可能会受到噪声、光照和畸变等因素的干扰,因此要进行预处理,包括去除噪声、颜色校正、几何校正等,以便得到质量更好的图像数据。

2. 特征提取和表示特征提取是图像分析中的核心步骤之一。

通过特征提取,可以从图像中提取出表达图像特点的数学描述,用于后续的分析和处理。

常见的特征包括颜色、纹理、形状、边缘等。

特征提取可以采用传统的算法,如高斯滤波、边缘检测、纹理分析等;也可以使用深度学习技术,如卷积神经网络(CNN)进行端到端的特征提取。

3. 图像分割图像分割是将图像划分成不同的区域或对象的过程。

图像分割可以通过基于像素的方法,如阈值分割、边缘分割等,或者基于特征的方法,如基于区域生长、区域分裂合并等。

图像分割可以提取出感兴趣的区域,并为后续的目标检测、识别等任务提供准确的输入。

4. 目标检测与识别目标检测与识别是图像分析的重要应用之一。

通过目标检测与识别,可以自动地识别图像中的目标物体,并进行分类、定位和跟踪等操作。

目标检测与识别可以使用传统的机器学习方法,如支持向量机(SVM)、决策树等;也可以使用深度学习方法,如卷积神经网络、循环神经网络等。

目标检测与识别可以应用于人脸识别、车辆检测、物体识别等多个领域。

5. 图像理解和分析图像理解和分析是对图像中语义信息的理解和提取。

通过图像理解和分析,可以从图像中获取更高级别的信息,如场景理解、情感分析等。

图像理解和分析可以使用传统的图像处理方法,如特征匹配、图像拼接等;也可以使用深度学习方法,如图像标注、图像生成等。

遥感图像分析的基本原理与方法

遥感图像分析的基本原理与方法

遥感图像分析的基本原理与方法遥感图像分析是一种通过获取和解释地球表面的图像数据来研究地理现象和环境变化的方法。

它利用遥感技术获取的图像数据进行数据处理和分析,以揭示地球的表面特征、变化和趋势。

本文将介绍遥感图像分析的基本原理和方法,并探讨其在地质、环境和农业等领域的应用。

一、遥感图像分析的基本原理遥感图像分析依赖于传感器获取的电磁辐射数据。

电磁辐射是能量在电磁波形式下传播的过程,其波长范围从长波到短波,包括可见光、红外线和微波等。

传感器可以通过不同波段的响应来获取不同的辐射数据,从而得到不同频谱范围内的图像数据。

在遥感图像中,每个像素代表一块地表区域的平均辐射量。

图像数据可以由数字矩阵表示,其中每个像素的灰度值或颜色值表示该区域的辐射强度或反射率。

通过对这些数据进行处理和分析,可以获得地表特征的信息。

二、遥感图像分析的方法1. 预处理遥感图像预处理是为了去除图像中的噪声、增强特征和调整图像的对比度等。

常见的预处理步骤包括去噪、辐射校正、大气校正和几何校正等。

这些步骤可以提高图像质量并准确反映地表特征。

2. 特征提取特征提取是指从遥感图像中提取有用的地物信息。

可以根据图像的灰度、色彩、纹理和形状等特征来区分不同的地物类型。

常用的特征提取方法包括直方图均衡化、主成分分析、变化检测和物体识别等。

3. 分类与识别遥感图像分类是将图像中的像素按照其地物类型划分为不同的类别。

分类可以基于监督或无监督方法进行。

其中,监督分类依赖于训练样本和分类器,而无监督分类则是通过数据的统计分布和聚类分析进行分类。

4. 变化检测变化检测是利用多期遥感图像比较分析同一地区在不同时间的变化情况。

通过对像素之间的差异进行检测和分析,可以揭示地表的变化趋势和时空模式。

变化检测在环境监测、城市规划和资源管理等领域具有重要应用价值。

三、遥感图像分析的应用1. 地质勘探遥感图像分析可以帮助地质学家在不同尺度上研究地球表面的地质结构和岩矿成分。

图像语义分析与理解综述

图像语义分析与理解综述

*国家自然科学基金资助项目(N o .60875012,60905005)收稿日期:2009-12-21;修回日期:2010-01-27作者简介 高隽,男,1963年生,教授,博士生导师,主要研究方向为图像理解、智能信息处理、光电信息处理等.E-m a i:l gao j un @hfut .edu .cn .谢昭,男,1980年生,博士,讲师,主要研究方向为计算机视觉、智能信息处理、模式识别.张骏,女,1984年生,博士研究生,主要研究方向为图像理解、认知视觉、机器学习.吴克伟,男,1984年生,博士研究生,主要研究方向为图像理解、人工智能.图像语义分析与理解综述*高 隽 谢 昭 张 骏 吴克伟(合肥工业大学计算机与信息学院合肥 230009)摘 要 语义分析是图像理解中高层认知的重点和难点,存在图像文本之间的语义鸿沟和文本描述多义性两大关键问题.以图像本体的语义化为核心,在归纳图像语义特征及上下文表示的基础上,全面阐述生成法、判别法和句法描述法3种图像语义处理策略.总结语义词汇的客观基准和评价方法.最后指出图像语义理解的发展方向.关键词 图像理解,语义鸿沟,语义一致性,语义评价中图法分类号 T P 391.4I m age Se m antic Anal ysis and Understandi ng :A R eviewGAO Jun ,XI E Zhao ,Z HANG Jun ,WU Ke -W ei(S chool of C o m puter and Infor m ation,H e fei University o f T echnology,H efei 230009)ABSTRACTSe m antic ana l y sis is the i m portance and diffi c u lty of high -level i n terpretati o n i n i m age understandi n g ,i n wh ich there are t w o key issues of tex-t i m age se m an tic gap and tex t descri p ti o n po lyse m y .Concentrating on se m antizati o n o f i m ages onto logy ,three soph i s tica ted m et h odolog ies are round l y rev ie w ed as generati v e ,d iscri m ina ti v e and descriptive gra mm ar on the basis of conc l u d i n g i m ages se m antic fea t u res and context expression .The ob jective benchm ark and eva l u ation for se m an tic vocabu lary are i n duced as w e l.l F i n ally ,the summ arized directions fo r furt h er researches on se m antics i n i m age understand i n g are discussed i n tensively .K ey W ords I m age Understanding ,Se m antic G ap ,Se m an tic Consistency ,Se m an tic Evalua ti o n1 引 言图像理解(I m age Understandi n g ,I U )就是对图像的语义解释.它是以图像为对象,知识为核心,研究图像中何位置有何目标(what is w here)、目标场景之间的相互关系、图像是何场景以及如何应用场景的一门科学.图像理解输入的是数据,输出的是知识,属于图像研究领域的高层内容[1-3].语义(Se -第23卷 第2期 模式识别与人工智能 V o.l 23 N o .2 2010年4月 PR &A I A pr 2010m antics)作为知识信息的基本描述载体,能将完整的图像内容转换成可直观理解的类文本语言表达,在图像理解中起着至关重要的作用.图像理解中的语义分析在应用领域的潜力是巨大的.图像中丰富的语义知识可提供较精确的图像搜索引擎(Searching Eng i n e),生成智能的数字图像相册和虚拟世界中的视觉场景描述.同时,在图像理解本体的研究中,可有效形成/数据-知识0的相互驱动体系,包含有意义的上下文(Context)信息和层状结构(H ierarchica-l S truct u red)信息,能更快速、更准确地识别和检测出场景中的特定目标(如,识别出场景中的/显示器0,根据场景语义知识可自动识别附近的/键盘0).尽管语义分析在图像理解中处于非常重要的位置,但传统的图像分析方法基本上全部回避了语义问题,仅针对纯粹的图像数据进行分析.究其原因主要集中于两方面:1)图像的视觉表达和语义之间很难建立合理关联,描述实体间产生巨大的语义鸿沟(Se m antic Gap);2)语义本身具有表达的多义性和不确定性(Am bigu ity).目前,越来越多的研究已开始关注上述/瓶颈0,并致力于有效模型和方法以实现图像理解中的语义表达.解决图像理解中的语义鸿沟需要建立图像和文本之间的对应关系,解决的思路可大致分为三类.第一条思路侧重于图像本身的研究,通过构建和图像内容相一致的模型或方法,将语义隐式地(I m p lici-t l y)融入其中,建立/文本y图像0的有向联系,核心在于如何将语义融于模型和方法中.采用此策略形成的研究成果多集中于生成(Generati v e)方式和判别(D iscri m inati v e)方式中.第二条思路从语义本身的句法(G ra mm ar)表达和结构关系入手,分析其组成及相互关系,通过建立与之类似的图像视觉元素结构表达,将语义描述和分析方法显式地(Exp lici-t l y)植入包含句法关系的视觉图中,建立/图像y文本0的有向联系.核心在于如何构建符合语义规则的视觉关系图.第三条思路面向应用,以基于内容的图像检索(I m age Retrieval)为核心,增加语义词汇规模,构建多语义多用户多进程的图像检索查询系统.解决语义本身的多义性问题需要建立合理的描述规范和结构体系.Princeton大学的认知学者和语言学家早在20世纪80年代就研究构建了较合理统一的类树状结构.如今已被视为视觉图像研究领域公认的语义关系参考标准,用于大规模图像数据集的设计和标记中,有效归类统一了多义性词语.此外,一些客观的语义检索评价标准也在积极的探索过程中.本文将对上述两个图像语义理解中的问题进行方法提炼和总结.针对语义鸿沟问题,介绍已有模型和方法的处理策略.还采用较完备的图像语义/标尺0(B ench m ark)解决语义的主观多义性.2图像内容的语义分析图像内容描述具有/像素-区域-目标-场景0的层次包含关系,而语义描述的本质就是采用合理的构词方式进行词汇编码(Encodi n g)和注解(Annota-tion)的过程.这种过程与图像内容的各层描述密切相关,图像像素和区域信息源于中低层数据驱动,根据结构型数据的相似特性对像素(区域)进行/标记0(Labeli n g),可为高层语义编码提供有效的低层实体对应关系.目标和场景的中层/分类0(C ategor-i zati o n)特性也具有明显的编码特性,每一类别均可视为简单的语义描述,为多语义分析的拓展提供较好的原型描述.本节将针对前述的语义鸿沟问题介绍常用的图像语义表示方法和分析策略.2.1语义化的图像特征图像内容的语义分析借鉴文本分析策略.首先需要构建与之相对应的对象,整幅图像(I m age)对应整篇文档(Docum ent),而文档中的词汇(Lex icon)也需要对应相应的视觉词汇(V isua lW ord).视觉词汇的获取一般通过对图像信息的显著性分析提取图像的低层特征,低层特征大多从图像数据获取,包括简单的点线面特征和一些特殊的复杂特征,再由鲁棒的特征表达方式生成合适的视觉词汇,视觉词汇一般具有高重用性和若干不变特性.点特征提取以图像中周围灰度变化剧烈的特征点或图像边界上高曲率的点为检测对象,根据灰度或滤波函数确定区域极值点(如H arris角点[4]等),并拓展至不同掩膜下的尺度空间中(如高斯-拉普拉斯、高斯差分等),分析极值点的稳定特性,得到仿射不变的H arris二阶矩描述符[5].线特征描述图像中目标区域的外表形状和轮廓特性,这类轮廓线特征以C anny算子等经典边缘检测算法为基础,集中解决边缘曲线的描述、编组以及组合表达等问题.边缘上的双切线点和高曲率点可连接形成有效的边缘链或圆弧,根据聚类策略或某些规则完成线片段编组,形成线特征的视觉词汇[6-8].区域是图像上具有灰度强相关性的像素集合,包含某种相似属性(如灰度值、纹理等),相对于点线特征,面特征有更丰富的结构信息.区域特征以点特征为中心,采用拉普192模式识别与人工智能23卷拉斯尺度下的H arris或H essian仿射区域描述,对特征尺度上的椭圆仿射区域内的初始点集进行参数迭代估计,根据二阶矩矩阵的特征值测量点邻的仿射形状[4,9].另一种策略分析视觉显著区域对象(如直方图、二值分割图等)的熵值统计特性,得到最佳尺度下的最稳定区域,满足视觉词汇的高重用性[10-11].鲁棒特征表达对提取的特征进行量化表示.点特征一般仅具有图像坐标.线特征则充分考虑邻域边缘点的上下文形状特性,以边缘上采样点为圆心,在极坐标下计算落入等距等角间隔区域的边缘像素直方图.椭圆形面特征描述主要以尺度不变特征变换(Sca le I nvariant Fea t u re Transfor m,SI FT)[12-13]为主,SI FT特征对每个高斯窗口区域估计方向直方图,选择峰值作为参考方向基准,计算4@4网格区域内8个方向的梯度直方图,任何区域均可转换为4@4@8 =128维特征向量.该特征对图像尺度、旋转具有不变性,对亮度和视角改变也保持一定稳定性.通过对特征向量的聚类,得到最原始的特征词汇,形成的语义化图像特征也称为/码书0(Codebook)[14].2.2图像语义的上下文表达图像的语义信息描述主要包含外观位置信息和上下文信息,前者如2.1节所述,可表示成/码书0.上下文信息不是从感兴趣的目标外观中直接产生,而来源于图像邻域及其标签注解,与其他目标的外观位置信息密切相关.当场景中目标外观的可视程度较低时,上下文信息就显得尤为重要.B ieder m an将场景中不相关目标关系分为5种,即支撑(Support)、插入(I nterpositi o n)、概率(Proba-b ility)、位置(Positi o n)和大小(Size)[15-16].五类关系均包含/知识0,不需要知道目标信息就可确定支撑和插入关系,而后三类关系对应于场景中目标之间的语义交互关系,可缩短语义分析时间并消除目标歧义,通常称为/上下文特征0(C ontex t Features),譬如一些相对复杂的特征描述(如全局G ist特征[17-18]、语义掩码特征等)融入场景上下文信息,本身就包含语义(关联)信息,是语义分析的基础.如今有很多研究开始挖掘B ieder m an提出的三类语义关系,可分为语义上下文、空间上下文和尺度上下文[19].语义上下文表示目标出现在一些场景中,而没有出现在其他场景中的似然性,表示为与其他目标的共生(Co-O ccurrence)关系,可采用语义编码方式[20-21],也可由共生矩阵判断两类目标是否相关[22-23],此类上下文对应B ieder m an关系中的/概率0关系.空间上下文表示目标相对于场景中其他目标出现在某个位置上的似然性,对应于/位置0关系.空间上下文隐式地对场景中目标的/共生0进行编码,为场景结构提供更加具体的信息,只需确定很少的目标,就可通过合理的目标空间关系降低目标识别的误差,消除图像中的语义歧义[24-25].尺度上下文表示目标在场景中可能的相对尺度范围,对应于/大小0关系.尺度上下文需处理目标之间的特定空间和深度关系,可缩小多尺度搜索空间,仅关注目标可能出现的尺度.尺度上下文在二维图像中较为复杂,目前仅用于简单的视觉分析系统中[26-27].目前大多数上下文方法主要分析图像中的语义上下文和空间上下文.语义上下文可从其他两种上下文中推理获取,与场景中的目标共生相比.尺度和空间上下文的变化范围较大,而共生关系的知识更易获取,处理计算速度更快.融入上下文特征的图像语义形成了全局和局部两种分析策略,即基于场景的上下文分析和基于目标的上下文分析.前者从场景出发[15,27],将图像统计量看作整体,分析目标和场景之间的高频统计特性,获取全局上下文信息,如马路预示着汽车的出现.后者从目标出发[25,28],分析目标间的高频统计特性,获取局部上下文信息,如电脑预示着键盘的出现.总之,上下文特征包含了更丰富的知识,有助于为图像理解提供更准确的语义信息.2.3语义分析的生成方法生成方法基于模型驱动,以概率统计模型和随机场理论为核心,遵循经典的贝叶斯理论,定义模型集合M,观察数据集合D,通过贝叶斯公式,其模型后验概率p(M|D)可以转换为先验概率p(M)和似然概率p(D|M)的乘积.生成方法一般假设模型遵循固定的概率先验分布(如高斯分布等),其核心从已训练的模型中/生成0观察数据,测试过程通过最大似然概率(M ax i m ize L i k e lihood)得到最符合观察数据分布的模型预测似然(Pred icti v e Like li h ood).图像语义分析的生成方法直接借用文本语义分析的图模型结构(G raph ica lM ode ls),每个节点定义某种概念,节点之间的边表示概念间的条件依赖关系,在隐空间(Latent Space)或随机场(Rando m Field)中建立文本词组和视觉描述之间的关联,生成方法无监督性明显,具有较强的语义延展性.2.3.1层状贝叶斯模型图模型的节点之间由有(无)向边连接,建立视觉词汇和语义词语之间的对应关系.朴素贝叶斯理论形成的经典Bags-o-f W ords模型是层状贝叶斯模1932期高隽等:图像语义分析与理解综述型的雏形,该模型将同属某类语义的视觉词汇视为/包0,其图结构模型和对应的视觉关系描述如图1(a)所示,其中灰色节点为观察变量,白色节点为隐变量,N 为视觉词汇的个数,通过训练建立类别语义描述c 和特征词汇w 之间的概率关系,选取最大后验概率p (c |w )对应的类别作为最终识别结果.(a)朴素贝叶斯(b)概率隐语义分析(c)隐狄利克雷分配(a)N a Çve bay es(b)P robab ili stic latent se m antic ana l y si s (c)L atent D irich let a llocati on图1 有向图语义描述F i g .1 Se m antic i nterpre tati on of directed g raphs朴素贝叶斯模型试图直接建立图像和语义之间的联系,但由于视觉目标和场景的多样性导致这种稀疏的离散分布很难捕捉有效的概率分布规律,因此H o f m ann 借鉴文本分析中的概率隐语义分析(Probab ilistic Latent Se m antic Ana l y sis ,pLSA )模型[29-30],将/语义0描述放入隐空间Z 中,生成相应的/话题0(Top ic)节点,其基本描述如图1(b )所示.D 为M 个图像d 组成的集合,z 表示目标的概念类别(称为/Top ics 0),每幅图像由K 个Topics 向量凸组合而成,通过最大似然估计进行参数迭代,似然函数为p (w |d )的指数形式,与语义词汇和图像的频率相关.模型由期望最大化(E xpec ta tion M ax i m ization,E M )算法交替执行E 过程(计算隐变量后验概率期望)和M 过程(参数迭代最大化似然).决策过程的隐变量语义归属满足z*=arg m ax z P (z |d ),pLSA 模型通过隐变量建立特征与图像间的对应关系,每个文本单元由若干个语义概念按比例组合,本质上隐空间内的语义分布仍然是稀疏的离散分布,很难满足统计的充分条件.隐狄利克雷分配(LatentD ir ich let A llocation ,LDA )模型[31-32]在此基础上引入参数H ,建立隐变量z 的概率分布.在图像语义分析中,变量z 反映词汇集合在隐空间的聚类信息,即隐语义概念,参数H (通常标记为P )则描述隐语义概念在图像空间中的分布,超参A (通常标记为c)一般视为图像集合D 中已知的场景语义描述.如图1(c )所示,由参数估计和变分(V aria tiona l)推理,选取c =arg m ax c P (w |c ,P ,B )作为最终结果.LDA 中不同图像场景以不同的比例P 重用并组合隐话题空间全局聚类(G l o ba lC l u ster),形成/场景-目标-部分0的语义表达关系.LDA 中的隐话题聚类满足De Finetti 可交换原理,其后验分布不受参数次序影响,不同隐话题聚类相互独立,无明显的结构特性.一种显而易见的策略就是在此模型基础上融入几何或空间关系,即同时采用话题对应的语义化特征的外观描述和位置信息,这样不同话题的分布大体被限定于图像场景的某个区域,如天空总是出现在场景的上方等,减小模型决策干扰.如L i 等人[14,33]在LDA 模型中融入词汇的外观和位置信息,并将语义词汇描述c 划分为视觉描述词汇(如sky )和非视觉描述词汇(如w i n d)两类,由词汇类别转换标签自动筛选合适的词汇描述.模型采用取样(Sa mp li n g)策略对从超参先验中生成的视觉词汇和语义标签进行后验概率学习,模型中包含位置信息的语义特征显式地体现了空间约束关系,具有更好的分析效果.(a)无结构(b)全互连结构(c)星状结构(a)U nstructured(b)Fu ll structure (c)Sta r struct u re图2 Part -based 模型表示图F i g.2 R epresen tati on for Part -based m ode lsLDA 模型已明确地将隐空间的/话题0语义进行合理聚类,建立与视觉词汇聚类的对应关系.隐话题聚类隐式地对应场景或目标的某些部分(parts),是一种较原始的par-t based 模型.真正的par-t based模型侧重/目标-部分0之间的语义关联表达,不仅具有较强的结构特性,而且直接概念化隐空间的语义聚类,每个part 直接显式对应语义描述(如人脸可分为眼睛、鼻子、嘴等不同部分).如图2所示,一般通过人工设定或交叉验证的方式固定重要参数(如隐聚类个数、part 个数等)并混合其概率密度,其中固定参数的D ir i c h let 生成过程是一种有限混合./星群0(Conste llati o n)模型[34-35]是其中的典型,根据不194模式识别与人工智能 23卷同区域的外观位置信息描述,确定P 个部分的归属及其概率分布,将目标和背景似然比分解为外观项、形状项、尺度项以及杂项的乘积,依次计算概率密度值(一般是高斯分布或均匀分布),并E M 迭代更新参数,最后通过似然比值判断目标的语义属性.部分间的约束关系体现于形状项中,可以假设为全互连结构(Fu ll Str ucture)或星状结构(S tar S tructure),其结构信息体现于高斯分布的协方差矩阵中(满秩或稀疏矩阵),有助于提高语义分析的准确性.固定参数的D irichlet 生成过程是无限混合模型的一种特例,可通过合适的随机过程,很好表达无限混合(I nfi n ite M i x t u re)模型,自动确定混合个数.这种/非参0(Non -Para m etric)模型可捕捉到概率空间的隐性分布,不受特定的概率密度函数形式表达限制.整个D irich let 过程可拓展至层次结构(H ierar -ch ical D irichlet Process ,HDP).H DP 具有明显的结构特性,可以很容易对应于图像中的/场景-目标-部分0层次结构,其混合组成很显式地表达了不同目标实体间的语义包含关系.Sudderth 在HDP 的基础上,引入转换函数(Transfor m ed Function),生成转换D irichlet 过程(T ransfor m ed D irichlet Process ,TDP),每组的局部聚类不再直接/复制0全局聚类参数,而是通过不同转换函数生成变化多样的局部变参,更符合目标多变特性[36-37].层状贝叶斯模型是当前处理图像语义问题的关注热点,其模型特有的参数化层次结构信息参照文本处理直接对应图像中的语义实体,通过图模型的参数估计和概率推理得到合适的语义描述.模型本身的发展也具有一定的递进关系,即/Bags -o-f W ord模型y pLSA 模型y LDA 模型y par-t based 模型y HDP 模型y TDP 模型0等,分析得到的结果具有层次语义包含关系.2.3.2 随机场模型随机场模型以均值场(M ean F ield)理论为基础,图中节点变量集合{x i |i I V }通常呈4-邻域网格状分布,节点之间的边{(x i ,x j )|i ,j I V;(x i ,x j )I E }体现隐性关联,由势函数W ij (x i ,x j )表示,一般具有含参数H 的近高斯指数分布形式,每个隐节点x i 一般对应一个观察变量节点y i ,由势函数W i (x i ,y i )表示.如图3所示,观察节点可对应图像的像素点,也可对应图像中的某个区域或目标语义化特征描述(如2.1节所述),隐变量则对应语义/标记0或/标签0l .随机场模型具有丰富的结构场信息,节点间上下文关联很强,通常分析像素标记解决图像分割问题.近年来,其特定的约束关系(如桌子和椅子经常关联出现)也被用于图像区域化语义分析中,隐节点集的语义标签对应不同的语义化特征和势函数取值,最大化随机场的能量函数得到的标记赋值,就是最终的区域语义标记属性.随机场模型具有较成熟的计算框架,融合其上下文关联信息的层次贝叶斯/生成0模型是分析图像语义的主流趋势[14,33-35,38-40].图3 随机场模型及其图像语义描述F ig .3 R andom field m ode l and its se m antic descr i pti on2.4 语义分析的判别方法判别方法基于数据驱动,根据已知观察样本直接学习后验概率p (M |D ),主要通过对训练样本的(弱)监督学习,在样本空间产生合适的区分函数,采用形成的分类器或结构参数,完成对特定的特征空间中点的划分(或闭包),形成某些具有相似特性的点的集合.这些共性可直接显式对应图像理解中的若干语义信息,如目标和场景的属性、类别信息等,通常以主观形式体现于观察样本中,其本质就在于学习并获取区分不同语义信息的知识规则(如分类器等).由于语义信息主观设定(如判别几种指定类别),因此判别方法主要侧重观察样本(语义)的处理分析,而非观察样本(语义)的获取.判别方法是包含经典的机器学习方法,精确度较高且易于实现,常用于目标检测识别识别.其策略主要包括最近邻分析、集成学习和核方法.2.4.1 最近邻方法最近邻(k -N earestN e ighbo r ,kNN )方法是基于样本间距离的一种分类方法.其基本思想是在任意空间中、某种距离测度下,寻找和观测点距离最接近的集合,赋予和集合元素相似的属性集合.在图像理解中,就是在图像特征空间寻找和近似的特征描述集,将已知的语义作为分析图像的最终结果.最近邻方法非常简单,但对样本要求较高,需要很多先验知1952期 高 隽 等:图像语义分析与理解综述识,随着大规模语义标记图像库的出现(如后 3.2节所述),最近邻方法有了广阔的应用前景,Torra l b a 等人[41]建立80万幅低分辨率彩色图像集合和相应的语义标记,图像集涵盖所有的视觉目标类别,以W ord N et语义结构树(如后3.1节所述)的最短距离为度量,采用最近邻方法分别对其枝干进行投票,选取最多票数对应最终的语义标签输出.也可直接在图像空间中计算像素点的欧式距离,得到与分析图像相类似的语义空间布局(Con fi g uration).Russe ll 等人[42]利用最近邻方法找出与输入图像相似的检索集,通过含有标记信息的检索图像知识转化到输入图像中,完成场景到目标的对齐任务.语义聚类法还被用于视频数据库中[43],具有较好的结果.2.4.2集成学习集成学习将各种方法获得的模型在累加模型下形成一个对自然模型的近似[44-45],将单一学习器解决问题的思想转换为用多个学习器来共同解决问题.Boosti n g是集成学习方法的典型.其基本思想是每次迭代t生成一个带权重A t的弱分类器(W eaker C lassifier)h t,加大误分样本的权重,保证后续学习对此类样本的持续关注,权重A t表示该弱分类器h t 的重要性,分类效果好的权重大,效果差的权重小.其集成学习的结果就是弱分类器的加权组合E T t=1Ex i I DA t h t(x i)构成一个分类能力很强的强分类器(Strong C lassif-i er),完成简单的二值或复杂的多值分类[46-47].集成学习方法经常用于图像理解的语义分类中,其样本数据集既可以是区域块也可以是滤波后的基元乃至包括上下文和空间布局信息.其分类结果具有很明显的语义区分度.多语义分类中经常出现多类共享的情况,因此,联合Boosti n g的提出极大地减少了分类器的最佳参数搜索时间,使单一弱学习器具有多类判别能力[48-51].同时,近年来多标签多实例(M ult-i Instance M u lt-i Labe l Learn i n g,M I M L)的集成学习策略[52]也倍受学者关注,图像理解中的语义划分问题可通过M I M L转化为单纯数据下的机器学习问题,其输出的分类结果就是对既定语义的编码结果.2.4.3核方法核方法(Kernel)是在数据集中寻找合适的共性/基0,由/基0的混合组成共性空间,与图像理解中的低层基元表示异曲同工.使用核方法可将低维输入空间R n样本特征映射到高维空间中H,即5B R n y H,将非线性问题转换为线性问题.其关键是找到合适的核函数K保持样本在不同空间下的区分关系,即K(x i,x j)=5(x i)#5(x j).它能够在学习框架和特定知识之间建立一种自然的分离来完成图像有意义的表达[53-54].支持向量机(S VM)是常用的核方法之一.它以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,在核函数特征空间中有效训练线性学习分类器,通过确定最优超平面(H yper Plane)及判别函数完成高维空间点的分类.SVM方法在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,在图像理解中,能有效解决不同环境、姿态以及视角下的广义目标识别分类问题,是目前最为通用的分类模型[55-58].针对多语义分类问题,Farhad i等人[59]将目标的语义属性细分为部分、形状及材质等,相同或相似的语义对应的样本集表明了某种特有的共性关系,采用L1测度对数回归和线性SVM方法学习不同语义类别的判别属性,其多语义属性的不同划分决定了指定目标的唯一描述,具有很强的语义可拓展性.判别模型是通过模型推理学习得出的后验概率,对应不同类别目标的后验概率或对应图像前景和背景的不同后验概率来划定判决边界,进而完成目标识别,指导图像理解.判别模型在特征选取方面灵活度很高,可较快得出判别边界.2.5图像句法描述与分析人对图像场景理解的本质就是对图像本身内在句法(G ra mm ar)的分析.句法源于对语句结构研究,通过一系列的产生式规则将语句划分为相互关联的若干词汇(组)组合,体现句法内词汇之间的约束关系.图像句法分析直接研究图像语义,随着20世纪70年代句法模式识别的提出,Otha就试图构建统一的基于视觉描述的知识库系统,利用人工智能相关策略进行场景语义推理.但由于视觉模型千变万化,方法针对性很强,句法分析方法曾一度没落.当前图像语义分析的一部分研究重心又重新转向图像句法.由于句法分析本身已较为成熟,因此如何建立和句法描述相对应的图像视觉描述非常关键.2.5.1图像与或图表达图像I内的实体具有一定的层次结构,可用与或图(And-O r G raph)的树状结构表示,即解析树pg.如图4所示,同属一个语义概念的实体尽管在外观上具有很大差异,但与或图表达相似,与节点表示实体的分解(D ecom position),如/场景y目标0, /目标y部分0等,遵循A y BCD,的句法规则,或节点表示可供选择的结构组成,遵循A y B|C|D,196模式识别与人工智能23卷。

图像处理方法有哪些

图像处理方法有哪些

图像处理方法有哪些图像处理方法是指对数字图像进行处理和分析的技术和方法。

它可以通过一系列算法和技术对图像进行增强、滤波、分割、特征提取、识别等操作,以改善图像质量、提取有用信息和实现自动化处理。

常见的图像处理方法有以下几种:1. 图像增强:图像增强是通过改善图像的对比度、亮度、锐度和颜色等属性来改善图像质量的方法。

常见的图像增强方法包括直方图均衡化、灰度拉伸、对比度拉伸、锐化和平滑等。

2. 图像滤波:图像滤波是在频域或空域对图像进行滤波操作,以达到图像去噪、边缘检测、平滑、锐化等目的。

常见的图像滤波方法包括均值滤波、中值滤波、高斯滤波、边缘增强滤波等。

3. 图像分割:图像分割是将图像划分为具有独立语义的一组区域的过程,旨在提取图像中的目标或感兴趣的区域。

常见的图像分割方法包括阈值分割、区域生长、边缘检测、基于图割的分割等。

4. 特征提取:特征提取是从图像中提取出携带有目标信息的低维度表示的过程,常用于图像分类、目标识别和图像检索等任务。

常见的特征提取方法包括局部二值模式(LBP)、方向梯度直方图(HOG)、尺度不变特征变换(SIFT)、速度骨架特征描述子(SURF)等。

5. 图像配准:图像配准是将不同视角或不同时间拍摄的图像进行准确对齐的过程,常用于图像拼接、目标跟踪和立体视觉等应用。

常见的图像配准方法包括基于特征点匹配的配准、基于相似变换的配准、基于标定模型的配准等。

6. 特征匹配:特征匹配是将两个或多个图像中的特征点进行匹配,以实现图像拼接、目标跟踪和立体视觉等任务。

常见的特征匹配方法包括基于相似度的特征匹配、基于距离度量的特征匹配、基于深度学习的特征匹配等。

7. 目标检测与识别:目标检测与识别是指在图像中自动检测和识别出感兴趣的目标或物体的任务。

常见的目标检测与识别方法包括基于滑动窗口的检测、基于特征的分类器(如支持向量机、卷积神经网络)的识别、基于深度学习的目标检测与识别等。

8. 图像分析与理解:图像分析与理解是对图像进行高层次的语义理解和推理的过程,常用于人脸识别、行为分析和场景理解等应用。

图像相关问题分析与解法总结

图像相关问题分析与解法总结

图像相关问题分析与解法总结随着科技的不断发展,图像处理技术在各个领域中扮演着越来越重要的角色。

无论是在医学影像诊断、人脸识别还是虚拟现实等方面,图像相关问题都是我们需要面对和解决的挑战。

本文将就图像相关问题进行分析,并总结一些解决方法。

一、图像噪声问题在图像处理过程中,噪声是一个常见的问题。

噪声会导致图像细节模糊、失真等问题,影响最终的图像质量。

针对图像噪声问题,我们可以采用以下解决方法:1.滤波器:通过应用滤波器来消除噪声。

常见的滤波器包括均值滤波器、中值滤波器和高斯滤波器等。

不同的滤波器适用于不同类型的噪声,选择合适的滤波器可以有效地降低噪声。

2.小波变换:小波变换是一种多尺度分析方法,可以将信号分解成不同频率的子信号。

通过对图像进行小波变换,可以将噪声和信号分离开来,并对噪声进行去除。

3.深度学习方法:近年来,深度学习在图像处理领域取得了显著的成果。

通过训练深度神经网络,可以学习到噪声的模式,并对图像进行去噪处理。

深度学习方法在图像去噪方面表现出了很大的潜力。

二、图像分割问题图像分割是将图像分成不同的区域或对象的过程。

图像分割在计算机视觉和图像处理中具有广泛的应用,例如目标检测、图像识别等。

以下是一些常用的图像分割方法:1.阈值分割:阈值分割是一种简单而常用的图像分割方法。

通过选择一个适当的阈值,将图像中的像素分为不同的类别。

对于灰度图像,可以根据像素的灰度值来确定阈值;对于彩色图像,可以根据像素的颜色值来确定阈值。

2.边缘检测:边缘是图像中灰度或颜色变化明显的地方。

通过检测图像中的边缘,可以将图像分割成不同的区域。

常用的边缘检测算法包括Sobel算子、Canny 算子等。

3.区域生长:区域生长是一种基于像素相似性的图像分割方法。

该方法从一个或多个种子点开始,根据像素的相似性逐渐扩展区域,直到达到某个停止条件。

三、图像增强问题图像增强是改善图像质量的过程,使图像更加清晰、明亮、对比度更强等。

对图像的分析方法

对图像的分析方法

对图像的分析方法
图像分析是指利用计算机视觉和图像处理技术对图像进行特征提取、对象检测、图像分割、目标跟踪等操作的过程。

以下是一些常用的图像分析方法:
1. 图像预处理:包括灰度化、去噪、图像增强等操作,用于减少噪声、提升图像质量。

2. 特征提取:提取图像的局部特征或全局特征,如颜色特征、纹理特征、形状特征等,用于描述图像的特点。

3. 对象检测与识别:通过训练分类器或使用深度学习模型,检测和识别图像中的特定对象,如人脸、车辆、动物等。

4. 图像分割:将图像分割成不同的区域或对象,常见的方法有阈值分割、边缘检测、区域生长等。

5. 目标跟踪:在时间序列图像中,通过连续帧之间的关联,对特定对象进行追踪,包括基于颜色、纹理、运动等的跟踪方法。

6. 图像配准:将多个图像进行对齐,使得它们在同一坐标系下可比较或融合,
常见的方法有基于特征点、基于区域的配准方法。

7. 图像分析与理解:基于机器学习和深度学习技术,对大规模图像数据进行分析和理解,如图像分类、图像生成、图像描述等。

这些方法可以单独使用或结合起来,用于解决各种图像分析任务,包括图像识别、图像检索、目标跟踪、图像分析等。

函数图像分析:分析函数图像

函数图像分析:分析函数图像

函数图像分析:分析函数图像函数图像是数学中一个重要的概念,通过分析函数图像,我们可以深入理解函数的性质和特点。

本文将从图像的对称性、增减性、极值点、拐点以及特殊函数的图像等角度,进行函数图像的详细分析。

一、图像的对称性函数图像的对称性可以帮助我们更好地理解函数的性质。

主要有以下几种对称性:1. 奇对称:函数图像关于坐标原点对称。

例如,y = sin(x)函数的图像就是奇对称的,即在原点处对称。

2. 偶对称:函数图像关于y轴对称。

例如,y = x^2函数的图像是偶对称的,即在y轴上对称。

3. 平移对称:函数图像在某一平移变换下保持不变。

例如,y = 2^x 中的图像在平移变换2单位向上后保持不变。

二、图像的增减性通过观察函数图像的增减性,我们可以了解函数在不同区间内的增减趋势。

主要有以下几种情况:1. 递增:函数图像在某一区间上单调递增。

例如,y = x函数在整个定义域上都是递增的。

2. 递减:函数图像在某一区间上单调递减。

例如,y = -x函数在整个定义域上都是递减的。

3. 局部极值点:函数图像在某一区间上有极大值或极小值。

通过求导可确定函数图像的极值点。

三、图像的极值点函数图像的极值点反映了函数的最值情况。

可以通过求导数的方式来确定函数图像的极值点。

1. 极大值点:函数图像在该点附近局部最大。

求导数后,导数为0,且由正变负。

2. 极小值点:函数图像在该点附近局部最小。

求导数后,导数为0,且由负变正。

四、图像的拐点函数图像的拐点是指函数曲线的凹凸性发生改变的点。

可以通过求导数的二阶导数来确定函数图像的拐点。

1. 凹点:函数图像在该点附近向下凹陷。

求二阶导数后,导数大于0。

2. 凸点:函数图像在该点附近向上凸起。

求二阶导数后,导数小于0。

五、特殊函数的图像1. 幂函数:幂函数的图像可以分为几种情况。

当指数n为正数时,幂函数图像随着自变量的增大而增大;当指数n为负数时,幂函数图像随着自变量的增大而减小。

二次函数图像与性质分析

二次函数图像与性质分析

二次函数图像与性质分析引言:二次函数是高中数学中的重要内容之一,它在数学和实际生活中都有着广泛的应用。

本文将对二次函数的图像和性质进行详细的分析,帮助读者更好地理解和应用二次函数。

一、二次函数的定义和一般形式二次函数是指形式为y=ax^2+bx+c的函数,其中a、b、c为常数且a≠0。

二次函数的图像通常是一个抛物线,其开口方向取决于a的正负。

二、二次函数的图像特征1. 抛物线的开口方向当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

这是因为二次函数的一次导数是一次函数,其斜率为常数,因此二次函数的图像是平滑的曲线。

2. 抛物线的顶点二次函数的顶点是抛物线的最高点或最低点,其横坐标为-x轴对称的点,纵坐标为函数值最大或最小的点。

顶点的坐标可以通过求导数或使用顶点公式来确定。

3. 抛物线的对称轴二次函数的对称轴是通过顶点的垂直线,对称轴方程的形式为x=h,其中h为顶点的横坐标。

4. 抛物线的焦点和准线当抛物线开口向上时,焦点在对称轴上方,准线在对称轴下方;当抛物线开口向下时,焦点在对称轴下方,准线在对称轴上方。

焦点和准线的计算可以使用焦点公式和准线公式。

三、二次函数的性质分析1. 零点和因式分解二次函数的零点是函数值为0的横坐标,可以通过求解二次方程来求得。

而二次函数可以因式分解为两个一次因子的乘积形式,这在求解零点和分析函数性质时非常有用。

2. 增减性和极值二次函数的增减性取决于二次项系数a的正负。

当a>0时,函数在对称轴两侧递增;当a<0时,函数在对称轴两侧递减。

二次函数的极值即为顶点,当a>0时,函数有最小值;当a<0时,函数有最大值。

3. 零点和系数的关系二次函数的零点与系数之间存在着重要的关系。

对于形式为y=ax^2+bx+c的二次函数,其零点的和为-x轴对称点的横坐标的相反数,即x1+x2=-b/a;而零点的乘积等于常数项c的相反数,即x1*x2=c/a。

基于图像处理的场景分析和理解

基于图像处理的场景分析和理解

基于图像处理的场景分析和理解一、引言随着计算机视觉技术的发展,图像处理应用越来越广泛。

其中,基于图像处理的场景分析和理解技术被广泛应用于视频监控、智能交通、环境监测、医学影像等领域。

本文将从图像处理的基本概念入手,阐述场景分析和理解的原理和方法,并探讨该技术的应用前景。

二、图像处理基本概念图像处理是指对数字图像进行数字信号处理的过程。

数字图像是由离散的像素点组成的,每个像素点都有特定的图像亮度值和颜色属性。

图像处理算法的核心思想是对这些像素点进行分析和处理,以获取目标信息。

图像处理的主要操作包括预处理、增强、分割、特征提取和识别等。

三、场景分析和理解原理场景分析和理解是指通过图像处理技术对目标场景进行分析和理解,获得目标区域、目标数量、目标动态等信息。

主要方法包括基于特征的目标检测、目标跟踪、目标识别和目标分析等。

1、基于特征的目标检测目标检测是指在图像中自动识别目标区域并标记。

目标检测的方法有很多,其中基于特征的检测方法是最常用的方法之一。

通常将目标区域与周围环境通过某些特征区分开,比如目标的颜色、纹理、形状等。

该方法的优点是适用性较强,对目标的光照和旋转变化不敏感。

2、目标跟踪目标跟踪是指对目标进行实时追踪,在它移动、变形、旋转等情况下持续追踪。

常用的跟踪算法有基于区域的跟踪方法、基于特征的跟踪方法和基于模型的跟踪方法等。

相对来说,基于特征的跟踪方法更加实用。

3、目标识别目标识别是指将图像中的目标与预先定义的模板进行匹配,从而实现目标的识别。

目标识别的方法主要有基于形状、颜色和纹理等特征的方法。

相对来说,基于形状和颜色的方法应用更为广泛。

对于基于颜色识别的方法,需要在特定颜色空间中进行处理,如RGB空间、HSI空间等。

4、目标分析目标分析是指对目标进行分析,获取目标区域、目标数量、活动轨迹等信息。

目标分析的方法主要有基于时间轨迹的方法、基于形变的方法以及基于状态空间的方法等。

其中,状态空间方法是目前使用较为广泛的方法之一。

基于计算机视觉的图像语义理解与分析

基于计算机视觉的图像语义理解与分析

基于计算机视觉的图像语义理解与分析计算机视觉是计算机科学领域的一个重要研究方向,它致力于使计算机具备类似于人类视觉的感知和理解能力。

图像语义理解与分析是计算机视觉中的一个重要任务,旨在实现对图像的高层次理解和分析,使计算机能够理解图像中的内容、语义和语境信息。

在过去的几十年里,计算机视觉在图像语义理解与分析领域取得了重大的突破。

这些突破主要得益于深度学习技术的发展。

深度学习是一种机器学习方法,通过构建深层神经网络模型来模拟人类的学习过程。

深度学习在计算机视觉领域的成功应用使得图像语义理解与分析的性能得到了大幅提升。

图像语义理解与分析的目标是从图像中自动地提取出高级语义信息,例如物体识别、场景分类、图像描述生成等。

物体识别是图像语义理解与分析领域的一个重要任务,它旨在识别图像中出现的不同物体的种类。

近年来,基于深度学习的物体识别方法已经取得了显著的进展。

这些方法通过在大规模数据集上进行训练,学习物体的特征表示,并使用这些表示进行分类预测。

同时,研究人员还提出了一些新的方法,例如多尺度分析、上下文信息捕捉等,以进一步提升物体识别的性能。

场景分类是另一个重要的图像语义理解与分析任务,它旨在识别图像所属的场景类别,例如室内、户外、街景等。

场景分类的主要挑战在于如何有效地捕捉图像中的空间和语境信息。

为了解决这个问题,研究人员提出了一些新的方法,例如使用卷积神经网络(CNN)进行特征提取,使用长短时记忆网络(LSTM)进行序列建模等。

除了物体识别和场景分类,图像描述生成也是图像语义理解与分析领域的一个研究热点。

图像描述生成的目标是从图像中生成自然语言描述,使计算机能够理解并生成文字对图像的描述。

这个任务不仅需要对图像进行深入的语义分析,还需要模拟人类的语言生成过程。

近年来,研究人员提出了一些创新的模型来解决这个问题,例如使用循环神经网络(RNN)进行序列建模,使用注意力机制来提高描述生成的质量等。

尽管已经取得了一些重要的进展,但是图像语义理解与分析领域仍然存在一些挑战。

图像处理理论与图像分析

图像处理理论与图像分析

图像处理理论是关于图像处理的基本原理和方法的研究。

它包括了图像获取、图像增强、图像压缩、图像复原以及图像分析等内容。

图像获取是指通过图像设备(如摄像机、扫描仪)获取到的原始图像数据。


像获取涉及到硬件设备的选择、参数设置等问题。

图像增强是指通过各种方法对原始图像进行改善,使得图像更加适合于后续处
理或观察。

图像增强可以通过增加图像的对比度、提高图像的清晰度等方式来实现。

图像压缩是指通过各种方法对图像数据进行压缩,以减少存储空间或传输带宽。

图像压缩方法可以分为有损压缩和无损压缩两种。

图像复原是指通过对损坏或退化的图像进行恢复,使其尽可能接近或恢复到原
始图像的状态。

图像复原涉及到图像的模型建立、退化模型的估计以及复原算法的设计等问题。

图像分析是指通过对图像进行特征提取、目标检测或目标识别等方式来获取图
像中包含的信息。

图像分析涉及到特征提取的方法、目标检测的算法以及目标识别的模型等内容。

总之,图像处理理论与图像分析是关于图像处理的基本原理和方法的研究,可
以应用于各种图像处理领域,如计算机视觉、医学影像处理、遥感图像分析等。

函数的图像与图像的特征分析

函数的图像与图像的特征分析

函数的图像与图像的特征分析函数图像是数学中常见的一种表示方法,通过绘制函数的图像,可以直观地了解函数的性质和特征。

本文将探讨函数图像的分析方法,包括图像的形状、对称性、零点、极值点等特征。

一、图像的形状函数的图像形状可以通过观察函数的导数来确定。

导数表示函数的变化率,可以帮助我们判断函数图像的增减性和凹凸性。

1. 当导数大于零时,函数图像上升,表示函数递增;2. 当导数小于零时,函数图像下降,表示函数递减;3. 当导数等于零时,函数图像可能存在极值点或拐点。

通过观察函数图像的升降和凹凸性,可以进一步分析函数的特征。

二、图像的对称性函数图像的对称性可以通过观察函数的表达式得到。

常见的对称性包括:1. 偶函数:当函数满足f(x) = f(-x)时,函数具有关于y轴对称的特点,图像关于y轴对称;2. 奇函数:当函数满足f(x) = -f(-x)时,函数具有关于原点对称的特点,图像关于原点对称。

通过观察函数图像的对称性,可以简化函数分析的过程。

三、图像的零点函数的零点是指使函数取值为零的输入值。

通过观察函数图像与x轴的交点,可以得到函数的零点。

零点对应于函数的根,可以帮助我们求解方程和解决实际问题。

四、图像的极值点函数的极值点是指函数在某一区间内取得最大值或最小值的点。

通过观察函数图像的局部最高点和最低点,可以确定函数的极值点。

1. 极大值点:当函数在某一区间内最高点对应的y值大于相邻点的y值时,该点为函数的极大值点;2. 极小值点:当函数在某一区间内最低点对应的y值小于相邻点的y值时,该点为函数的极小值点。

通过观察函数图像的极值点,可以进一步分析函数的变化趋势和特征。

综上所述,通过对函数图像的形状、对称性、零点和极值点的分析,可以全面了解函数的特征和性质。

函数图像分析是数学中重要的工具和方法,可以应用于各个领域的问题求解和模型建立。

通过深入理解函数图像的特征,我们可以更好地理解函数的行为和变化规律,为数学学习和实际应用提供有力支持。

数字图像处理考题总结

数字图像处理考题总结

数字图像处理考题总结(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.数字图像处理一般分为哪三个层次?说明各层次的作用。

2.图像处理、图像分析、图像理解各有什么特点它们之间有何联系和区别图像处理:图像处理的重点是图像之间进行的变换。

图像分析:主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。

图像理解:图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。

联系:图像处理、图像分析和图像理解处在三个抽象程度和数据量各有特点的不同层次上。

图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。

图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。

图像理解主要是高层操作,基本上是对从描述抽象出来的符号进行运算,其处理过程和方法与人类的思维推理有许多类似之处。

3.图像的数字化包括采样和量化两个过程,当限定数字图像的大小时,为了得到质量较好的图像,可采用哪些原则?对缓变的图像,应该细量化,粗采样,以避免假轮廓对细节丰富的图像,应细采样,粗量化,以避免模糊4.简述位图文件的基本组成。

位图文件头位图信息头调色板(对灰度图像和索引图像而言,真彩色图像不需要调色板,其位图信息头后直接是位图数据)位图数据(对于用到调色板的位图,位图数据就是该像素颜色在调色板中的索引值,对于真彩色图像,位图数据就是实际的R,G,B值)5.请简要说明一副256色彩色位图的文件格式,并回答256色彩色位图和256色灰度位图文件的异同。

见第5题,区别就是彩色位图没有调色板。

6.位图可分为:线画稿,灰度图像,索引颜色图像,真彩色图像。

7.面向打印机的常用模型是CMYK模型,面向显示器的彩色模型RGB模型8.在RGB颜色空间的原点上,三分量均为0,即原点为黑色。

基于深度学习的图像分析与理解技术研究

基于深度学习的图像分析与理解技术研究

基于深度学习的图像分析与理解技术研究随着深度学习技术的不断发展和应用,基于深度学习的图像分析与理解技术也日益成熟。

这些技术已经广泛应用于图像识别、自然语言处理、语音识别、文本挖掘等领域。

在这篇文章中,我们将讨论基于深度学习的图像分析与理解技术的研究进展和应用。

一、深度学习技术概述深度学习是一种人工智能算法,可以训练计算机系统模拟人类的认知能力,从而实现复杂的任务。

深度学习的核心是神经网络,它由大量的神经元组成,可以对输入数据进行复杂的学习和分类。

深度学习技术的一个重要特点是可以处理大规模的数据,并且能够自动抽象、特征提取和分类等任务。

二、基于深度学习的图像分析与理解技术研究进展通过对图像进行深度学习,可以实现对图像的有效分析和理解。

基于深度学习的图像分析与理解技术已经取得了很多有趣的研究成果。

1. 卷积神经网络卷积神经网络是深度学习技术中最常用的技术之一。

它利用卷积和池化操作从图像中提取特征,然后将这些特征传递给下一层网络进行分类。

卷积神经网络已经广泛应用于图像识别、人脸识别、语音识别等领域。

例如,谷歌公司的Inception架构就是一个基于卷积神经网络的图像分类模型。

2. 生成对抗网络生成对抗网络是一种用于生成新图像的深度学习方法。

它由生成模型和判别模型两部分组成。

生成模型用于生成图像,而判别模型用于判别生成的图像是否真实。

通过不断的训练,生成对抗网络可以生成非常逼真的图像。

这项技术已经被广泛应用于计算机视觉、图像处理、艺术创作等领域。

3. 深度置信网络深度置信网络是一种深度学习技术,用于图像分类和特征提取。

它利用多层的非线性神经元来逐步提高特征的抽象程度。

深度置信网络已经被应用于人脸识别、图像检索、文本挖掘等领域。

三、基于深度学习的图像分析与理解技术应用基于深度学习的图像分析与理解技术已经被广泛应用于各种领域。

1. 人脸识别人脸识别是深度学习技术应用的一个热门领域。

由于深度学习技术可以自动提取人脸图像的特征,因此其在人脸识别领域的表现非常出色。

图像分析与理解的算法与应用

图像分析与理解的算法与应用

图像分析与理解的算法与应用一、引言图像分析与理解是计算机视觉领域中的重要研究方向。

随着图像获取技术的发展和计算机性能的提升,图像分析与理解在人工智能、医学影像、安防监控等领域中得到了广泛的应用。

本文将从图像分析与理解的算法入手,介绍其基本原理与应用。

二、图像分析与理解的算法分类图像分析与理解的算法可分为图像预处理、特征提取和图像分类三个基本环节。

1. 图像预处理图像预处理是指对原始图像进行预处理,以消除图像中的噪声、增强图像的对比度等,为后续的特征提取和分类分析提供更好的输入。

常见的图像预处理算法包括灰度化、滤波和边缘检测等。

灰度化将彩色图像转化为灰度图像,降低了图像的复杂度;滤波通过对图像进行平滑处理,去除图像中的噪声;边缘检测则可以找到图像中物体与背景之间明显的边界。

2. 特征提取特征提取是图像分析与理解的关键一步,通过提取图像中的特征信息,以便进行分类、识别等任务。

常见的特征提取方法有形状描述子、纹理特征和颜色特征等。

形状描述子可通过计算图像中物体的轮廓、边缘等几何属性来描述物体的形状;纹理特征则通过统计图像区域的灰度分布、纹理方向等来描述图像的纹理特性;颜色特征则是描述图像中物体的颜色信息,如颜色直方图、颜色矩等。

3. 图像分类图像分类是将图像分为不同的类别,使得同一类别的图像具有相似的特征。

图像分类可以使用各种机器学习算法,如支持向量机(SVM)、人工神经网络(ANN)等。

这些算法通过学习样本图像的特征与类别之间的关系,从而对新的图像进行分类。

在图像分类任务中,特征的选择和提取方法十分关键,合理地选择特征可以提高分类的准确性。

三、图像分析与理解的应用领域图像分析与理解在众多应用领域都有广泛的应用。

以下将从医学影像、安防监控和人机交互三个方面介绍其应用。

1. 医学影像图像分析与理解在医学影像中发挥着重要的作用。

通过分析与理解医学影像,可以辅助医生进行疾病诊断、手术规划等。

例如,在病理图像中,利用图像分类算法可以准确地识别肿瘤细胞,有助于癌症的早期发现和治疗。

数字信号处理 第九章 图像分析与识别基础

数字信号处理 第九章 图像分析与识别基础

9.1.2 特征分析模式
特征分析模式是根据景物特征实现视觉再现 的理论,其过程为提取特征、特征分类、 分析与识别几个步骤。 需要较大的特征运算。难度在于:1)如何对 于不同的对象选择适合的特征;2)如何确 定各特征之间的关系。
9.1.3 结构描述模式
结构描述模式通常用“图”表示,“图”的 节点代表对象景物的某一部分或某一特性; 节点之间的有向边说明各部分或个特性之 间的关系。
l(x,y)
l(x,y)
9.2.2 边缘检测法
5 Kirsch边缘检测算子
g ( x , y ) max
5 3 3
3 3 5
f ( x , y ) g i ( x , y ), i
5 0 3 3 0 5 5 5 3 3 3 3 3 3 3 5 5 5 3 0 3 3 0 3 5 5 5 3 3 3
9.1 视觉再认模式
本节主要从心理学的角度分析视觉对景物的 再认模式,以便从更深的层次理解图像分 析与识别方法的原理。视觉再认模式主要 有以下四种: 9.1.1 模板匹配模式 9.1.2 特征分析模式 9.1.3 结构描述模式 9.1.4 傅立叶模式
9.1.1 模板匹配模式
随着经验和阅历的增长,人的记忆中存在着代 表各种景物形态的“模版”,当人注视某景 物时,大脑神经中枢就会搜索存储在大脑中 的各个模版,并与看到的景物进行匹配,一 旦匹配一致或相关性最大,则认为再认成功。 模版匹配模式可以看作是一个决策过程。
第9章
图像分析与识别基础
概述
图像分析(image analysis)也叫景物分析(scenery analysis)或图像理解(image understand),其目 的是从图像中提取有用测度(useful estimate)、 数据或信息,生成非图的描述或表示,如数值、 符号等等,不局限于对给定景物的区域在一定数 目的已知类别里进行分类,更重要是要对千变万 化和难以预测的复杂景物加以描述,从中找出潜 藏在景物图像中的深层次信息,涉及到物体的前 景与背景、物体之间的关系以及人工智能技术等 问题。其研究的内容包括特征提取、符号描述、 景物匹配和识别等等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一名词解释
1仿射变换
几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间,这个过程被称为仿射变换或者仿射映射。

一个对向量平移,与旋转放大缩小的仿射映射为:
上式在齐次坐标上,等价于下面的式子
2腐蚀运算,膨胀运算
腐蚀运算是一种消除边界点,使边界向内部收缩的过程,可以用来消除小且无意义的物体。

膨胀运算是将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的过程,可以用来填补物体中的空洞。

3图像分割
在计算机视觉领域,图像分割(Segmentation)指的是将数字图像细分为多个图像子区域(像素的集合)(也被称作超像素)的过程。

图像分割的目的是简化或改变图像的表示形式,使得图像更容易理解和分析。

图像分割通常用于定位图像中的物体和边界(线,曲线等)。

更精确的,图像分割是对图像中的每个像素加标签的一个过程,这一过程使得具有相同标签的像素具有某种共同视觉特性。

4全局门限
全局门限算法:根据输入图象的灰度直方图的分布,确定目标与背景的分离界线(即门限)
f,则二值化算法的表达式为:
为T,设x, y点的灰度值为(x,y)
ff(x,y)=255
i(x,y)>T
f
5像素的邻接关系
两个像素接触,则它们是邻接的。

一个像素和它的邻域中的像素是接触的。

邻接仅考虑像素的空间关系。

二、简答题
1.简述图像几何变换与图像变换的区别。

答:①图像的几何变换:改变图像的大小或形状。

比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。

②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。

比如傅里叶变换、小波变换等。

2.图像量化时,如果量化级比较小会出现什么现象?为什么?
答:如果量化级数过小会出现伪轮廓现象。

量化过程是将连续变化的颜色划分到有限个级别中必然会导致颜色信息损失。

当量化级别达到一定数量时人眼感觉不到颜色信息的丢 失。

当量化级数过小时图像灰度分辨率就会降低颜色层次就会欠丰富不同的颜色之间过度就会变得突然可能会导致伪轮廓现象。

3.举例说明使用均值插值法进行空穴填充的过程
答:均值插值法就是将判断为空穴位置上的像素值用其上、下、左、右像素值的均值来填充。

例如对于下图中的空穴点23f 进行填充时,使用相邻行的像素值来填充。

即:2322241333()/4f f f f f =+++。

4 中值滤波器对椒盐噪声的滤波效果如何?试分析其中的原因。

答:中值滤波是图像处理中的一个常用步骤。

它对于椒盐噪声来说尤其有用。

中值滤波方法以牺牲图像清晰度为代价消除图像中的椒盐噪声。

椒盐噪声是复制近似相等但随机分布在不同的位置上,图像中又干净点也有污染点。

中值滤波是选择适当的点来代替污染点的值,所以处理效果好。

但是中值滤波不能保证把噪声去除只能在有限的范围内减弱噪声对图像的影响。

同时中值滤波不能多次使用 因为这样会使图像各个像素间趋于相同整个图像就会变得越来越模糊。

另外通过查阅资料发现中值滤波器的效果不仅仅和观察窗的大小有关还和观察窗的形状有关。

5为什么YUV 表色系适用于彩色电视的颜色表示?
答:YUV 表色系适用于彩色电视的颜色表示主要原因有以下3点:(1)YUV 表色系具有亮度与色度相分离的特点,黑白电视接收彩色电视节目信号时,只需要将Y 、U 、V 三路信号中的Y 信号介入电视机信号即可;(2)YUV 表色系具有亮度与色度相分离的特点,彩色电视机接收黑白电视节目信号时,只要将U 、V 两路信号置为0即可。

(3)YUV 表色系与RGB 表色系
的转换运算比较简单,便于实时进行色系之间的转换。

三、应用题
1.给出通过图象相减实现变化的检测算法?
答:设1t 时刻的图像1(,)f x y ,2t 时刻的图像2(,)f x y ,(,)Out x y 为结果图像,T 为阈值 1)
对于图像中的每一个像素点,如果2(,)f x y -1(,)f x y ≥T,则(,)Out x y =1,否则为0; 2)
计算(,)Out x y 的连通区域,并去除当中较小的连通区域; 3)
用一个小的圆模板对相邻连通域进行闭运算的融合; 4)
提取融合后的连通域的边界 5) 输出(,)Out x y 和边界
2.试利用直方图实现视频序列的分割?
答:1)首先需要采取一定的策略在视频图像当中选取一个视频序列,因为一段视频当中的
帧数是比较多的,所以需要从中选取某些关键帧组成一个视频序列;
2)计算序列当中每一幅图像的直方图;
3)通过比较相邻图像的直方图差别来分割视频,如果前后两帧的直方图完全不同的话,
可以推断出现了完全新的场景;如果前后两帧的直方图存在着部分的不相同,则说明场景中出现了新的物体或者是场景在缓慢的变化。

3.试模拟矩阵设计一个模拟视频监控系统?
答:可以通过对n 个摄像头,m 个监视器来进行验证,一个视频由此构成,其基础架构为图1、图2所示:
图1以32⨯8视频矩阵切换器为核心组成的视频监控应用系统。

相关文档
最新文档