第4课时 圆柱的体积
《圆柱》PPT课件15
答:铁棍的长是75厘米。
课堂小结
通过这节课的学习活动,你 有什么收获?
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
分析探究,归纳特征 教师指导学生分组自己动手画画圆,看看能画出多少直径、半径。 折一折,量一量、比一比会发现圆的所有直径、半径的有什么共同点?圆的位置与什么有关系?
二 圆柱和圆锥
第4课时 圆柱的体积
苏教版六年级下册
新课导入
我们在推导圆的面积公式时,是把它 转化成近似的长方形,找到这个长方形 与圆各部分之间的联系,由长方形的面 积公式推导出了圆的面积公式。
今天,我们能不能也用这个思路 研究圆柱体积的计算问题呢?
获取新知
下面的长方体、正方体和圆柱的底面积相等, 高也相等。
3.14×(0.4÷2)2×5÷0.02 =31.4≈31
2.一个圆柱的体积是80cm3,底面积是 16cm2。它的高是多少厘米?
80÷16=5(cm)
3.把一个长15.7cm、宽12cm、高5cm的长方 体铁块熔铸成一根底面半径是2cm的圆柱形 铁棍,铁棍的长是多少厘米?
15.7×12×5÷(3.14×2²)=75(cm)
平均分的份数越多, 拼成的 物体就越接近长方体。
拼成的长方体与原来的圆柱有什么关系?
长方体的体积与 圆柱的体积相等。
长方体的底面积等 于圆柱的底面积。
长方体的高等于 圆柱的高。
底面积 高
高
长方体的体积= 底面积 × 高 圆柱体的体积= 底面积 × 高
V=sh=πr2h
底面积相等、高也相等的长方体、正方 体和圆柱的体积相等。推导出圆柱的体积计 算公式是:圆柱的体积=底面积×高,用字母 表示是V=Sh(V表示体积,S表示底面积,h 表示高)。
《圆柱的体积》教学设计
《圆柱的体积》教学设计《圆柱的体积》教学设计1教学目标1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。
拓展教材内容,初步了解直柱体的相关知识。
2、过程与方法:利用教材空间,为学生搭建思维平台。
让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。
3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。
教学重点:理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。
教学难点:正确理解圆柱体积计算公式的推导过程。
教学过程一、情境导入:老师手拿一个圆柱形橡皮泥(大小适宜)。
1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?生1:(已学知识)。
生2:圆柱是一种立体图形,那么它的体积怎么计算?【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。
】2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?生1:圆柱体的体积计算没有学过,无法计算。
生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。
生3:圆柱体在水中必须完全浸没,而且水还不能溢出。
【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。
】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。
师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。
小学数学圆柱的体积教案6篇
小学数学圆柱的体积教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、培训计划、心得体会、条据文书、活动方案、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, training plans, experiences, document documents, activity plans, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!小学数学圆柱的体积教案6篇教案是教师评估学生的学习成果和教学效果,为学生的个性化发展提供指导,有了教案教师对教学问题进行解决和处理,这有助于提高教师的问题管理能力,下面是本店铺为您分享的小学数学圆柱的体积教案6篇,感谢您的参阅。
《圆柱的体积》教案(通用10篇)
《圆柱的体积》教案《圆柱的体积》教案(通用10篇)作为一无名无私奉献的教育工作者,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。
优秀的教案都具备一些什么特点呢?下面是小编整理的《圆柱的体积》教案,欢迎大家分享。
《圆柱的体积》教案篇1教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业完成一课三练的相关练习。
《圆柱的体积》教案篇2教学内容:人教版小学数学六年级下册《圆柱的体积》P25-26。
教学目标:1.经历探究和推导圆柱的体积公式的过程。
六下《圆柱的体积》ppt课件4
• 如果用V表示圆柱的体积,用S表示圆 柱的底面积,用h表示圆柱的高,圆柱 的体积公式用字母表示为: •
1、反馈练习: 底面积是10平方米,高是2米,体积 是( ) 底面积是3平方分米,高是4分米, 体积是( )
2、运用新知,尝试解答实际问题.
一根圆柱形钢材,底面积是50平方厘米 高是2.1米,它的体积是多少?
四、全课总结 问:这节课里我们学到了哪些知识?
五、学生作业: 1、练习七的第l 题完成在书上。
2、课本26页试一试。 3、一个圆柱的石柱子底面的周长18.84分 米,高是20分米, 体积是多少?(选做)
教学目标
1.理解圆柱体体积公式的推导过程,掌握计算公 式,会运用公式计算圆柱的体积,并能解决一些 实际问题。 2.通过公式的推导,学生的分析推理能力得到提 高。 3. 渗透转化思想,感悟数学知识的魅力,提高审 美意识。
请大家想一想:在学习圆的面积时, 我们是怎样把圆转化成已学的图形, 来推导圆面积的计算公式的.
把圆等分切割,拼成一个近似的长方形, 找出圆与所拼成的长方形之间的关系,进 而推导出圆面积的计算公式.
1 2 3 4 5 6 7 8 7 1 8 16 9 10 15 1413 12 11 4 5 6 3 2 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9
高8厘米。这个零件的体积是多少立方厘米?
(1)一个圆柱形水桶,从里面量底面直径是20厘米, 高是25厘米.这个水桶的容积是多少立方分米?
(2)一个圆柱的体积是62.8立方分米,高是 5分米,底面积是多少?
不会的可以向同学请教
4、拓展提高:
一个圆柱的石柱子底面的周长18.84 分米,高是20分米, 体积是多少?
《圆柱的体积》数学教案
《圆柱的体积》数学教案《圆柱的体积》数学教案1圆柱的体积教材简析:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。
教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2。
会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3。
引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力4。
借助实物演示,培养学生抽象、概括的思维能力。
教具:圆柱的体积公式演示教具,多媒体课件教学过程:一、情景引入1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)说一说长方体体积的计算公式。
2、创设问题情景。
(课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。
(出示课题:圆柱的体积)(设计意图:问题是思维的动力。
通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。
)二、新课教学:设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。
板书课题:圆柱的体积。
1。
探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
《圆柱的体积》课件
复习导入
什么是体积?
物体所占空间的大小是物体的体积。
怎样求长方体和正方体的体积?
我们会计算长长方方体体和的正体方积体=长的×体宽积×,高圆柱的 高
体积长怎样宽计算V长呢方?体 =能ab不h能将圆柱转化成我们
学过的立体图正形方,体计的算体出积它=棱的长体×积棱呢长?×棱长
棱长
V正方体 = a3
2×0.7=1.4( m³)
V =Sh
答:圆柱的体积是1.4 m³。
(2)底面半径是3.2 dm,高是5 dm。
3.14×3.2²×5=160.768(dm³) V =πr2h
答:圆柱的体积是160.768 dm³。
2.一根圆柱形木料,底面积为75 cm2 ,长为90 cm。 它的体积是多少? V =Sh
4.挖一口圆柱形水井,地面以下的井深为10 m, 底面直径为1 m。挖出的土有多少立方米?
挖出的土有 多少立方米
水井内 的体积
井深
圆柱的高
已知底面直径和高:V = π ( d÷2 ) 2h
3.14 ×(1÷2)²×10=7.85(m3)
答:挖出的土有7.85 m3。
教材第24页“做一做”第2题
计算圆柱体积的方Biblioteka 已知底面积和高:V = Sh 已知底面半径和高:V = πr2h 已知底面直径和高:V = π(d÷2)2h
圆柱体积计圆算柱公的式体是积:=底面积 × 高
V =πr²Vh = S
h
根据不同的条件可以推导出不同的公式。
已知底面积和高:V = Sh 已知底面半径和高:V = πr2h 已知底面直径和高:V = π(d÷2)2h
已知底面周长和高:V = π(C÷2π)2h
人教版六年级下册数学《圆柱的体积》教案6篇
人教版六年级下册数学《圆柱的体积》教案6篇人教版六年级下册数学《圆柱的体积》教案1教学目标圆柱的体积(1)圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具推导圆柱体积公式的圆柱教具一套。
教学过程【复习导入】1.口头回答。
(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。
今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?教师板书:圆柱的体积(1)。
【新课讲授】1.教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。
②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方体的高就是圆柱的高,没有变化。
故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
《圆柱的体积》教学设计(精选9篇)
《圆柱的体积》教学设计(精选9篇)《圆柱的体积》数学教案篇一探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:学生会应用圆柱体积公式解决实际问题。
探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。
⑴估测。
这个圆柱形鱼缸的容积大约是多少?⑴操作、汇报。
如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。
底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。
3.14×152×12=8478(立方厘米)⑴评价。
组织学生间进行评价。
你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑴反思。
引导学生将实际计算结果与自己的估测结果进行对比。
自己矫正偏差。
⑴延伸。
如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?3、自学例题。
苏教版六年级下册数学第2单元 圆柱和圆锥 圆柱体积公式的实际应用
知识点2 根据圆柱体积公式解决较复杂的问题
2.蓉蓉家来了三位同学,她妈妈拿出1.2L牛奶倒入底面 直径是6cm,高是10cm(从杯子里面量)的圆柱形杯子里。 蓉蓉和她的同学每人能够分得一整杯吗?
3.14×(6÷2)2×10×4=1130.4(cm3)= 1.1304(L) 1.1304L<1.2L 答:蓉蓉和她的同学每人能够分得一整杯。
知识点3 求不规则物体的体积
3.一个圆柱形鱼缸的底面半径是1dm,水深0.3dm(从 鱼缸里面量),放进去一些鱼后,水面高度上升到0.3 3dm(水未溢出)。放进去的鱼的体积是多少?
3.14×12×(0.33-0.3)=0.0942(dm3) 答:放进去的鱼的体积是0.0942dm3。
易错点 计算体积与计算侧面积发生了混淆
7.甜甜用水晶泥捏了一个形状如下图的物体,你能 求出它的体积吗?
3.14×(2÷2)2×(8+5)÷2=20.41(cm3) 答:它的体积是20.41cm3。
4.小亿的做法对吗?若不对,请改正。 一个圆柱形水桶,从里面量底面周长是6.28dm,高
是2dm,这个水桶最多能装多少升水? 小亿的做法:6.28×2=12.5 改正:3.14×(6.28÷3.14÷2)2×2= 6.28(dm3)=6.28(L) 答:这个水桶最多能装6.28L水。
提升点2 运用“等积变形”思想解决问题
6.一支牙膏出口处的直径为5mm,乐乐每次刷牙都 挤出1cm长的牙膏,这支牙膏可以用36次。现将出 口处的直径改为6mm,乐乐还是按习惯每次挤出1 cm长的牙膏。这样,这支牙膏能用几次?
5mm=0.5cm 6mm=0.6cm 36×3.14×(0.5÷2)2×1÷[3.14×(0.6÷2)2× 1] =25(次)答:这支牙膏能用25次。
《圆柱的体积》PPT课件
高
圆柱的体积=底面积×高
圆 柱 的 高
底面 半径 圆柱底面周长的一半
填空
(1)把圆柱的底面平均分成若干份,沿圆柱的高 切开后,可以拼成一个近似的( 长方体),拼成的 长方体的底面积等于圆柱的(底面积 ),高就是圆
柱的( 高).
(2)用字母V表示圆柱的体积,S表示圆柱的底面积, h表示圆柱的高,圆柱的体积公式可以写成
12平方分米 6 分 米
12×6
V=s h
(1)
.
3 分 米
7分米
3.14 ×32 ×7
V= 兀r 2× h
(2)
3.14 ×(6÷2)2 ×8 V=兀(d÷2)2×h
(3)
金箍棒底面周长是12.56cm,长是200cm。这根金箍 棒的体积是多少立方厘米?
底面半径:12.56÷3.14÷2=2(cm) 底面积: 3.14×22=12.56(cm3)
方厘米)
答:它的体积是3000立方厘米。
你收获了 什么?
直柱体的体积 = 底面积×高
V =s h
体积: 12.56×200=2512(cm3) 答:这根金箍棒的体积是2512cm3。 如果这根金箍棒是铁制的,每立方厘米铁的质量为 7.9g,这根金箍棒的质量为多少千克?
7.9×2512=19844.8(g)=19.8448
答:这根金箍(棒k重g)19.8448千克。
例4 一根圆柱形钢材,底面积 是20平方厘米,高是1.5米。 它的体积是多少?
( V=Sh )
3.14×0.42×5 =3.14×0.16×5
=3.14×0.8 =2.512(m3) 答:需要2.512m3木材。
3.14×(6÷2)2×16 =3.14×9×16 =452.16(cm3) =452.16(毫升)
《圆柱的体积》教案5篇
《圆柱的体积》教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《圆柱的体积》教案5篇作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
《圆柱的体积》教案范文(通用5篇)
《圆柱的体积》教案《圆柱的体积》教案范文(通用5篇)作为一名老师,时常会需要准备好教案,教案有助于顺利而有效地开展教学活动。
那要怎么写好教案呢?以下是小编整理的《圆柱的体积》教案范文(通用5篇),希望能够帮助到大家。
《圆柱的体积》教案1教学目标:1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
教学准点:掌握圆柱体积公式的推导过程。
教学准备:圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
教学过程:一、情境激趣导入新课1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)二、自主探究,学习新知(一)设疑1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式(二)猜想1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?(三)验证1、为了证实刚才的猜想,我们可以通过实验来验证。
怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。
(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
圆柱体积公式有哪些 怎么算
数学中很多同学对圆柱体积不知道如何计算,公式也不熟练,以下是由编辑为大家整理的“圆柱体积公式有哪些怎么算”,仅供参考,欢迎大家阅读。
圆柱体积公式1.π是圆周率,一般取3.14r是圆柱底面半径h为圆柱的高还可以是v=1/2ch×r侧面积的一半×半径2.圆柱体体积=底面积×高V=πR^2H=V=sh圆柱相关公式圆柱体积:V=底面积×高或V=1/2侧面积×高圆锥体积:V=底面积×高÷3圆柱侧面积:S侧=底面周长×高圆柱表面积:S表=侧面积+2个底面积字母表示:圆柱体积:V=sh圆锥体积:V=sh÷3圆柱侧面积:S=ch/2πrh/πdh圆柱表面积:s=ch+2πr2如何计算圆柱体积求圆基的半径。
两个圆都会做,因为它们大小相同。
如果你已经知道半径,你可以继续前进。
如果你不知道半径,那么你可以用尺子测量圆的最宽部分,然后除以2。
这将比测量直径的一半更准确。
我们说,这个圆筒的半径是1英寸(2.5厘米)。
把它写下来。
如果你知道这个圆的直径,就把它分成2个。
如果你知道周长,然后除以2π得到半径。
计算圆形基的面积。
要做到这一点,只是用公式求圆的面积,πR2=。
只要把你找到的半径插进去就可以了。
这里是如何做到这一点:aπx12==πx1。
因为π约3.14到三的数字,你可以说,圆形底座的面积是3.14。
2找到圆柱体的高度。
如果你已经知道高度了,继续前进。
如果没有,用尺子量一下。
高度是两个基棱之间的距离。
比方说,圆柱体的高度是4英寸(10.2厘米)。
把它写下来。
把基础的面积乘以高度。
你可以把圆柱体的体积看作是圆柱体的面积在圆柱的整个高度上延伸的体积。
因为你知道基的面积是3.14的2,高度是4,你可以把两者相乘,得到圆柱体的体积。
3.14英寸,2英寸,4英寸。
这是你最后的答案。
总是以立方单位陈述你的最终答案,因为体积是三维空间的量度。
《圆柱的体积》教案
《圆柱的体积》教案《圆柱的体积》教案1教学目标:1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。
2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。
3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。
教学重点:圆柱体积计算公式的推导过程并能正确应用。
教学难点:借助教具演示,弄清圆柱与长方体的关系。
教具准备:多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。
教学设想:《圆柱的体积》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。
在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识从生活中来到生活去的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。
教学过程:一、创设情境,激疑引入水是生命之源!节约用水是我们每个公民应尽的义务。
前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。
1、出示装了水的圆柱容器。
(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?(2)讨论后汇报生1:用量筒或量杯直接量出它的体积;生2:用秤称出水的重量,然后进一步知道体积;生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。
师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?生1:把水到入长方体容器中生2:我们学过了长方体的体积计算,只要量出长、宽、高就行[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]2、创设问题情境。
圆柱的体积完整版教案
一、教学目标:
1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积
2、过程与方法:初步学会用转化的数学思想和方法,解决实际问题的能力。
3、情感态度与价值观:渗透转化思想,培养学生的自主探索意识
二、教学重点:
掌握圆柱体积的计算公式
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)
(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是米。它的体积是多少
(2)指名学生分别回答下面的问题:
①这道题已知什么求什么
②能不能根据公式直接计算
③计算之前要注意什么(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)出示下面几种解答方案,让学生判断哪个是正确的.
①V=Sh
四、布置作业
练习五第2、3题。
1、猜想圆柱的体积公式并验证。通过复习“圆的面积”是转化成“长方形”推导出来的,学生很容易联想到把“圆柱”转化成“长方体”来推导验证,渗透“转化”的思想方法。
2、探究圆柱体积的计算公式。在操作的基础上,欣赏直观的多媒体课件:把圆柱通过切、拼转化成近似的长方体;并且等分的份数越多,发现越接近“长方体”,体现“无限逼近”的数学极限思想;
(4)做第25页的“做一做”。
《圆柱的体积》教学设计(通用8篇)
《圆柱的体积》教学设计《圆柱的体积》教学设计(通用8篇)教学设计是以系统方法为指导。
教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
以下是小编整理的《圆柱的体积》教学设计,希望对大家有帮助!《圆柱的体积》教学设计篇1教学目标1.使学生初步理解和掌握圆柱的体积计算公式。
会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教法:启发点拨,归纳总结,直观演示学法:自学归纳法,小组交流法课前准备:课件教学过程:一、定向导学(5分)(一)导学1.什么叫体积?(指名回答)生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)根据学生的回答,板书:长方体体积=底面积×高2.圆面积公式是怎样推导出来的?生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。
)得到圆面积公式s=2πr。
3.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?4.导入我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。
(板书:圆柱的体积)(二)定向出示学习目标:1、理解和掌握圆柱的体积计算公式。
2、会用公式计算圆柱的体积,并能运用公式解答一些实际问题。
二、合作交流(15分)1、阅读书25页。
2、看书回答:(1)圆柱体是怎样变成近似长方体的?(2)切拼成的长方体的体积、底面积和高分别与圆柱体的体积、底面积、高有什么关系?(3)怎样计算切拼成的长方体体积?为什么?用字母怎样表示?3、小组展评交流结果。
(1)展评题(1)。
圆柱体是怎样变成长方体的?把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。
第4课时圆柱的体积计算北师大版一年级教案设计
第 4 课时圆柱的体积计算 ( 北师大版一年级教课设计设计 )教课内容:课本第7 页圆柱体积例3;练一练;《作业本》第4页。
教课目标:理解圆柱体积公式的推导过程,掌握圆柱体积计算公式,并能正确地计算圆柱的体积,提升知识的迁徙和转变的能力。
教课要点:圆柱体积计算教课难点:圆柱体积的公式推导教课要点:实物演示帮助教具准备:圆柱体积演示模型教课过程:一、复习铺垫。
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高。
)2、长方体的体积如何计算?学生可能会答出“长方体的体积=长×宽×高”,教师连续指引学生想到长方体和正方体体积的一致公式“底面积×高” 。
板书:长方体的体积=底面积×高3、取出一个圆柱形物体,指名学生指出圆拄的底面、高、侧面、表面各是什么 ?圆柱有几个底面 ?有多少条高 ?请大家想想,在学习圆的面积时,我们是如何把因变为已学过的图形再计算面积的 ?如何计算圆柱的体积呢?大家认真想想看,能不可以把圆柱转变为我们已经学过的图形来求出它的体积?二、学习探究。
这节课我们就来研究如何将圆柱转变为我们已经学过的图形来求出它的体积。
板书课题:圆柱的体积出示目标: 1.推导 2.计算1、圆柱体积计算公式的推导。
教师出示一个圆柱,发问:这是否是一个圆柱?用手捂住圆柱的侧面,只把此中的一个底面出示给学生看发问:“大家看,这是否是一圆?”“这是一个圆,那么要求这个圆的面积,刚刚我们已经复习了,可以用什么方法求出它的面积 ?”学生很简单想到可以将圆转变为长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形 (如分成 16 等份 )。
而后指引学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以获得大小相等的 16 块。
教师将这分成 16 块的底面出示给学生看,问:此刻把底面切成了 16 份,应当如何把它拼成一个长方形 ?大家再看看整个圆柱,它又被拼成了什么形状?(有点凑近长方体: )指出:因为我们分得不够细,所以看起来还不太像长方体;假如分成的扇形越多,拼成的立体图形就越凑近于长方体了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4课时圆柱的体积(1)
圆柱的体积(教材第25页例5)。
【教学内容】
【教学目标】
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
【重点难点】
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
【教学准备】
推导圆柱体积公式的圆柱教具一套。
【复习导入】
1.口头回答。
(1)什么叫体积?怎样求长方体的体积?
(2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。
今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。
【新课讲授】
1.教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱
切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?
学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?
学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方体的高就是圆柱的高,没有变化。
故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
教师板书:
2.教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是50cm2,高是2.1m。
它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。
(3)出示下面几种解答方案,让学生判断哪个是正确的。
①50×2.1=105(cm3)答:它的体积是105cm3。
②2.1m=210cm 50×210=10500(cm3)
答:它的体积是10500cm3。
③50cm2=0.5m20.5×2.1=1.05(m3)
答:它的体积是1.05m3。
④50cm2=0.005m2
0.005×2.1=0.0105(m3)
答:它的体积是0.0105m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。
对不正确的第①、③种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。
【课堂作业】
教材第25页“做一做”和教材第28页练习五的第1题。
学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
【课堂小结】
通过这节课的学习,你有什么收获?你有什么感受?【课后作业】
完成练习册中本课时的练习。
第4课时圆柱的体积(1)
第5课时圆柱的体积(2)
【教学内容】
圆柱的体积(2)
【教学目标】
能运用圆柱的体积计算公式解决简单的实际问题。
【重点难点】
容积计算和体积计算的异同,体积计算公式的灵活运用。
【教学准备】
教具。
【复习导入】
口头回答。
教师:前面我们已经学习了圆柱体积的计算公式,有同学能说一说么?指名学生回答。
板书:圆柱的体积=底面积×高V=Sh=πr2h
【新课讲授】
1.教学例6。
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?学生:应先知道杯子的容积。
(2)学生尝试完成例6。
①杯子的底面积:
3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
②杯子的容积:50.24×10=502.4(cm3)=502.4(mL)
(3)比较一下补充例题和例6有哪些相同的地方和不同的地方?
学生:相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。
2.教学补充例题。
(1)出示补充例题:教材第26页“做一做”第1题。
(2)指名学生回答下面问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算结果是什么?学生:计算时既要分析已知条件和问题,还要注意统一结果单位,方便比较。
(3)教师评讲本题。
【课堂作业】
教材第26页“做一做”第2题,第28页练习五第3、4题。
第3题,其中的0.8m为多余条件,要注意指导学生审题,选择相关的条件解决问题。
第4题,是已知圆柱的体积和底面积,求圆柱的高,可以让学生列方程解答。
答案:“做一做”:
2.3.14×(0.4÷2)2×5÷0.02=31.4≈31(张)
第3题: 3.14×(3÷2)2×0.5×2=7.065(m3)=7.065(立方米)
第4题:80÷16=5(cm)
【课堂小结】
通过这节课的学习,你有什么收获和感受?
【课后作业】
完成练习册中本课时的练习。
第5课时圆柱的体积(2)
圆柱的体积=底面积×高
V=Sh=πr2h
第6课时解决问题
【教学内容】
解决问题。
(教材第27页内容)
【教学目标】
利用圆柱的相关知识解决问题。
【重点难点】
求不规则圆柱体的体积。
【教学准备】
多媒体课件、矿泉水瓶。
前面我们已经学习了圆柱的体积求法,今天我们来学习它的更多应用。
【情景导入】
我们之前在推导圆柱的体积公式时,是把它转化成近似的长方体,找到这个长方体与圆柱各部分的联系,由长方体的体积公式推导出了圆柱的体积公式。
那么不规则圆柱的体积要怎么求呢?
今天老师带来了一个矿泉水瓶,它的标签没有了,要怎么通过计算得出它的容积呢?
【新课讲授】
1.教学例7。
2.学生读题,明确已知条件及问题。
学生:这个瓶子不是一个完整的圆柱,无法直接计算容积。
教师:所以,我们要看看,能不能将这个瓶子转化成圆柱呢?
3.拿出水瓶,装上一部分水,按照例题中的方法做出讲解。
引导学生思考。
解题思路:
(1)瓶子里水的体积倒置后没变,水的体积加上18cm高圆柱的体积就是瓶子的容积。
(2)也就是把瓶子的容积转化成了两个圆柱的容积。
【课堂作业】
完成教材第27页“做一做”。
这类题的解题关键是明确瓶子正放和倒放时空余部分的容积是相等的。
答案:3.14×(6÷2)2×10=282.6(cm3)=282.6mL。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
第6课时解决问题
1.转化成圆柱。
2.瓶子容积=圆柱1+圆柱2。