2020--2021学年九年级中考数学培优复习专题突破-【平面直角坐标系】专项

合集下载

2021年九年级中考数学复习 平面直角坐标系 专题训练

2021年九年级中考数学复习 平面直角坐标系 专题训练

平面直角坐标系一、选择题1.如图,小明用手盖住的点的坐标可能为( )A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3)2.若点A(-2,n)在x轴上,则点B(n-1,n+1)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在平面直角坐标系中,点P的坐标为(-2,a2+1),则点P所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3 B.-3 C.4 D.-45.点N位于y轴右侧距y轴3个单位长度,位于x轴下方距x轴5个单位长度,则点N的坐标是( )A.(-3,5) B.(3,-5) C.(5,-3) D.(-5,3)6.平面直角坐标系中,在第二象限内有一点P,且点P到x轴的距离是4,到y 轴的距离是5,则点P的坐标为( )A.(-5,4) B.(-4,5) C.(4,5) D.(5,-4)7.如图,已知棋子“卒”表示为(-2,3),棋子“马”表示为(1,3),则棋子“炮”表示为( )A.(3,2) B.(3,1) C.(2,2) D.(-2,2)8.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a-b之值为何?( )A.5 B.3 C.-3 D.-510.以下是甲、乙、丙三人看地图时对四个地标描述:甲:从学校向北直走500公尺,再向东直走100公尺可到图书馆.乙:从学校向西直走300公尺,再向北直走200公尺可到邮局.丙:邮局在火车站西方200公尺处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站( )A.向南直走300公尺,再向西直走200公尺B.向南直走300公尺,再向西直走600公尺C.向南直走700公尺,再向西直走200公尺D.向南直走700公尺,再向西直走600公尺二、填空题11. 在平面直角坐标系中,点P(-2,-3)所在的象限是第象限. 12.教室里的座位整齐的摆放着,若七排九号用有序数对(7,9)表示,则(3,4)表示的含义是.13.若点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在第象限.14.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是 .15.已知点A(-5,0)、点B(3,0),点C在y轴上,△ABC的面积为12,则点C 的坐标为.16.如图,在平面直角坐标系中,已知点A(1,1)、B(-1,1)、C(-1,-2)、D(1,-2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.17.某学校的平面示意图如图所示,如果实验楼所在的位置为(-2,-3),教学楼所在的位置为(-1,2),那么图书馆所在的位置为.18.已知小岛A在灯塔B的北偏东30°的方向上,且距灯塔B处500米,则灯塔B在小岛A的的方向上,距离小岛A处米.三、解答题19.已知点(1-2a,a-2)在第三象限,且a为整数,求a的值.20.如图,在平面直角坐标系内,试写出△ABC各顶点的坐标,并求△ABC的面积.21.如果规定北偏东30°的方向记作30°,沿这个方向行走50米记作50,图中点A记作(30°,50),北偏西45°记作-45°,沿着该方向的反方向走20米记作-20,图中点B记作(-45°,-20),问:(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).22.已知点M(3a-2,a+6),分别根据下列条件求出点M的坐标.(1)点M在y轴上;(2)点N的坐标为(3,-6),直线MN∥y轴;(3)点M到x轴、y轴的距离相等.23.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1( ),A3( ),A12( );(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.答案:一、1-10 BBBCB AADAA二、 11. 一 12. 三排四号 13. 三 14. -4或6 15. (0,3)或(0,-3) 16. (-1,-1) 17. (-4,3)18. 南偏西30° 500 三、19. 解:∵点(1-2a ,a -2)在第三象限,∴⎩⎪⎨⎪⎧1-2a <0,a -2<0,∴12<a <2,又∵a 为整数,∴a =1.20. 解:由图可知:A 点的坐标是(6,6)、B(0,3)、C(3,0).作AE ⊥y 轴,AD ⊥x 轴,所以S △ABC =S 正方形AEOD -S △AEB -S △OBC -S △ACD =6×6-12×3×6-12×3×3-12×3×6=36-9-92-9=1312.21. 解:(1)(-75°,-15)表示南偏东75°,15千米处;(10°,-25)表示南偏西10°,25千米处;(2)略. 22. 解:(1)(0,203);(2)(3,233);(3)(10,10)或(-5,5).23. 解:(1)(0,1) (1,0) (6,0); (2)A 4n (2n,0);(3)点A 100中的100正好是4的倍数,所以点A 100和A 101的坐标分别是A 100(50,0)、A101(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.。

2021年九年级中考数学基础过关:10《平面直角坐标系》(含答案)

2021年九年级中考数学基础过关:10《平面直角坐标系》(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2021年中考数学基础过关:10《平面直角坐标系》一、选择题1.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为(﹣2,0),N的坐标为(2,0),则在第二象限内的点是()A.A点B.B点C.C点D.D点1.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( )A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)1.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3)B.(﹣5,3)或(5,3)C.(3,5)D.(﹣3,5)或(3,5)1.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限1.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)1.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A的对应点A1的坐标为( )A.(4,3)B.(2,4)C.(3,1)D.(2,5)1.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P (3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A. B. C. D.21.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,O)B.(5,0)C.(0,5)D.(5,5)二、填空题1.若点A(x,y)的坐标满足(y-1)2+|x+2|=0,则点A在第____________象限.1.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b= .1.若点P(a,-b)在第二象限,则点Q(-ab,a+b)在第_______象限.1.点P(m+3,m-2)在直角坐标系的x轴上,则点P的坐标为____________.1.定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q 则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有个.1.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是.三、作图题1.如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐为(﹣4,3);(3)在(2)的条件下,直接写出点A1的坐标.四、解答题1.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.1.在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.参考答案1.A.1.D1.D1.D1.答案为:A.1.D1.答案为:C.1.B1.答案为:二;1.答案为:2.1.答案为:三;1.答案为:(5,0);1.答案为:4.1.答案为:(504,2).1.解:(1)如图,△A1B1C1为所作;(2)如图,(3)点A1的坐标为(2,6).1.△ABO的面积为4.1.解:(1)∵点A在y轴上,∴3a﹣5=0,解得:a=,a+1=,点A的坐标为:(0,);(2)∵点A到x轴的距离与到y轴的距离相等,∴|3a﹣5|=|a+1|,①3a﹣5=a+1,解得:a=﹣2,则点A(﹣11,﹣1);②3a﹣5=﹣(a+1),解得:a=﹣1.5,则点A(﹣9.5,0.5);③﹣(3a﹣5)=a+1解得:a=﹣1.5,则点A(﹣9.5,0.5);④﹣(3a﹣5)=﹣(a+1),解得:a=﹣2,则点A(﹣11,﹣1);所以a=﹣2,则点A(﹣11,﹣1)或a=﹣2,则点A(﹣11,﹣1).一天,毕达哥拉斯应邀到朋友家做客。

专题18:平面直角坐标系-2021年中考数学考点靶向练习(word版含答案与解析)

专题18:平面直角坐标系-2021年中考数学考点靶向练习(word版含答案与解析)

专题18:平面直角坐标系-2021年中考数学考点靶向练习一、单选题1.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错.误.的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D .从点P 向北走3km 后,再向西走3km 到达l3.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D ,若⊙P 的半径为5,点A 的坐标是(0,8),则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)4.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( )A .()4,5-B .(5,4)-C .(4,5)-D .(5,4)-5.如图,ABCDEF 是中心为原点O ,顶点A ,D 在x 轴上,半径为4的正六边形,则顶点F 的坐标为( )A .()2,23B .()2,2-C .()2,23-D .()1,3- 6.如图,平行四边形ABCO 中的顶点O ,A ,C 的坐标分别为(0,0),(2,3),(m ,0),则顶点B 的坐标为( )A .(3,2+m )B .(3+m ,2)C .(2,3+m )D .(2+m ,3)7.如图,已知平行四边形AOBC 的顶点O (0,0),A (-3,4),点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A .(2,4)B .(5,4)C .(-2,4)D .(3,4)8.已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( )A .a <﹣3B .﹣3<a <1C .a >﹣3D .a >19.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2018次运动后,动点P 的坐标是( )A .(2018,1)B .(2018,0)C .(2018,2)D .(2017,0)10.已知坐标平面内点M(a ,b)在第三象限,那么点N(b ,-a)在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.在平面直角坐标系中,点()3,1A -在第______象限.12.如图,在平面直角坐标系中,等腰直角三角形①沿x 轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A 1(0,2)变换到点A 2(6,0),得到等腰直角三角形②;第二次滚动后点A 2变换到点A 3(6,0),得到等腰直角三角形③;第三次滚动后点A 3变换到点A 4(10,42),得到等腰直角三角形④;第四次滚动后点A 4变换到点A 5(10+122,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是_____.13.如果甲地在乙地北偏西35°的方向,那么乙地在甲地的___方向.14.一艘海轮,先从点A 出发向西北方向航行2海里到达B 地,再由B 向正北方向航行3海里到达点C ,最后由点C 向东南方向航行2海里到达点D ,这时,点D 在点A 的_____.15.O 为坐标原点,A(1,1),在x 轴上找一点P ,使三角形AOP 为等腰三角形,符合条件的点P 有___________个.16.已知直线AB ∥x 轴,A 点的坐标为(2,1),并且线段AB=2,则点B 的坐标为_____17.已知点(12,2)P a a --关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程12x x a+=-的解是________.18.如图,在平面直角坐标系中,已知(0,5),(2,0)A B ,在第一象限内的点C ,使ABC 是以AB 为腰的等腰直角三角形,则点C 的坐标为_____.19.直角坐标系中,已知A (3,2),作点A 关于y 轴对称点A 1,点A 1关于原点对称点A 2,点A 2关于x 轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____.20.有以下四个命题:①有公共顶点,没有公共边的两个角一定是对顶角;②实数与数轴上的点是一一对应的;③过一点有且只有一条直线与已知直线平行;④如果点(),P x y 的坐标满足0xy >,那么点P 一定在第一象限.其中正确命题的序号是__________.三、解答题21.如图1,在平面直角坐标系中,△ABC 的顶点A ,C 分别是直线y =﹣83x +4与坐标轴的交点,点B 的坐标为(﹣2,0),点D 是边AC 上的一点,DE ⊥BC 于点E ,点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称,连结DF ,EF .设点D 的横坐标为m ,EF 2为l ,请探究:①线段EF 长度是否有最小值.②△BEF 能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l 随m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l 与m 可能满足的函数类别. (2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值.(3)小明通过观察,推理,发现△BEF 能成为直角三角形,请你求出当△BEF 为直角三角形时m 的值.22.如图,在平面直角坐标系中,ABO 的顶点坐标分别为(0,0)O ,(2,0)A a ,(0,)B a -,线段EF 两端点的坐标分别为(, 1) E m a -+,(,1)F m -,2a m a >>,直线//l y 轴交x 轴于(),0P a ,且线段EF 与CD 关于y 轴对称,线段CD 与MN 关于直线l 对称.(1)求点N ,M 的坐标(用含m ,a 的代数式表示).(2)ABO 与MFE 通过平移能重合吗?请说明理由.若能,请你说出一个平移方案(平移的单位长度数用m ,a 表示).23.如图,平面直角坐标系中,四边形ABCD 的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD 的面积.24.如图,有两条互相垂直的公路12,l l ,A 厂离公路1l 的距离为2千米,离公路2l 的距离为5千米;B 厂离公路1l 的距离为11千米,离公路2l 的距离为4千米;现在要在公路2l 上建造一仓库P ,使A 厂到P 仓库的距离与B 厂到P 仓库的距离相等,求仓库P 的位置.25.如图,小鱼家在(10,8)A 处,小云家在(4,4)B 处,从小鱼家到小云家可以按下面的两条路线走: 路线①:(10,8)(10,7)(8,7)(8,6)(6,6)(6,5)(4,5)(4,4)→→→→→→→.路线②:(10,8)(4,8)(4,4)→→.(1)请你在图上画出这两条路线,并比较这两条路线的长短;(2)请你依照上述方法再写出一条路线.26.在直角坐标系中,A (―3,4),B (―1,―2),O 为坐标原点,把△AOB 向右平移3个单位,得到△A 'O 'B '. (1)写出A '、O '、B '三点的坐标.(2)求△AOB 的面积.27.如图,A ,B 两市相距150km ,国家级风景区中心C 位于A 市北偏东60︒方向上,位于B 市北偏西45︒方向上.已知风景区是以点C 为圆心、50km 为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A ,B 两市的高速公路,高速公路AB 是否穿过风景区?通过计算加以说明.(参考数据:3 1.73≈)28.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A1( ,)、A3( ,)、A12( ,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.29.在平面直角坐标系中,顺次连结A(-2,0)、B(4,0)、C(-2,-3)各点,试求:(1)A、B两点之间的距离.(2)点C到x轴的距离.(3)△ABC的面积.30.如图,已知A(—3,—3),B(—2,—1),C(—1,—2)是直角坐标平面上三点。

2021年中考复习数学专题训练:《平面直角坐标系》填空题专项培优(四)

2021年中考复习数学专题训练:《平面直角坐标系》填空题专项培优(四)

2021年中考复习数学专题训练: 《平面直角坐标系》填空题专项培优(四)1.若点P (2a +1,1﹣a )在第二象限,则a 的取值范围是 .2.已知平面内有一点A 的横坐标为﹣6,且到原点的距离等于10,则A 点的坐标为 . 3.点A (3a ﹣1,1﹣6a )在y 轴上,则点A 的坐标为 . 4.写出一个第四象限的点的坐标 .5.如图,规定列号写在前面,行号写在后面,如用数对的方法,棋盘中“帅”与“卒”的位置可分别表示为(e ,4)和(g ,3),则“炮”的位置可表示为 .6.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为 . 7.如图,若在象棋棋盘上建立直角坐标系,使“帅”位于点(﹣3,﹣2),“炮”位于点(﹣2,0),则“兵”位于的点的坐标为 .8.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,若两点A (x 1,y 1)、B (x 2,y 2),所连线段AB 的中点是M ,则M 的坐标为(,),例如:点A (1,2)、点B (3,6),则线段AB 的中点M 的坐标为(,),即M (2,4)请利用以上结论解决问题:在平面直角坐标系中,若点E (a ﹣1,a ),F (b ,a ﹣b ),线段EF 的中点G 恰好位于x 轴上,且到y 轴的距离是2,则2a +b 的值等于 . 9.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是 元. 10.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.11.小麦在磨成面粉后,质量要减少25%,为了得到600kg面粉,需要小麦kg.12.三个连续奇数的和是75,这三个数分别是.13.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,李明同学到该书店购书,结账时,他先买优惠卡再凭卡付款,结果节省了人民币12元,那么,李明同学此次购书的总价值是人民币元.14.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律9折;(3)一次性购物超过300元一律8折.小李两次购物分别付款80元,252元,如果他一次性购买以上两次相同的商品,应付款元.15.已知某种商品的售价每件为150元,即使促销降价20%后,扣除成本仍有20%的利润,那么该商品每件的成本价是元.16.一件服装进价200元,按标价的8折销售,仍可获利10%,该服装的标价是元.17.由于人民生活水平的不断提高,购买理财产品成为一个热门话题.某银行销售A,B,C 三种理财产品,在去年的销售中,稳健理财产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A,B两种理财产品的销售金额都将比去年减少20%,因而稳健理财产品C是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年稳健理财产品C的销售金额应比去年增加%18.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是%(注:利润率=×100%).19.如图,点A1(1,)在直线y=x上,A1B1⊥OA1交x轴于B1,A2B1⊥x轴交直线y=x于A2,A2B2⊥OA2交x轴于B2,A3B2⊥x轴交直线y=x于A3,…,A n B n⊥OA n交x轴于B n,A n+1Bn⊥x轴交直线y=x于A n+1,A n+1Bn+1⊥OA n+1交x轴于B n+1,则四边形A n B n B n+1An+1的面积为.20.如图,在平面直角坐标系xOy 的第一象限内依次作等边三角形△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…,点A 1,A 2,A 3,…,在x 轴的正半轴上,点B 1,B 2,B 3,…,在射线OM 上,若∠B 1OA 1=30°,OA 1=1,则点B 2019坐标是 .21.已知点A (4,3),AB ∥y 轴,且AB =3,则B 点的坐标为 .22.已知平面直角坐标系中的点P (a ﹣3,2)在第二象限,则a 的取值范围是 . 23.一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后按图中箭头所示方向跳动,且每秒跳动一个单位,那么第2020秒时电子跳蚤所在位置的坐标是 .24.如图,在一单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A 3(0,0),则依图中所示规律,A 2017的坐标为 .25.如图,在直角坐标系xOy 中,边长为1的正方形A 1B 1C 1D 1(称为第1个正方形)的顶点A 1在原点处,点B 1在y 轴上,点D 1在x 轴上,点C 1在第一象限内,现以点C 1为顶点做等边三角形C 1A 2B 2,使得点A 2落在x 轴上,且A 2B 2⊥x 轴;以A 2B 2为边做正方形A 2B 2C 2D 2(称为第2个正方形),且正方形的边A 2D 2落在x 轴上…如此类推,则第2020个正方形的边长为 .参考答案1.解:∵点P(2a+1,1﹣a)在第二象限,∴解得:a<﹣,故答案为:a<﹣.2.解:∵点A的横坐标为﹣6,到原点的距离是5,∴点A到x轴的距离为=8,∴点A的纵坐标为8或﹣8,∴点A的坐标为(﹣6,8)或(﹣6,﹣8).故答案为:(﹣6,8)或(﹣6,﹣8).3.解:∵点A(3a﹣1,1﹣6a)在y轴上,∴3a﹣1=0,解得a=,所以,1﹣6a=1﹣6×=1﹣2=﹣1,所以,点A的坐标为(0,﹣1).故答案为:(0,﹣1).4.解:写出一个第四象限的点的坐标(1,﹣1),故答案为:(1,﹣1).5.解:根据题意知“炮”的位置可表示为(h,4),故答案为:(h,4).6.解:若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为(2,5),故答案为:(2,5).7.解:如图所示:“兵”位于的点的坐标为:(﹣5,1).故答案为:(﹣5,1)8.解:∵点E(a﹣1,a),F(b,a﹣b),∴中点G(,),∵中点G恰好位于x轴上,且到y轴的距离是2,∴,解得:,,∴2a+b=或﹣4;故答案为:或﹣4.9.解:设该玩具的进价为x元.根据题意得:100×80%﹣x=25%x.解得:x=64.故答案是:64.10.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为:100或85.11.解:设需要小麦xkg,依题意得:x(1﹣25%)=600解得:x=800∴需要小麦800kg.12.解:设最小的奇数为x,则其他的为x+2,x+4∴x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.13.解:设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣12解得:x=160故填160.14.解:(1)第一次购物显然没有超过100,即在第一次消费80元的情况下,他的实质购物价值只能是80元.(2)第二次购物消费252元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过100元但不足300元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=252,解得:x=280.①第二种情况:他消费超过300元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=252,解得:x=315.即在第二次消费252元的情况下,他的实际购物价值可能是280元或315元.综上所述,他两次购物的实质价值为80+280=360或80+315=395,均超过了300元.因此均可以按照8折付款:360×0.8=288元395×0.8=316元故填288元或316元.15.解:设该商品的进价为x 元, 根据题意得:150×80%=(1+20%)x , 解之得x =100,即该商品的进价为100元. 16.解:设该服装的标价是x 元.x ×80%=200×(1+10%),解得x =275, 故答案为275.17.解:设今年产品C 的销售金额应比去年增加x , 根据题意得:0.4(1+x )+(1﹣40%)(1﹣20%)=1, 解得x =30%. 故答案为:30.18.解:设原利润率是x ,进价为a ,则售价为a (1+x ), 根据题意得:﹣x =8%,解之得:x =0.17所以原来的利润率是17%. 19.解:过A 1作A 1C ⊥x 轴于点C ,∵点A 1(1,),∴,OC =1,∵A 1B 1⊥OA 1交x 轴于B 1, ∴∠A 1CO =∠OA 1B 1=90°,∴∠OA 1C +∠A 1OC =∠OA 1C +∠CA 1B 1=90°, ∴∠A 1OC =∠B 1AO , ∴△A 1OC ∽△B 1A 1O ,∴,即,∴B 1C =2,∴OB 1=OC +B 1C =3, ∴,同理可得OB 2=9,,OB 3=27,∴=, ==9×,同理可得,,…, 由规律可得,.故答案为:.20.解:根据题意,得等边三角形△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…, ∵∠B 1OA 1=30°,OA 1=1,∠B 1A 1A 2=∠A 1A 2B 1=∠A 2B 1A 1=60°, ∴∠OB 1A 1=30°, ∴∠OB 1A 2=90°,∴A 1A 2=A 2B 1=A 1B 1=OA 1=1, 所以B 1 的横坐标为1+=,纵坐标为×tan30°=×=;同理可得:B 2 的横坐标为2+1=3,纵坐标为3×=;B 3 的横坐标为4+2=22+21, B 4 的横坐标为8+4=23+22, B 5 的横坐标为16+8=24+23,…Bn的横坐标为2n﹣1+2n﹣2=2n﹣2(2+1)=3×2n﹣2,纵坐标为3×2n﹣2×tan30°=×2n﹣2.所以B2019的坐标为(3×22017,×22017)21.解:∵A(4,3),AB∥y轴,∴点B的横坐标为4,∵AB=3,∴点B的纵坐标为3+3=6或3﹣3=0,∴B点的坐标为(4,0)或(4,6).故填(4,0)或(4,6).22.解:∵平面直角坐标系中的点P(a﹣3,2)在第二象限,∴a的取值范围是:a﹣3<0,解得:a<3.故答案为:a<3.23.解:由图可得,(0,1)表示1=12秒后跳蚤所在位置;(0,2)表示8=(2+1)2﹣1秒后跳蚤所在位置;(0,3)表示9=32秒后跳蚤所在位置;(0,4)表示24=(4+1)2﹣1秒后跳蚤所在位置;…∴(0,44)表示(44+1)2﹣1=2024秒后跳蚤所在位置,则(4,44)表示第2020秒后跳蚤所在位置.故答案为:(4,44).24.解:∵A3是第一与第二个等腰直角三角形的公共点,A5是第二与第三个等腰直角三角形的公共点,A7是第三与第四个等腰直角三角形的公共点,A9是第四与第五个等腰直角三角形的公共点,…,∵2017=1008×2+1,∴A2017是第1008个与第1009个等腰直角三角形的公共点,∴A2017在x轴正半轴,∵OA5=4,OA9=6,OA13=8,…,∴OA 2017=(2017+3)÷2=1010, ∴点A 2017的坐标为(1010,0).故答案为:(1010,0).25.解:∵正方形A 1B 1C 1D 1(称为第1个正方形)的边长为1, ∴C 1D 1=1,∵C 1A 2B 2为等边三角形,∵∠B 2A 2C 1=60°,∵A 2B 2⊥x 轴,∴∠C 1A 2D 1=30°,∴A 2B 2=2C 1D 1=2=22﹣1,同理得A 3B 3=4=23﹣1,A 4B 4=8=24﹣1,…由上可知第n 个正方形的边长为:2n ﹣1, ∴第2020个正方形的边长为:22020﹣1=22019. 故答案为:22019.。

2020-2021中考数学培优(含解析)之反比例函数含答案

2020-2021中考数学培优(含解析)之反比例函数含答案

2020-2021中考数学培优(含解析)之反比例函数含答案一、反比例函数1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.2.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:= .【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.3.如图,已知直线y=ax+b与双曲线y= (x>0)交于A(x1, y1),B(x2, y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).【答案】(1)解:∵直线y=ax+b与双曲线y= (x>0)交于A(1,3),∴k=1×3=3,∴y= ,∵B(3,y2)在反比例函数的图象上,∴y2= =1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,O)(2)解:如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG 交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴= ,= = ,∵b=y1+1,AB=BP,∴= ,= = ,∴B(,y1)∵A,B两点都是反比例函数图象上的点,∴x1•y1= • y1,解得x1=2,代入= ,解得y1=2,∴A(2,2),B(4,1)(3)解:根据(1),(2)中的结果,猜想:x1, x2, x0之间的关系为x1+x2=x0【解析】【分析】(1)先把A(1,3)),B(3,y2)代入y= 求得反比例函数的解析式,进而求得B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出 = , = = ,根据题意得出 = , = = ,从而求得B(, y1),然后根据k=xy得出x1•y1= • y1,求得x1=2,代入 = ,解得y1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x0.4.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.5.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、…、A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、…、A n﹣1A n都在y轴上(n≥1的整数),点P1(x1,y1),点P2(x2,y2),…,P n(x n, y n)在反比例函数y= (x>0)的图象上,并已知B1(﹣1,1).(1)求反比例函数y= 的解析式;(2)求点P2和点P3的坐标;(3)由(1)、(2)的结果或规律试猜想并直接写出:△P n B n O的面积为 ________ ,点P n的坐标为________ (用含n的式子表示).【答案】(1)解:在正方形OP1A1B1中,OA1是对角线,则B1与P1关于y轴对称,∵B1(﹣1,1),∴P1(1,1).则k=1×1=1,即反比例函数解析式为y=(2)解:连接P2B2、P3B3,分别交y轴于点E、F,又点P1的坐标为(1,1),∴OA1=2,设点P2的坐标为(a,a+2),代入y=得a=-1,故点P2的坐标为(-1,+1),则A1E=A2E=2-2,OA2=OA1+A1A2=2,设点P3的坐标为(b,b+2),代入y=(>0)可得b=-,故点P3的坐标为(-,+)(3)1;(-,+)【解析】【解答】解:(3)∵=2=2×=1,=2=2×=1,…∴△P n B n O的面积为1,由P1(1,1)、P2(﹣1, +1)、P3(﹣,+ )知点P n的坐标为(﹣,+ ),故答案为:1、(﹣, +).【分析】(1)由四边形OP1A1B1为正方形且OA1是对角线知B1与P1关于y轴对称,得出点P1(1,1),然后利用待定系数法求解即可;(2)连接P2B2、P3B3,分别交y轴于点E、F,由点P1坐标及正方形的性质知OA1=2,设P2的坐标为(a,a+2),代入解析式求得a的值即可,同理可得点P3的坐标;(3)先分别求得S△P1B1O、S△P2B2O的值,然后找出其中的规律,最后依据规律进行计算即可.6.如图,正比例函数和反比例函数的图象都经过点A(3,3),把直线OA向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点.(1)求m的值;(2)求过A、B、D三点的抛物线的解析式;(3)若点E是抛物线上的一个动点,是否存在点E,使四边形OECD的面积S1,是四边形OACD面积S的?若存在,求点E的坐标;若不存在,请说明理由.【答案】(1)解:∵反比例函数的图象都经过点A(3,3),∴经过点A的反比例函数解析式为:y= ,而直线OA向下平移后,与反比例函数的图象交于点B(6,m),∴m=(2)解:∵直线OA向下平移后,与反比例函数的图象交于点B(6,),与x轴、y轴分别交于C、D两点,而这些OA的解析式为y=x,设直线CD的解析式为y=x+b代入B的坐标得: =6+b,∴b=﹣4.5,∴直线OC的解析式为y=x﹣4.5,∴C、D的坐标分别为(4.5,0),(0,﹣4.5),设过A、B、D三点的抛物线的解析式为y=ax2+bx+c,分别把A、B、D的坐标代入其中得:解之得:a=﹣0.5,b=4,c=﹣4.5∴y=﹣0.5x2+4x﹣4.5(3)解:如图,设E的横坐标为x,∴其纵坐标为﹣0.5x2+4x﹣4.5,∴S1= (﹣0.5x2+4x﹣4.5+OD)×OC,= (﹣0.5x2+4x﹣4.5+4.5)×4.5,= (﹣0.5x2+4x)×4.5,而S= (3+OD)×OC= (3+4.5)×4.5= ,∴(﹣0.5x2+4x)×4.5= ,解之得x=4± ,∴这样的E点存在,坐标为(4﹣,0.5),(4+ ,0.5).【解析】【分析】(1)先根据点A的坐标求得反比例函数的解析式,又点B在反比例函数图像上,代入即可求得m的值;(2)先根据点A的坐标求得直线OA的解析式,再结合点B的坐标求得直线CD的解析式,从而可求得点C、D的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上E点的坐标,从而表示出面积S1,再求得面积S 的值,令其相等可得到关于x的二元一次方程,方程有解则点E存在,并可求得点E的坐标.7.理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tanD=tan15°= = = .思路二利用科普书上的和(差)角正切公式:tan(α±β)= .假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)= == .思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.【答案】(1)解:方法一:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tan∠DAC=tan75°= = = = ;方法二:tan75°=tan(45°+30°)= = = =(2)解:如图2,在Rt△ABC中,AB= = = ,sin∠BAC= ,即∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB= ,∴DB=AB•tan∠DAB= •()= ,∴DC=DB﹣BC= = .答:这座电视塔CD的高度为()米(3)解:①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C 作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.解方程组:,得:或,∴点A(4,1),点B(﹣2,﹣2).对于,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF= ,∴tan∠PCE=tan(∠ACP+∠ACF)=tan(45°+∠ACF)= = =3,即 =3.设点P的坐标为(a,b),则有:,解得:或,∴点P的坐标为(﹣1,﹣4)或(,3);②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.由①可知∠ACP=45°,P(,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴.∵CH=3﹣(﹣1)=4,PH= ,OC=1,∴,∴GO=3,G(﹣3,0).设直线CG的解析式为,则有:,解得:,∴直线CG的解析式为.联立:,消去y,得:,整理得:,∵△= ,∴方程没有实数根,∴点P 不存在.综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P的坐标为(﹣1,﹣4)或(,3).【解析】【分析】tan∠DAC=tan75°,tan∠DAC用边的比值表示.在Rt△ABC中,由勾股定理求出AB,由三角函数得出∠BAC=30°,从而得到∠DAB=75°,在Rt△ABD中,可求出DB,DC=DB﹣BC.分两种情况讨论,设点P的坐标为(a,b),根据tan∠PCE和P在图像上列出含有a,b的方程组,求出a,b.利用已知证明△GOC∽△CHP,根据相似三角形的性质可求出G的坐标,设出直线CG的解析式,与反比例函数组成方程组消元,△<0 点P不存在.8.如图,点A是反比例函数y1= (x>0)图象上的任意一点,过点A作AB∥x轴,交另一个比例函数y2= (k<0,x<0)的图象于点B.(1)若S△AOB的面积等于3,则k是=________;(2)当k=﹣8时,若点A的横坐标是1,求∠AOB的度数;(3)若不论点A在何处,反比例函数y2= (k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.【答案】(1)﹣4(2)解:∵点A的横坐标是1,∴y= =2,∴点A(1,2),∵AB∥x轴,∴点B的纵坐标为2,∴2=﹣,解得:x=﹣4,∴点B(﹣4,2),∴AB=AC+BC=1+4=5,OA= = ,OB= =2 ,∴OA2+OB2=AB2,∴∠AOB=90°;(3)解:假设y2= 上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x轴,∵四边形AOBD为平行四边形,∴BD=OA,BD∥OA,∴∠DBA=∠OAB=∠AOC,在△AOC和△DBE中,,∴△AOC≌△DBE(AAS),设A(a,)(a>0),即OC=a,AC= ,∴BE=OC=a,DE=AC= ,∴D纵坐标为,B纵坐标为,∴D横坐标为,B横坐标为,∴BE=| ﹣ |=a,即﹣ =a,∴k=﹣4.【解析】【解答】解:如图1,设AB交y轴于点C,∵点A是反比例函数y1= (x>0)图象上的任意一点,且AB∥x轴,∴AB⊥y轴,∴S△AOC= ×2=1,∵S△AOB=3,∴S△BOC=2,∴k=﹣4;故答案为:﹣4;【分析】(1)首先设AB交y轴于点C,由点A是反比例函数y1图象上的任意一点,AB∥x轴,可求得△AOC的面积,又由△AOB的面积等于3,即可求得△BOC的面积,继而求得k的值;(2)由点A的横坐标是1,可求得点A的坐标,继而求得点B的纵坐标,则可求得点B的坐标,则可求得AB,OA,OB的长,然后由勾股定理的逆定理,求得∠AOB的度数;(3)假设y2上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x 轴,由四边形AOBD为平行四边形,利用平行四边形的对边平行且相等,利用AAS得到△AOC与△DBE全等,利用全等三角形对应边相等得到BE=OC,DE=AC,设出A点的坐标,表示出OC,AC的长,得出D与B纵坐标,进而表示出D与B横坐标,两横坐标之差的绝对值即为BE的长,利用等式,即可求出k的值.9.已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC是平行四边形,OC=2 ,sin∠AOC= ,反比例函数y= 的图象经过点C以及边AB的中点D.(1)求这个反比例函数的解析式;(2)四边形OABC的面积.【答案】(1)解:过C作CM⊥x轴于M,则∠CMO=90°,∵OC=2 ,sin∠AOC= = ,∴MC=4,由勾股定理得:OM= =2,∴C的坐标为(2,4),代入y= 得:k=8,所以这个反比例函数的解析式是y=(2)解:过B作BE⊥x轴于E,则BE=CM=4,AE=OM=2,过D作DN⊥x轴于N,∵D为AB的中点,∴DN= =2,AN= =1,把y=2代入y= 得:x=4,即ON=4,∴OA=4﹣1=3,∴四边形OABC的面积为OA×CM=3×4=12【解析】【分析】(1)过C作CM⊥x轴于M,则∠CMO=90°,解直角三角形求出CM,根据勾股定理求出OM,求出C的坐标,即可求出答案;(2)根据D为中点求出DN的值,代入反比例函数解析式求出ON,求出OA,根据平行四边形的面积公式求出即可.10.如图1,在平面直角坐标系,O为坐标原点,点A(﹣2,0),点B(0,2 ).(1)直接写求∠BAO的度数;(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2, S1与S2有何关系?为什么?(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.【答案】(1)解:∵A(−2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,tan∠BAO=,∴∠BAO=60°(2)解:S1=S2;理由:∵∠BAO=60°,∠AOB=90°,∴∠ABO=30°,∴OA'=OA= AB,△AOA'是等边三角形,∴OA'=AA'=AO=A'B,∵∠B'A'O=60°,∠A'OA=60°,∴B'A'∥AO,根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,即△AB′O中AO边上高和△BA′O中BA′边上的高相等,∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2(3)证明:S1=S2不发生变化;理由:如图,过点A'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,∵△A'B'O是由△ABO绕点O旋转得到,∴BO=OB',AO=OA',∵∠AON+∠BON=90°,∠A'OM+∠BON=90°,∴∠AON=∠A'OM,在△AON和△A'OM中,,∴△AON≌△A'OM(AAS),∴AN=A'M,∴△BOA'的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2.【解析】【分析】(1)先求出OA,OB,再用锐角三角函数即可得出结论;(2)根据旋转的性质和直角三角形的性质可证得OA'=AA'=AO=A'B,然后根据等边△AOA'的边AO、AA'上的高相等,即可得到S1=S2;(3)根据旋转的性质可得BO=OB',AA'=OA',再求出∠AON=∠A'OM,然后利用“角角边”证明△AON和△A'OM全等,根据全等三角形对应边相等可得AN=A'M,然后利用等底等高的三角形的面积相等证明.11.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.12.如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3.(1)设点P的纵坐标为p,写出p随k变化的函数关系式.(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明;(3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由.【答案】(1)解:∵y轴和直线l都是⊙C的切线,∴OA⊥AD,BD⊥AD;又∵OA⊥OB,∴∠AOB=∠OAD=∠ADB=90°,∴四边形OADB是矩形;∵⊙C的半径为2,∴AD=OB =4;∵点P在直线l上,∴点P的坐标为(4,p);又∵点P也在直线AP上,∴p=4k+3(2)解:连接DN.∵AD是⊙C的直径,∴∠AND=90°,∵∠ADN=90°﹣∠DAN,∠ABD=90°﹣∠DAN,∴∠ADN=∠ABD,又∵∠ADN=∠AMN,∴∠ABD=∠AMN,∵∠MAN=∠BAP,∴△AMN∽△ABP(3)解:存在.理由:把x=0代入y=kx+3得:y=3,即OA=BD=3,AB=,∵S△ABD=AB•DN=AD•DB∴DN==,∴AN2=AD2﹣DN2=,∵△AMN∽△ABP,∴,即当点P在B点上方时,∵AP2=AD2+PD2=AD2+(PB﹣BD)2=42+(4k+3﹣3)2=16(k2+1),或AP2=AD2+PD2=AD2+(BD﹣PB)2=42+(3﹣4k﹣3)2=16(k2+1),S△ABP=PB•AD=(4k+3)×4=2(4k+3),∴,整理得:k2﹣4k﹣2=0,解得k1=2+ ,k2=2﹣当点P在B点下方时,∵AP2=AD2+PD2=42+(3﹣4k﹣3)2=16(k2+1),S△ABP=PB•AD= [﹣(4k+3)]×4=﹣2(4k+3)∴化简得:k2+1=﹣(4k+3),解得:k=﹣2,综合以上所得,当k=2± 或k=﹣2时,△AMN的面积等于【解析】【分析】(1)由切线的性质知∠AOB=∠OAD=∠ADB=90°,所以可以判定四边形OADB是矩形;根据⊙O的半径是2求得直径AD=4,从而求得点P的坐标,将其代入直线方程y=kx+3即可知p变化的函数关系式;(2)连接DN.∵直径所对的圆周角是直角,∴∠AND=90°,根据图示易证∠AND=∠ABD;然后根据同弧所对的圆周角相等推知∠ADN=∠AMN,再由等量代换可知∠ABD=∠AMN;最后利用相似三角形的判定定理AA 证明△AMN∽△ABP;(3)存在.把x=0代入y=kx+3得y=3,即OA=BD=3,然后由勾股定理求得AB=5;又由相似三角形的相似比推知相似三角形的面积比.分两种情况进行讨论:①当点P在B点上方时,由相似三角形的面积比得到k2−4k−2=0,解关于k的一元二次方程;②当点P在B点下方时,由相似三角形的面积比得到k2+1=−(4k+3),解关于k的一元二次方程.。

2021届初三数学中考复习 平面直角坐标系 专题训练 含答案

2021届初三数学中考复习  平面直角坐标系 专题训练 含答案

2021届初三数学中考复习平面直角坐标系专题训练1. 下列数据不能用有序数对表示的是( )A.4楼,5楼 B.6楼,8号C.3号路,25号 D.东经110°,北纬67°2. 如图,如果四角星的顶点A的位置用(5,8)表示,那么顶点B的位置可以表示为( )A.(2,5) B.(5,2) C.(3,5) D.(5,3)3. 如图,在平面直角坐标系中,点P的坐标为( )A.(3,-2) B.(-2,3) C.(-3,2) D.(2,-3)4.如图是某中学的平面示意图,每个正方形格子的边长为1,如果校门所在位置的坐标为(2,4),小明所在位置的坐标为(-6,-1),那么坐标(-4,3)在示意图中表示的是( )A.图书馆 B.教学楼 C.实验楼 D.食堂5.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x 轴距离的3倍.若A点在第二象限,则A的坐标为( )A.(-9,3) B.(-3,1) C.(-3,9) D.(-1,3)6. 下列选项中,平面直角坐标系的画法正确的是( )7. 点P(-3,-5)所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8. 已知点M(3,-2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y 轴的距离等于4,那么点M′的坐标是( )A.(4,2)或(-4,2) B.(4,-2)或(-4,-2)C.(4,-2)或(-5,-2) D.(4,-2)或(-1,-2)9. 过A(4,-3)和B(-4,-3)两点的直线一定( )A.垂直于x轴 B.与y轴相交但不平行于x轴C.平行于x轴 D.与x轴、y轴都不平行10. 如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A的对应点A1的坐标为( )A.(4,3) B.(2,4) C.(3,1) D.(2,5)11.如图为小明家相对于学校的位置,下列描述最正确的是( )A.在距离学校300米处 B.在学校的西北方向C.在西北方向300米处 D.在学校西北方向300米处12.小明从家出发,先向东走350 m到小亮家,然后他们又向南走500 m到了老师家,如果以老师家的位置为平面直角坐标系的坐标原点,向东方向为x轴正方向,向北方向为y轴正方向,那么小明家的位置可记为( ) A.(350,500) B.(-350,-500) C.(350,-500) D.(-350,500) 13.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC的面积为6,则点C的坐标为( )A.(0,4) B.(0,2) C.(0,2)或(0,-2) D.(0,4)或(0,-4)14.如图,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒钟,它从原点跳动到(0,1),然后按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第24 s时跳蚤所在位置的坐标是( )A.(0,3) B.(4,0) C.(0,4) D.(4,4)15. 如果P点的坐标为(-3,-4),那么P点横坐标为____,纵坐标为____.16. 已知点P(-11,7),则P点到x轴的距离为____,到y轴的距离为____.17. 点P(x,y)在第二象限,且x2=4,|y|=3.则点P的坐标为_________.18. 点P(5,-3)到x轴的距离为____,到y轴的距离为____.19. 若A(a,-b)是第二象限的一点,则点B(a2,b-1)在第____象限.20. 若点A(3,x+1),B(2y-1,-1)分别在x轴、y轴上,则x2+y2=____.21. 如图,长方形OABC的顶点O在原点,边OA在x轴上,边OC在y轴上,若OA=8,OC=6,则点A的坐标为_________,点B的坐标为__________,点C 的坐标为___________.22. 如图,若点E的坐标为(-2,1),点F的坐标为(1,-1),则点G的坐标为____.23.如图,在平面直角坐标系中,三角形PQR是由三角形ABC经过某种变换后得到的图形,观察点A与点P,点B与点Q,点C与点R的坐标之间的关系,在这种变换下,如果三角形ABC中任意一点M的坐标为(x,y),那么它的对应点N 的坐标是___.24. 如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A,B的坐标:(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,求△A′B′C′的三个顶点坐标.25. 已知点M(3a-2,a+6),分别根据下列条件求出点M的坐标:(1)点M在x轴上;(2)点N的坐标为(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.26. 在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4______,A8______,A12____;(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.27. 兰和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图(如图),可是她忘记了在图中标出原点和x轴、y轴,只知道游乐园的位置D的坐标为(2,-2),你能帮她求出其他各景点所在位置的坐标吗?28. 年级(2)班的同学到白云公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,-200),王励说他的坐标是(-200,-100),李华说他的坐标是(-300,200).(1)请你据此写出坐标原点的位置;(2)请你写出这三位同学所在的景点.29. △ABC在平面直角坐标系内,A点坐标是(3,4),B点坐标是(1,3),C点坐标是(4,1),平移△ABC得到△A′B′C′,已知A′的坐标是(-2,2).(1)求点B′和C′的坐标;(2)若△ABC内部一点P的坐标是(a,b),则点P的对应点P′的坐标是多少?30. 如图所示,四边形ABCO中,AB∥OC,BC∥AO,A,C两点的坐标分别为(-3,5),(-23,0),A,B两点间的距离等于O,C两点间的距离.(1)点B的坐标为________________;(2)将这个四边形向下平移25个单位长度后得到四边形A′B′C′O′,请你写出平移后四边形四个顶点的坐标.31. 已知点A(-2,3),B(4,3),C(-1,-3).(1)求A,B两点之间的距离;(2)求点C到x轴的距离;(3)求三角形ABC的面积;(4)观察线段AB与x轴的关系,若点D是线段AB上一点(不与A,B重合),则点D的坐标有什么特点?。

2020年中考数学《平面直角坐标系》专题复习(含答案)

2020年中考数学《平面直角坐标系》专题复习(含答案)

2020年中考数学《平面直角坐标系》专题复习(名师精选全国真题,值得下载练习)一.选择题1.点P(﹣3,2)到x轴的距离为()A.﹣3 B.﹣2 C.3 D.22.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)3.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1 B.﹣4 C.2 D.34.若点P(m﹣3,m﹣1)在第二象限,则整数m为()A.1 B.2 C.3 D.45.已知点A(m,n)在第二象限,则点B(|m|,﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,平面直角坐标系中有点A(0,1)、B(,0).连接AB,以A为圆心,以AB为半径画弧,交y轴于点P1;连接BP1,以B为圆心,以BP1为半径画弧,交x轴于点P2;连接P1P2,以P1为圆心,以P1P2为半径画弧,交y轴于点P3;按照这样的方式不断在坐标轴上确定点P n的位置,那么点P6的坐标是()A.(3,0)B.(9,0)C.(9,0)D.(27,0)7.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°)、B的位置为(4,210°),则C的位置为()A.(﹣2,150°)B.(150°,3)C.(4,150°)D.(3,150°)9.如图:在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…则点P2020的坐标是()A.(673,﹣1)B.(673,1)C.(336,﹣1)D.(336,1)10.如图,动点P第1次从矩形的边上的(0,3)出发,沿所示方向运动,第2次碰到边上的点(3,0),每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第10次碰到矩形的边时,点P的坐标为()A.(5,0)B.(0,3)C.(7,4)D.(8,3)11.在平面直角坐标系xoy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2018的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)12.Rt△ABO与Rt△CBD在平面直角坐标系中的位置如图所示,∠ABO=∠CBD =90°,若点A(2,﹣2),∠CBA=60°,BO=BD,则点C的坐标是()A.(2,2)B.(1,)C.(,1)D.(2,2)二.填空题13.已知点P(m+2,2m﹣1)在y轴上,则m的值是.14.如图,若小红的位置可以用坐标(﹣7,﹣4)表示,小明的位置可以用坐标(﹣5,﹣8)表示,则小亮的位置可以用坐标表示为.15.已知等边三角形ABC在平面直角坐标系中的位置如图所示,C(1,0),点A在y轴的正半轴上,把等边三角形ABC沿x轴正半轴作无滑动的连续翻转,每次翻转120°,经过2018次翻转之后,点C的坐标是.16.点P(x,y)经过某种变换后得到点P′(﹣y+1,x+2),我们把点P′(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2018的坐标为.17.如图,规定列号写在前面,行号写在后面,如用数对的方法,棋盘中“帅”与“卒”的位置可分别表示为(e,4)和(g,3),则“炮”的位置可表示为.18.如图,在△ABC中,A,B两点的坐标分别为A(﹣1,3),B(﹣2,0),C(2,2),则△ABC的面积是.19.如图,将Rt△ABC放置在平面直角坐标系中,C与原点重合,CB在x轴上,若AB=2,点B的坐标为(4,0),则点A的坐标为.20.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题21.已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣4)点,且与x轴平行的直线上.22.已知A(o,a),B(b,o),C(3,c)且|a﹣2|+(b﹣3)2+=0 (1)求a,b,c的值(2)若第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,说明理由.23.如图,在平面直角坐标系中,A(a,0)、B(b,0)、C(﹣1,2),且|2a+b+1|+(a+2b﹣4)2=0.(1)求A、B两点的坐标;(2)在y轴上存在点M,使S△COM=S△ABC,求点M的坐标.24.△ABC的边AC在正方形网格中的位置如图所示,已知每个小正方形的边长为1,顶点A坐标为(﹣2,﹣2).(1)请在网格图中建立并画出平面直角坐标系;(2)直接写出点C的坐标为;(3)若点B的坐标为(3,﹣2),请在图中标出点B并画出△ABC;(4)求△ABC的面积.25.如图,在平面直角坐标系xOy中,点A,B分别为x轴正半轴和y轴正半轴上的两个定点,点C为x轴上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E,直接回答∠BEC的度数及点C所在的相应位置.参考答案一.选择题1.解:点P(﹣3,2)到x轴的距离是该点纵坐标的绝对值,即2,故选:D.2.解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.3.解:∵点A(m+1,﹣2)和点B(3,m﹣1),且直线AB∥x轴,∴﹣2=m﹣1∴m=﹣1故选:A.4.解:∵点在第二象限,∴横坐标是负数,纵坐标是正数,即m﹣3<0且m﹣1>0,解不等式得1<m<3,在这个范围内的整数只有2,故选:B.5.解:∵点A(m,n)在第二象限,∴m<0,n>0,则可得|m|>0,﹣n<0,∵点B的坐标为(|m|,﹣n),∴点B在第四象限.故选:D.6.解:由题意知OA=1,OB=,则AB=AP1==2,∴点P1(0,3),∵BP1=BP2==2,∴点P2(3,0),∵P1P3=P1P2==6,∴点P3(0,9),同理可得P(9,0),P5(0,27),∴点P6的坐标是(27,0).故选:D.7.解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.8.解:由题意,点C的位置为(4,150°).故选:C.9.解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).∴点P2020的坐标是(673,﹣1),故选:A.10.解:如图,动点P第1次在矩形的边上的点(0,3)第2次碰到边上的点(3,0),…每反射6次一个循环,所以10÷6=1…4.点P第10次碰到矩形的边时,点P的坐标为(8,3).故选:D.11.解:由题可得:A1(2,4),A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),A6(﹣3,3),…,依此类推,每4个点为一个循环组依次循环,∵2018÷4=504余2,∴点A2018的坐标与A2的坐标相同,为(﹣3,3),故选:A.12.解:如图,过点C作CE垂直x轴于点E.∵A(2,﹣2),∴OB=2,AB=2,∵∠ABO=∠CBD=90°,∴∠DBO=∠CBA=60°,∵BO=BD,∴∠D=DOB=60°,DO=DB=BO=2,∴∠BCD=30°,CD=2BD=4,∴CO=CD﹣OD=4﹣2=2,∵∠COE=90°﹣∠COy=90°﹣60°=30°∴CE=OC=1,OE=,∴C(,1).故选:C.二.填空题(共8小题)13.解:∵点P(m+2,2m﹣1)在y轴上,∴m+2=0,解得:m=﹣2.故答案为:﹣2.14.解:如图,小亮的位置可以用坐标表示成(﹣3,﹣6).故答案为:(﹣3,﹣6).15.解:第一次点C坐标(1,0),第二次点C坐标(4,),第三次点C坐标(7,0),第四次点C坐标(7,0),第五次点C坐标(10,),第六次点C坐标(13,0),…根据这个规律2018=672×3+2,所以经过2018次翻转之后,点C的横坐标为672×3×2+4=4036,纵坐标为,所以点C坐标是(4036,).故答案为:(4036,).16.解:P1坐标为(2,0),则P2坐标为(1,4),P3坐标为(﹣3,3),P4坐标为(﹣2,﹣1),P5坐标为(2,0),∴P n的坐标为(2,0),(1,4),(﹣3,3),(﹣2,﹣1)循环,∵2018=2016+2=4×504+2,∴P2018坐标与P2点重合,故答案为(1,4).17.解:根据题意知“炮”的位置可表示为(h,4),故答案为:(h,4).18.解:△ABC的面积=3×4﹣×4×2﹣×3×1﹣×1×3=12﹣4﹣1.5﹣1.5=5.故答案为5.19.解:作AC⊥OB于C,如图所示:∵点B的坐标为(4,0),∴OB=4,∵∠OAB=90°,AB=2,∴OA==2,∵△OAB的面积=OB•AC=OA•AB,∴AC===,∴OC==3,∴A(3,);故答案为:(3,).20.解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,∴点A4n﹣1的坐标为(﹣n,n)(n为正整数).又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).三.解答题(共5小题)21.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1﹣(2m+4)=3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(3)令m﹣1=﹣4,解得m=﹣3.所以P点的坐标为(﹣2,﹣4).22.解:(1)根据题意得:a﹣2=0,b﹣3=0 c﹣4=0得a=2,b=3,c=4(2)S ABOP=S△AOB+S△AOP=×2×3+×2×(﹣m)=3﹣m;(3)存在;理由如下:,∴3﹣m=12,∴m=﹣9,∴.23.解:(1)∵|2a+b+1|+(a+2b﹣4)2=0,且|2a+b+1|≥0,(a+2b﹣4)2≥0,∴,解得:,∴A、B两点的坐标为A(﹣2,0)、B(3,0).(2)过C作CD⊥x轴于点D,CE⊥y轴于点E,则CD=2,CE=1,∵A(﹣2,0)、B(3,0),∴AB=5,设点M的坐标为M(0,m),依题意得:×1×|m|=××5×2,解得m=±5,∴点M的坐标为(0,5)或(0,﹣5).24.解:(1)如图所示;(2)C的坐标为(0,2);故答案为:(0,2);(3)如图所示,△ABC即为所求;(4)∵A坐标为(﹣2,﹣2),C的坐标为(2,0),B的坐标为(3,﹣2),∴S△ABC=×5×4=10.25.解:分三种情况:(1)如图①当点C在x轴负半轴上时,由题意可知:∠1+∠2+∠3+∠4=90°,∵BE、CE分别平分∠OBC与∠ACB,∴2∠1+2∠3=90°,∴∠1+∠3=45°,∴∠BEC=135°.即:当点C在x轴负半轴上时,∠BEC=135°.(2)当点C在OA的延长线上时,如图②所示,与情况(1)同法可得:∠BEC=135°.(3)当点C在线段OA上(且与点O,A不重合)时,如图③所示:∵∠1+∠2=∠3+∠4+90°,∴2∠1=2∠4+90°,∴∠1=∠4+45°,∠1﹣∠4=45°即:∠BEC=45°,故:当点C在线段OA上(且与点O,A不重合)时,∠BEC=45°。

中考数学总复习《平面直角坐标系》专题训练(附带答案)

中考数学总复习《平面直角坐标系》专题训练(附带答案)

中考数学总复习《平面直角坐标系》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点A到x轴的距离为2,到y轴的距离为5,且点A在第四象限,则点A的坐标是()A.(2,−5)B.(5,−2)C.(−2,5)D.(−5,2)2.若点P(m+5,m−3)在x轴上,则点P的坐标为()A.(8,0)B.(0,−8)C.(4,0)D.(0,−4)3.在平面直角坐标系中,若直线AB经过点(3,−4)和(−3,4),则直线AB() A.平行于x轴B.平行于y轴C.经过原点D.无法确定4.在平面直角坐标系中,将点P(−1,5)绕原点O顺时针旋转90°得到P′,则点P′的坐标为()A.(1,5)B.(5,1)C.(−1,−5)D.(−5,−1) 5.点P坐标为(6−3a,a+2),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,−3)C.(3,3)或(−6,6)D.(3,−3)或(6,−6)6.在平面直角坐标系中,点A(3,4),B(−1,b),当线段AB最短时,b的值为()A.5B.4C.3D.07.如图,雷达探测器测得六个目标A,B,C,D,E,F,目标E,F的位置分别表示为E(3,330°),F(2,30°)按照此方法,目标A,B,C,D的位置表示不正确的是()A.A(5,60°)B.B(3,120°)C.C(3,210°)D.D(5,270°) 8.如图A1(1,0),A2(1,1),A3(−1,1),A4(−1,−1),A5(2,−1)…按此规律,点A2022的坐标为()A.(505,505)B.(−506,506)C.(506,506)D.(−505,−505)二、填空题9.电影票上“10排8号”记作(10,8),那么(15,9)表示的意义是10.已知A(a,−4)与B(3,4)两点关于x轴对称,则a的值为11.已知点A(m+1,2)和点B(3,m−1),若直线AB∥x轴,则A的坐标为.12.如图,在平面直角坐标系xOy中,Rt△OAB的斜边OB在x轴上∠ABO=30°,若点A的横坐标为1,则点B的坐标为.13.如图,△ABC为等腰直角三角形∠ABC=90°,点B、C在坐标轴上,已知点A坐标为(3,4),则△ABC的面积为.14.在平面直角坐标系中,用大小、形状完全相同的长方形纸片摆放成如图所示的图案,已知点A的坐标为(−1,3),则点B的坐标为.15.如图所示,在平面直角坐标系xOy中,点A的坐标是(2,0),点B的坐标是(0,4),点C 在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB全等.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2023次运动后,动点P的坐标是.三、解答题17.为了更好的开展古树名木的系统保护工作,某公园对园内的4棵百年古树都利用坐标确定了位置,并且定期巡视.(1)请在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A,B的位置分别表示为A(2,1),B(5,5);(2)在(1)建立的平面直角坐标系xOy中.①表示古树C的位置的坐标为______,并在网格中标出古树E(4,−1)的位置;②现需要在沿y轴的道路某处P点向古树A,B修建两条步道,使得点P到古树A,B的距离和最小.请在网格中画出点P(保留作图痕迹,不写作图过程);该距离和的最小值为______.18.已知平面直角坐标系中有一点M(m−1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到两坐标轴的距离相等时,求点M的坐标.19.如图,已知△ABC的三个顶点的坐标分别为A(−6,0),B(−2,3),C(−1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(2)在格点图内,若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.20.如图,在直角坐标系中A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中描点,画出△ABC;并作出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积;(3)设点P在y轴上,且△ABP与△ABC的面积相等,直接写出点P的坐标.21.如图,已知△ABC的顶点分别为A(−2,2),B(−4,5),C(−5,1).(1)作出△ABC关于x轴对称的图形△A1B1C1(2)写出点C1的坐标(3)在x轴上找一点P,使得AP+CP最小(画出图形,找到点P的位置).22.如图,在平面直角坐标系中,设一点M自P0(1,0)处向上运动1个单位长度至P1(1,1),然后向左运动2个单位长度至P2处,再向下运动3个单位长度至P3处,再向右运动4个单位长度至P4处,再向上运动5个单位长度至P5处…如此继续运动下去,设P n(x n,y n),n=1,2,3,…….(1)计算x1+x2+x3+x4.(2)计算x1+x2+⋅⋅⋅+x2023+x2024的值.参考答案1.解:设A(x,y)∵点A到x轴的距离为2,到y轴的距离为5∴x=±5,y=±2∵点A在第四象限∴x>0,y<0∴x=5,y=−2∴A(5,−2)故选:B.2.解:依题意得:m−3=0,即:m=3∴m+5=3+5=8∴点P的坐标为(8,0)故选A.3.解:点(3,−4)和(−3,4)的横纵坐标互为相反数故点(3,−4)和(−3,4)关于原点对称故直线AB经过原点.故选:C.4.解:如图,过P、P′分别向x轴作垂交于H、K根据旋转的定义可知OP=OP′,∠POP′=90°∴∠POH+∠P′OK=90°,∠P′OK+∠P′=90°∴∠POH=∠P′∴∠PHO=∠P′KO=90°∴△PHO≌△P′OK(AAS).∴PH=OK=5,OH=P′K=1即P′(5,1).故选B.5.解:由点(6−3a,a+2)到两坐标轴的距离相等,得6−3a=a+2,或6−3a+a+2=0解得a=1,或a=4则该点的坐标为(3,3)或(−6,6)故选:C.6.解:由题意知,点B(−1,b)在直线x=−1上运动∴当AB⊥直线x=−1时,线段AB最短此时b=4.故选:B.7.解:∴E(3,330°),F(2,30°)∴A(5,60°),B(3,120°),C(4,210°),D(5,270°)故选:C8.解:由题可知第一象限的点:A2,A6,A10,……角标除以4余数为2;第二象限的点:A3,A7,A11……角标除以4余数为3;第三象限的点:A4,A8,A12……角标除以4余数为0;第四象限的点:A5,A9,A13……角标除以4余数为1;由上规律可知:2022÷4=505⋯2∴点A2022在第一象限.观察图形,得:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),……∴第一象限点的横纵坐标数字隐含规律:点的横纵坐标=n+2(n为角标)4∴点A2022的坐标为(506,506).故选:C.9.解:∴“10排8号”记为(10,8)∴(15,9)表示的意义是15排9号.故答案为:15排9号.10.解:∴A(a,−4)与B(3,4)两点关于x轴对称∴a=3故答案为:3.11.解:∴直线AB∥x轴∴m−1=2∴m=3∴m+1=4即点A坐标:A(4,2)故答案为:(4,2).12.解:过点A作x轴的垂线,垂足为点C ∴Rt△OAB中∠ABO=30°∴∠AOB=60°∴AC⊥OB∴∠OAC=30°∴点A的横坐标为1∴OC=1∴OA=2OC=2∴∠ABO=30°∴OB=2OA=4∴点B的坐标为(4,0)故答案为:(4,0).13.解:如图所示,过点A作AD⊥y轴于点D∴△ABC是等腰直角三角形∴AB =BC ,∠ABC=90°∴∠ABD =90°−∠OBC =∠OCB又∠ADB =∠BOC =90°∴△ADB ≌△BOC (AAS)∴AD =OB,DB =OC∴点A 坐标为(3,4)∴AD =OB =3∴S △ABC =S 梯形−S △ABD −S △OBC =12(1+3)×4−12×1×3−12×1×3=5 故答案为:5.14.解:设每个长方形纸片的宽为x ,长为y由题意可得:{2y −x −y =12x +y =3解得{x =23y =53∴点B 的到x 轴的距离为x +y =73,到y 轴的距离为2y −x =83 ∴点B 的坐标为(−83,73). 故答案为:(−83,73).15.解:如图(1)所示当点C 在x 轴负半轴上,点D 在y 轴负半轴上时若△AOB ≌△COD ,则CO =AO =2∴点C 的坐标为(−2,0);若△AOB ≌△DOC ,则OC =OB =4∴点C 的坐标为(−4,0);如图(2)所示当点C在x轴负半轴上,点D在y轴正半轴上时若△AOB≌△DOC,则CO=BO=4∴点C的坐标为(−4,0).若△AOB≌△COD,则CO=AO=2∴点C的坐标为(−2,0);如图(3)所示当点C在x轴正半轴上,点D在y轴正半轴上时同理可得C的坐标为(4,0);如图(4)所示当点C在x轴正半轴上,点D在y轴负半轴上时,同理可得点C的坐标为(4,0);综上所述,点C的坐标为(−4,0)或(−2,0)或(4,0)故答案为:(−4,0)或(−2,0)或(4,0).16.解:由图可得,动点P的横坐标和运动的次数相同,纵坐标以1,0,2,0为一个循环组依次循环∴经过第2023次运动后,动点P的横坐标为2023∴2023÷4=505 (3)∴经过第2023次运动后,动点P的纵坐标为2∴动点P的坐标是(2023,2)故答案为:(2023,2).17.解:(1)如图所示(2)①点C(−2,2),点E(4,−1)的位置如图所示;②过点A作关于y轴的对称点为A′,则A′(−2,1),连接A′B与y轴交于点P,此时PA+PB最小等于A′B的长度;A′B=√[5−(−2)]2+(5−1)2=√72+42=√65∴点P到古树A,B的距离和的最小值为√65;故答案为:√6518.解:(1)∵|2m+3|=1∴2m+3=1或2m+3=−1解得:m=−1或m=−2∴点M的坐标是(−2,1)或(−3,−1);(2)∵|m−1|=|2m+3|∴m−1=2m+3或m−1=−2m−3解得:m=−4或m=−23∴点M的坐标是:(−5,−5)或(−53,5 3 ).19.(1)解:△A′B′C′如图所示∴A′(0,−6);(2)解:如图平行四边形A′B′C′D′即为所求:根据平行四边形性质可得D′(3,−5)故答案为:D′(3,−5).20.(1)解:如图所示,△ABC即为所求;△A1B1C1即为所求.(2)S△ABC=3×4−12×1×2−12×2×4−12×2×3=4;(3)当点P在y轴上时,△ABP的面积=12AP×|x B|=4即12AP×2=4解得:AP=4.∴点P的坐标为(0,5)或(0,−3).21.解:(1)如图1所示,△A1B1C1即为所求;(2)点C1的坐标为(−5,−1);(3)如图2所示,点P即为所求.22.(1)解:由题意可知P1(1,1),P2(−1,1),P3(−1,−2),P4(3,−2),P5(3,3),P6(−3,3),P7(−3,−4),P8(5,−4),……于是得到x1,x2,x3,x4的值为1,-1,-1,3∴x1+x2+x3+x4=1−1−1+3=2(2)解:∴x5,x6,x7,x8的值分别为3,-3,-3,5∴x5+x6+x7+x8=3−3−3+5=2;∴x1+x2+x3+x4=1−1−1+3=2x5+x6+x7+x8=3−3−3+5=2…x2021+x2022+x2023+x2024=2∴2024÷4=506∴x1220232024。

2021年中考一轮复习数学九年级《平面直角坐标系》培优提升专题训练(附答案)

2021年中考一轮复习数学九年级《平面直角坐标系》培优提升专题训练(附答案)

2021年九年级数学中考一轮复习《平面直角坐标系》培优提升专题训练(附答案)1.点A1,A2,A3,…,A n(n为正整数)都在数轴上.点A1在原点O的左边,且A1O=1;点A2在点A1的右边,且A2A1=2;点A3在点A2的左边,且A3A2=3;点A4在点A3的右边,且A4A3=4;…,依照上述规律,点A2020,A2021所表示的数分别为()A.2020,﹣2021B.﹣2020,2021C.1010,﹣1011D.1010,﹣1010 2.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动{即(0,0)﹣(0,1)﹣(1,1)﹣(1,0)…},且每秒移动一个单位,那么第35秒时质点所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)3.平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)4.平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2021的坐标是()A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)5.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2022的纵坐标为()A.0B.﹣3×()2021C.(2)2022D.3×()20216.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,,[a]表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2019棵树种植点的坐标为()A.(5,2019)B.(6,2020)C.(3,403)D.(4,404)7.阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=,y=.如图,已知点O为坐标原点,点A(﹣3,0),⊙O经过点A,点B为弦P A的中点.若点P(a,b),则有a,b满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是()A.m2+n2=9B.()2+()2=9C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=98.已知点P(3﹣m,m)在第二象限,则m的取值范围是.9.点P(x﹣2,x+3)在第一象限,则x的取值范围是.10.若点A(x,2)在第二象限,则x的取值范围是.11.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P所在位置的坐标是.12.如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是.13.如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,若已知点A(3,0),B(0,4),则点A99的坐标为.14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为.15.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q 的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M 的坐标为.16.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.17.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=.18.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到A101的移动方向.19.如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标;(2)顺次连接(1)中的所有点,得到的图形是图形(填“中心对称”、“旋转对称”、“轴对称”);(3)指出(1)中关于点P成中心对称的点.20.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.21.如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题:(1)图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程)(2)在图中建立适当的直角坐标系,写出△DEF各顶点的坐标.22.如图,在直角坐标系中,点A的坐标为(﹣4,0),点C为y轴上一动点,连接AC,过点C作CB⊥AC,交x轴于B.(1)当点B坐标为(1,0)时,求点C的坐标;(2)如果sin A和cos A是关于x的一元二次方程x2+ax+b=0的两个实数根,过原点O 作OD⊥AC,垂足为D,且点D的纵坐标为a2,求b的值.参考答案1.解:根据题意分析可得:点A1,A2,A3,…,A n表示的数为﹣1,1,﹣2,2,﹣3,3,…依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;当n为偶数时,A n+1=﹣A n﹣1;所以点A2020表示的数为:2020÷2=1010,A2021表示的数为:﹣A2020﹣1=﹣1010﹣1=﹣1011.故选:C.2.解:由题意可知质点移动的速度是1个单位长度/每秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(5,0)用25+10=35秒.故第35秒时质点到达的位置为(5,0),故选:B.3.解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.4.解:设P1(x,y),∵点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,∴=1,=﹣1,解得x=2,y=﹣4,∴P1(2,﹣4).同理可得,P1(2,﹣4),P2(﹣4,2),P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),P7(2,﹣4),…,…,∴每6个数循环一次.∴点P2021的坐标是(0,0).故选:A.5.解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2022=3×()2021,而2022=4×505+2,∴点A2022在y轴的正半轴上,∴点A2022的纵坐标为:3×()2021.故选:D.6.解:∵当x1=1,y1=1时,P1=(1,1),∴x2﹣x1=1﹣5[]+5[],x3﹣x2=1﹣5[]+5[],x4﹣x3=1﹣5[]+5[],∴当2≤k≤5时,P2,P3,P4,P5的坐标分别为(2,1)、(3,1)、(4,1)、(5,1);当k=6时,P6=(1,2),当7≤k≤10时,P7,P8,P9,P10的坐标分别为(2,2)、(3,2)、(4,2)、(5,2);当k=11时,P11=(1,3),当12≤k≤15时,P12,P13,P14,P15的坐标分别为(2,3)、(3,3)、(4,3)、(5,3)…通过以上数据可以得出:当k=1+5x时,P k的坐标为(1,x+1);而后面四个点的纵坐标均为x+1,横坐标则分别为2,3,4,5.因为2019=1+5×403+3,所以P2019的横坐标为4,纵坐标为404.故选:D.7.解:∵点A(﹣3,0),点P(a,b),点B(m,n)为弦P A的中点,∴m=,n=.∴a=2m+3,b=2n.又a,b满足等式:a2+b2=9,∴(2m+3)2+4n2=9.故选:D.8.解:∵点P(3﹣m,m)在第二象限,∴解得:m>3;故答案为:m>3.9.解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.10.解:由点A(x,2)在第二象限,得x<0,故答案为:x<0.11.解:由题意分析可得,动点P第8=2×4秒运动到(2,0),动点P第24=4×6秒运动到(4,0),动点P第48=6×8秒运动到(6,0),以此类推,动点P第2n(2n+2)秒运动到(2n,0),∴动点P第2024=44×46秒运动到(44,0),2068﹣2024=44,∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位,∴第2068秒点P所在位置的坐标是(45,43),故答案为:(45,43).12.解:∵点A1(0,2),∴第1个等腰直角三角形的面积==2,∵A2(6,0),∴第2个等腰直角三角形的腰长为=2,∴第2个等腰直角三角形的面积==4=22,∵A4(10,4),∴第3个等腰直角三角形的腰长为10﹣6=4,∴第3个等腰直角三角形的面积==8=23,…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).13.解:∵∠AOB=90°,点A(3,0),B(0,4),根据勾股定理,得AB=5,根据旋转可知:∴OA+AB1+B1C2=3+5+4=12,所以点B2(12,4),A1(12,3);继续旋转得,B4(2×12,4),A3(24,3);B6(3×12,4),A5(36,3)…发现规律:B100(50×12,4),A99(600,3).所以点A99的坐标为(600,3).故答案为(600,3).14.解:“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).15.解:设M(x,y),由“实际距离”的定义可知:点M只能在ECFG区域内,﹣1<x<5,﹣5<y<1,又∵M到A,B,C距离相等,∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②要将|x﹣3|与|y+3|中绝对值去掉,需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,由图可知M只能在矩形AENK中,故x<3,y>﹣3,则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得,x=1,y=﹣2,则M(1,﹣2)故答案为:(1,﹣2).16.解:∵用(1,4)表示一只眼,用(2,2)表示嘴,∴另一只眼的位置可以表示成:(3,4)或(1,0).故答案为:(3,4)或(1,0).17.解:由题意:∵=(2,3),=(4,m),且∥,∴2m=12,∴m=6,故答案为6.18.解:(1)A1(0,1),A3(1,0),A12(6,0);(2)当n=1时,A4(2,0),当n=2时,A8(4,0),当n=3时,A12(6,0),所以A4n(2n,0);(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101的(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.19.解:(1)(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)轴对称;(3)(0,0)和(4,2);(0,2)和(4,0).20.解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5).(2)图中△ABC面积=3×3﹣(1×3+1×3+2×2)=4,所以平行四边形面积=2×△ABC面积=8.21.解:(1)答案不唯一,只要合理即可得(2分).如:将△ABC向右平移3个格得到△A1B1C1,再将△A1B1C1以点C1为旋转中心,按逆时针方向旋转90°就得到了△DEF;(2)答案不唯一,只要正确建立直角坐标系并正确写出各点坐标,即可得(3分).如:方法一:如图①建立直角坐标系,则点D(0,0)、E(2,﹣1)、F(2,3);方法二:如图②建立直角坐标系,则点D(﹣2,0)、E(0,﹣1)、F(0,3);方法三:如图③建立直角坐标系,则点D(﹣2,﹣3)、E(0,﹣4)、F(0,0);方法四:如图④建立直角坐标系,则点D(﹣2,1)、E(0,0)、F(0,4).22.解:(1)在Rt△AOC中,AO2+OC2=AC2,∴42+OC2=AC2.①在Rt△BOC中,BO2+OC2=BC2,∴12+OC2=BC2.②在Rt△ABC中,AC2+BC2=AB2,∴AC2+BC2=52.③由①、②两式可得AC2﹣BC2=15,与第③式联立可解得BC=,AC=2.∴OC=2.∴点C的坐标为(0,2).(2)∵sin A和cos A是关于x的一元二次方程x2+ax+b=0的两个实数根,∴sin A+cos A=﹣a,sin A•cos A=b.又∵sin A2+cos A2=1,则sin A2+cos A2=(sin A+cos A)2﹣2sin A•cos A=a2﹣2b=1.∴a2=2b+1①,在Rt△ADE中,sin A=,在Rt△AOD中,cos A=,∴sin A•cos A=•===b,∴a2=4b②,由①②,可得b=.。

2021年九年级中考复习 数学考点专项训练——专题七十:平面直角坐标系

2021年九年级中考复习  数学考点专项训练——专题七十:平面直角坐标系

2021年九年级中考复习数学考点专项训练——专题七十:平面直角坐标系一、选择题1.在平面直角坐标系中,若点A (a ,-b )在第一象限内,则点B (a ,b )所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限2.在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象D.第四象限3.在平面直角坐标系中点P ()11-4+m ,一定在()A.第一象限B.第二象限C.第三象限D.第四象限.4.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,那么图形与原图形相比()A.向上平移了5个单位长度B.向下平移了5个单位长度C.向左平移了5个单位长度D.向右平移了5个单位长度5.在平面直角坐标系中,点A'(2,-3)可以由点A (-2,3)通过两次平移得到,正确的是()A .先向左平移4个单位长度,再向上平移6个单位长度B .先向右平移4个单位长度,再向上平移6个单位长度C .先向左平移4个单位长度,再向下平移6个单位长度D .先向右平移4个单位长度,再向下平移6个单位长度6.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为()A .(2,3)B .(-6,3)C .(-2,7)D .(-2,-1)7.平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为()A.(-2,-3)B.(2,-3)C.(-3,2)D.(3,-2)8.若点()y x ,关于y 轴的对称点在第二象限,则x 和y 的符号是()9.若点P ()1,m 在第二象限内,则点Q ()0,-m 在()A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上10.在平面直角坐标系xOy 中,若点A 的坐标为(-3,3),点B 的坐标为(2,0),则三角形ABO 的面积为()A.15 B.7.5 C.6 D.311.要使两点()111,y x P 、()222,y x P 都在平行于y 轴的某一直线上,那么必须满足()A.21x x = B.21y y = C.21y x = D.21y y =12.点A 的位置如图所示,则关于点A 的位置下列说法中正确的是()A.距点O 4km 处B.北偏东40°方向上4km 处C.在点O 北偏东50°方向上4km 处D.在点O 北偏东40°方向上4km 处13.如图是小刚画的一张脸,如果用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示为()A.(2,1)B.(1,2)C.(2,2)D.(2,3)14.如图,将三角形PQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是()。

九年级中考数学复习《平面直角坐标系》专项练习题-附带答案

九年级中考数学复习《平面直角坐标系》专项练习题-附带答案

九年级中考数学复习《平面直角坐标系》专项练习题-附带答案一、单选题1.在平面直角坐标系中,点P(3,﹣2)在第()象限A.一B.二C.三D.四2.在平面直角坐标系中,已知线段PQ=4,且PQ⊥x轴,若点P的坐标为(5,−2),则点Q的坐标为()A.(5,2)B.(9,−2)C.(5,2)或(5,−6)D.(9,−2)或(1,−2)3.在平面直角坐标系中,点P(m﹣2,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5 B.6 C.7 D.84.在平面直角坐标系中,点A,B,C,D,E,F的位置如图所示,如果点E的坐标是(﹣3,0),点F的坐标是(3,0),则在第三象限上的点是()A.点A B.点B C.点C D.点D5.图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,−4),A(−1,2),则点B的坐标为()A.(−2,−3)B.(−4,−1)C.(−4,−2)D.(−2,−2)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)7.如图,在平面直角坐标系xOy中,四边形ABCO是正方形,已知点A的坐标为(2,1),则点C的坐标为()A.(−1,2)B.(1,−2)C.(−1,√5)D.(−2,1)8.如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A..(1,4)B..(1,3)C..(2,4)D..(2,3)二、填空题9.点A,点B同在平行于x轴的直线上,则点A与点B的坐标相等.10.已知点P(x﹣3,2x﹣4)在纵轴上,则x的值是.11.如果将点A(-3,-1)向右平移2个单位长度,再向下平移3个单位得到点B,那么点B的坐标是.12.将点A(3,-4)沿X轴负方向平移3个单位长度,得到A′点的坐标为,再将A′沿Y轴正方向平移4个单位长度,得到A″点的坐标为13.北京中轴线南起永定门,北至钟鼓楼,全长7.8千米.如图是利用平面直角坐标系画出的中轴线及其沿线部分地点分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示天安门的点的坐标为(0,−1),表示王府井的点的坐标为(1,−1),则表示永定门的点的坐标为.三、解答题14.在雷达探测区域,可以建立平面直角坐标系表示位置.在某次行动中,当我两架飞机在A(-1,2)与B(3,2)位置时,可疑飞机在(-1,-3)位置,你能找到这个直角坐标系的横、纵坐标的位置吗?把它们表示出来并确定可疑飞机的位置,说说你的做法.15.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?16.如图,已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.17.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.18.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图.(1)填写下列各点的坐标:A4(,),A8(,);(2)点A4n﹣1的坐标(n是正整数)为(3)指出蚂蚁从点A2013到点A2014的移动方向.参考答案1.D2.C3.D4.C5.C6.D7.A8.A9.纵10.311.(-1,-4)12.(0,-4);(0,0)13.(0,−7)14.解:能.如下图,先把AB四等分,然后过靠近A点的分点M作AB的垂线即为y轴,以AM为单位长度沿y轴向下2个单位即为O点,过点O作x轴垂直于y轴,然后描出敌机位置为点N.15.解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).16.(1)解:∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)∴平移规律为:向右平移6个单位,向上平移4个单.如图所示:(2)解:A′(2,3),B′(1,0),C′(5,1).17.(1)解:由图书馆、行政楼的坐标分别为(-3,2),(2,3)可找到O(0,0)点,从而建立平面直角坐标系,如下图;(2)解: 根据(1)中的平面直角坐标系,可得其他四个地点的坐标.故实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)解: 根据平面直角坐标系,P(-1,-3)的位置如下图18.【解答】解:(1)由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A4(2,0),A8(4,0);故答案为:2,0;4,0;(2)根据(1)OA4n=4n÷2=2n,∴点A4n﹣1的坐标(2n﹣1,0);(3)∵2013÷4=503…1,∴从点A2013到点A2014的移动方向与从点A1到A2的方向一致,为→。

2021年中考数学总复习突破-平面直角坐标系(原卷版)

2021年中考数学总复习突破-平面直角坐标系(原卷版)

2021年数学中考一轮单元总复习达标精准突破(原卷版)平面直角坐标系单元知识点呈现知识点1:认识平面直角坐标系1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

知识点2:坐标方法的简单应用1.用坐标表示地理位置;2.用坐标表示平移。

重点及方法解读1.平面直角坐标系中各象限点的坐标特点①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0。

2.平面直角坐标系中坐标轴上点的坐标特点①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0。

3.平面直角坐标系中对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

4.平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。

2021年九年级中考数学二轮复习微专题靶向专题提升精准练(平面直角坐标系中的面积问题微专题)

2021年九年级中考数学二轮复习微专题靶向专题提升精准练(平面直角坐标系中的面积问题微专题)

2021年中考数学二轮复习微专题靶向专题提升精准练(平面直角坐标系中的面积问题微专题)一.技巧点拨:1.一边在坐标轴上(或平行于坐标轴)的三角形的面积的计算例1. 如图,已知点A(2,0)、B(5,0)、C(3,3)三点,则△ABC的面积是 .2.三边都不在坐标轴上(或都不平行于坐标轴)的三角形的面积的计算例2.如图,在平面直角坐标系中,点A(0,3),B(1,1),C(3,4),则△ABC的面积是________.二.能力过关练习1.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么S△ABC为.2.一次函数y1=mx-2和y2=nx+1的图象都经过点A(2,3),且与y轴分别交于B,C两点,则△ABC的面积是.3.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则四边形ABCO的面积为.4.已知直线l1:y=2x+4与直线l2:y=kx+b(k≠0)交于y轴上一点,且直线l1、l2与x轴围成的三角形的面积为2,则k的值为 .5.如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣34x上,则三角形ABO扫过的面积为 .6.如图,已知反比例函数y =k x-的图象上有三点A(1,4),B(2,m),C(4,n),则△ABC 的面积为________.7. 如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B.若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为________.8. 如图④,AB ∥y 轴,交反比例函数6y x=- (x >0)的图象于点B ,BC ∥x 轴交AO 的延长线于点C ,若k =2,则S △ABC =__________;9.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.10.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.(1)直接写出点C,D的坐标,求出四边形ABDC的面积;(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由.11.如图,一次函数y=kx+b的图象经过点A(4,0),直线y=-3x+3与x轴交于点B,与y轴交于点D,且两直线交于点C(2,m).(1)求m的值及一次函数的表达式;(2)求△ACD的面积.12.如图,在平面直角坐标系中,抛物线y=x2+4x-5交y轴于点A,过点A作AD∥x轴交抛物线于点D.点E是抛物线上一点,点E关于x轴的对称点在直线AD上,求△ADE的面积.13.将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.14.已知抛物线L:y=ax2+bx+3与x轴交于A(-1,0)、 B(3,0)两点,与y轴交于点C,顶点为D.(1)求抛物线L的表达式及顶点D的坐标;(2)如图,连接CD、BD,求四边形OBDC的面积.15.如图,抛物线y=-x2+3与x轴交于A,B两点,与直线y=-x+b相交于B,C两点,连接A,C两点.(1)写出直线BC的表达式.(2)求△ABC的面积.16.已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连接BC,且tan ∠CBD=4,如图所示.3(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连接FB,FC,求△BCF的面积的最大值;②连接PB,求3PC+PB的最小值.5。

2020-2021中考数学备考之初中数学 旋转压轴突破训练∶培优 易错 难题篇

2020-2021中考数学备考之初中数学 旋转压轴突破训练∶培优 易错 难题篇

2020-2021中考数学备考之初中数学 旋转压轴突破训练∶培优 易错 难题篇一、旋转1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。

(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。

【答案】(1)1302α︒-(2)见解析(3)30α=︒【解析】解:(1)1302α︒-。

(2)△ABE 为等边三角形。

证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。

又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。

在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。

∴11BAD CAD BAC 22α∠=∠=∠=。

∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。

∴BEC BAD ∠=∠。

在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。

∴AB=BE 。

∴△ABE 为等边三角形。

(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。

又∵∠DEC=45°,∴△DCE 为等腰直角三角形。

∴DC=CE=BC 。

∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。

而1EBC 30152α∠=︒-=︒。

∴30α=︒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021中考数学培优复习专题突破平面直角坐标系专项一.选择题1.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q不在第()象限.A.一B.二C.三D.四2.在平面直角坐标系中,若点P与点Q的横坐标相同,而纵坐标不同,则直线PQ与x轴的关系是()A.平行B.垂直C.重合D.以上都不对3.下列在具体情境中不能确定平面内位置的是()A.东经37°,北纬21°B.电影院某放映厅7排3号C.芝罘区南大街D.烟台山灯塔北偏东60°方向,距离灯塔3千米4.若点A(a,b)在第四象限,则点B(0,a)在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上5.点Q(3m,2m﹣2)在x轴上,则m的值为()A.0B.1C.﹣1D.﹣36.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是()A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列7.若点A的坐标是(2,﹣1),AB=4,且AB平行于y轴,则点B的坐标为()A.(2,﹣5)B.(6,﹣1)或(﹣2,﹣1)C.(2,3)D.(2,3)或(2,﹣5)8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(2,a)在第三象限C.若点A、B的坐标分别是(2,﹣2)、(2,2),则直线AB∥x轴D.若ab>0,则点P(a,b)在第一或第三象限9.平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.3,(3,2)10.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(a,b),则点A2020的坐标为()A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)二.填空题11.若点P(2﹣a,2a+5)到两坐标轴的距离相等,则a的值为.12.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB 长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.13.如果将电影票上“8排5号”简记为(8,5),那么“7排6号”可表示为.14.已知点A(3,﹣2),直线AB∥y轴,且AB=6则点B的坐标为.15.在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,A n,若点A的坐标为(a,b),则点A2021的坐标为.三.解答题16.对于二元一次方程3x+2y=1,写出它的5个解.分别以每一个解中的x值为点的横坐标、y值为点的纵坐标,在直角坐标系中描出这些点,你发现这些点的位置的分布有什么规律?17.在平面直角坐标系xOy中,对任意两点P1(x1,y1),P2(x2,y2),如果|x1﹣x2|+|y1﹣y2|=d,则称P1与P2互为“d﹣距点”.例如:点P1(3,6),p2(1,7),由d=|3﹣1|+|6﹣7|=3,可得P1与P2互为“3﹣距点”.(1)在点D(﹣2,﹣2),E(5,﹣1),F(0,4)中,原点O的“4﹣距点”是(填字母);(2)已知点A(2,1),点B(0,b),过点B平行于x轴的直线l.①当b=3时,直线l上的点A的“2﹣距点”的坐标为;②若直线l上存在点A的“2﹣距点”,在坐标系中画出这些A的“2﹣距点”组成的图形,并写出b的取值范围.18.已知M(3|a|﹣9,4﹣2a)在y轴负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求(2﹣a)2020+1的值;(3)求N点坐标.19.如图,将四边形ABCD各顶点的横坐标、纵坐标分别乘﹣1,得到的图形与原图形有什么变化?作出坐标变化后的图形,这一过程可以看作是一个什么变换?20.我们规定以下三种变换:(1)f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2)g(a,b)=(b,a).如:g(1,3)=(3,1);(3)h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),(1)求f(h(5,﹣3))的值.(2)观察上面的变换你会发现若把(a,b)看成是平面内一个点的坐标,则每种变换对应一种对称方式,你能否仿照上述变换定义一种新的变换,且也满足上述规律.参考答案一.选择题1.解:如图所示,过点P(﹣2,1)作平行于坐标轴的直线,分别取线段PQ1=PQ2=PQ3=PQ4=5,点Q不在第四象限.故选:D.2.解:由点P与点Q的横坐标相同,而纵坐标不同知PQ⊥x轴,故选:B.3.解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.4.解:∵点A(a,b)在第四象限,∴a>0,则点B(0,a)在y轴的正半轴上,故选:C.5.解:根据题意,可得:2m﹣2=0;解得m=1,故选:B.6.解:根据题意画出图形可得:A、小李现在位置为第1排第4列,此选项说法错误;B、小张现在位置为第3排第2列,此选项说法正确;C、小王现在位置为第2排第3列,此选项说法错误;D、小谢现在位置为第4排第4列,此选项说法错误;故选:B.7.解:已知点A(2,﹣1),AB∥y轴,且AB=4,则B点的坐标为(2,3)或(2,﹣5),故选:D.8.解:A、若ab=0,则点P(a,b)在坐标轴上,不一定是原点,故A不符合题意;B、点(2,a)可能在第一、四象限或x轴上的点(2,0),不在第三象限,故B不符合题意;C、若点A、B的坐标分别是(2,﹣2)、(2,2),则直线AB∥y轴,故C不符合题意;D、若ab>0,则a,b同号,故点P(a,b)在第一或第三象限,符合题意.故选:D.9.解:依题意可得:∵AC∥x轴,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选:D.10.解:观察发现:A1(a,b),A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),A6(﹣b+1,a+1)…∴依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(b﹣1,﹣a+1),故选:D.二.填空题11.解:根据题意,得:2﹣a=2a+5或2﹣a+2a+5=0,解得:a=﹣1或a=﹣7,故答案为:﹣1或﹣7.12.解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.13.解:∵“8排5号”简记为(8,5),∴“7排6号”可表示为(7,6).故答案为:(7,6).14.解:∵AB∥y轴,∴A、B两点的横坐标相同,都为3,又AB=6,∴B点纵坐标为:﹣2+6=4,或﹣2﹣6=﹣8,∴B点的坐标为:(3,4)或(3,﹣8);故答案为:(3,4)或(3,﹣8).15.解:∵A的坐标为(a,b),∴A1(﹣b+1,a+1),A2(﹣a,﹣b+2),A3(b﹣1,﹣a+1),A4(a,b),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505余1,∴点A2021的坐标与A1的坐标相同,为(﹣b+1,a+1);故答案为:((﹣b+1,a+1).三.解答题16.解:∵3x+2y=1,∴y=,∴x=﹣2时,y=3.5;x=﹣1时,y=2;x=0时,y=0.5;x=1时,y=﹣1;x=2时,y=﹣2.5.在直角坐标系中描点(﹣2,3.5),(﹣1,2),(0,0.5),(1,﹣1),(2,﹣2.5),如图所示:发现:这些点落在同一条直线上.17.解:(1)∵|﹣2﹣0|+|﹣2﹣0|=4,|5﹣0|+|﹣1﹣0|=6,|0﹣0|+|4﹣0|=4,∴原点O的“4﹣距点”是点D、点F.故答案为:D、F;(2)①∵点B(0,b),l为过点B平行于x轴的直线,∴当b=3时,l为直线y=3,设直线l上的点A(2,1)的“2﹣距点”的坐标为(x,3),则有:|2﹣x|+|1﹣3|=2,解得:x=2,∴直线l上的点A(2,1)的“2﹣距点”的坐标为(2,3);故答案为:(2,3);②由①知当直线l经过点(2,3)时,b=3;∵A(2,1),l为过点B平行于x轴的直线,∴当直线l经过点(2,﹣1)时,b=﹣1,∴若直线l上存在点A的“2﹣距点”,则b的取值范围是﹣1≤b≤3.如图所示:18.解:(1)∵M在y轴负半轴上,∴3|a|﹣9=0,且4﹣2a<0,∴a=±3,且a>2,∴a=3.∴4﹣2a=﹣2,M(0,﹣2);(2)∵a=3,∴(2﹣a)2020+1=(2﹣3)2020+1=1+1=2;(3)∵直线MN∥x轴,M(0,﹣2),∴设N(x,﹣2),又∵线段MN长度为4,∴MN=|x﹣0|=|x|=4,∴x=±4,∴N(4,﹣2)或(﹣4,﹣2).19.解:根据图形可得点A(﹣6,3),B(﹣6,1),C(﹣2,1),D(﹣2,5).则A'(6,﹣3),B'(6,﹣1),C'(2,﹣1),D'(2,﹣5).连接A'、B'、C'、D',可得图形如图所示.得到的图形与原图形相比,将原图形绕原点旋转了180°,这一过程可以看做是一个中心对称变换.20.解:(1)f(h(5,﹣3))=f(﹣5,3)=(5,3).(2)f(a,b)=(﹣a,b)表示点(a,b)关于y轴对称的点的坐标是(﹣a,b).g(a,b)=(b,a)表示点(a,b)关于点(,)对称的点的坐标是(b,a).h(a,b)=(b,a)表示点(a,b)关于原点对称的点的坐标是(﹣a,b).。

相关文档
最新文档