导数之数列型不等式证明word版本
利用导数证明数列不等式(含解析)
利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。
导数数列不等式
导数数列不等式导数数列不等式,也称前验不等式,是一种数学不等式,它通过研究一个数列对应的模型来验证它们之间的关系。
导数数列不等式属于一类定性性质,能够准确地描述一个数列函数的变化情况。
首先,我们介绍一类特殊的数列,叫做几何数列。
几何数列是一种有规律而递增的数列,每一项的值是前一项的系数乘上某个正值的数字。
几何数列的导数数列不等式,可以用另一种形式表示:begin{eqnarray}t_n leq t_1 cdot r^nend{eqnarray}其中,$t_n$为几何数列的某一项,$t_1$为几何数列的第一项,而$r$为几何数列系数,它也是确定数列每一项和下一项关系的一个基本参数。
换言之,几何数列变化情况可以用该不等式来表示,所以几何数列可以称为导数数列。
几何数列的导数数列不等式是非常重要的,它是用来验证某个几何数列中每一项和下一项系数之间大小关系的一个特殊性质。
当然,几何数列不是唯一一种可以使用导数数列不等式来验证的数字。
除了几何数列,其他类型的数列也可以使用该不等式来进行检验。
比如抛物线数列,导数数列不等式可以用如下方式表示:begin{eqnarray}t_n leq t_1 cdot (1+n/n)^nend{eqnarray}其中,$t_n$为抛物线数列的某一项,$t_1$为抛物线数列的第一项,而$n$为抛物线数列的项数。
抛物线数列也可以用该不等式来验证它们之间的大小关系,所以抛物线数列也可以称为导数数列。
此外,对于其他类型的数列,也可以使用导数数列不等式来验证它们之间的关系。
例如,线性数列的导数数列不等式可以用如下方式表示:begin{eqnarray}t_n leq t_1 cdot (1+n/n) cdot nend{eqnarray}其中,$t_n$为线性数列的某一项,$t_1$为线性数列的第一项,而$n$为线性数列的项数。
线性数列也可以用该不等式来验证它们之间的大小关系,所以线性数列也可以称为导数数列。
数列不等式的放缩与导数不等式的证明
数列不等式的放缩与导数不等式的证明一、数列不等式的放缩1.假设法:假设数列的每一项满足其中一条件,通过推导得到结论。
2.数学归纳法:采用数学归纳法来证明数列不等式,即证明当n=k时不等式成立,然后证明当n=k+1时不等式也成立。
3.应用数学方法和技巧:通过使用数学方法和技巧,如均值不等式、柯西-施瓦茨不等式等,对数列不等式进行放缩。
例如,我们考虑数列 a1,a2,...,an,其中 ai > 0(i=1,2,...,n),证明以下不等式成立:(a1 + a2 + … + an)/n ≥ √(a1a2…an)证明:我们使用均值不等式来放缩。
根据均值不等式,有:(a1 + a2 + … + an)/n ≥ √(a1a2…an)即证明得到结论。
导数不等式是通过研究函数的导数,来证明函数的不等式性质。
常用的方法有以下几种:1.函数的单调性:通过研究函数的单调性来证明函数不等式,即证明函数在一些区间内是单调递增或单调递减的。
2.极值点与函数的变化趋势:通过研究函数的极值点和极限,来推导函数的不等式性质。
3.利用导数的性质:通过应用导数的性质,如凹凸性、拐点等,来证明函数的不等式。
例如,我们考虑函数f(x)=x^2,证明以下不等式成立:f(b)-f(a)≥(b-a)(f(b)+f(a))/2证明:首先我们求出函数f(x)的导数f'(x)=2x。
由于f'(x)是正值,因此f(x)是单调递增的。
根据函数f(x)的单调性,对于任意的a<b,有f(b)-f(a)≥0。
同时,由于f(x)是凹函数,根据凹函数的性质,有:f(t)≤f(a)+(t-a)f'(a)f(u)≤f(b)+(u-b)f'(b)其中a<t<b<u。
将两个不等式相加,得到:f(t)+f(u)≤f(a)+f(b)+(t-a)f'(a)+(u-b)f'(b)将f(t)+f(u)替换为2f((t+u)/2),得到:2f((t+u)/2)≤f(a)+f(b)+(t-a)f'(a)+(u-b)f'(b)即证明得到结论。
导数解答题中数列不等式的证明思路策略
导数解答题中数列不等式的证明思路策略张国飞(安徽省桐城中学ꎬ安徽桐城231400)摘㊀要:导数解答题中最后一问设置数列不等式的证明ꎬ是高考函数与导数知识模块中命题时比较常见的一个压轴题型.文章结合实例ꎬ就导数解答题中数列不等式的几个常见的证明思路策略加以剖析ꎬ阐述基本证明思路与技巧方法ꎬ总结证明归纳与策略ꎬ引领并指导数学教学与复习备考.关键词:导数ꎻ数列ꎻ不等式ꎻ证明ꎻ思路ꎻ策略中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)30-0038-03收稿日期:2023-07-25作者简介:张国飞(1980.7-)ꎬ男ꎬ安徽省安庆人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀在函数与导数的综合应用解答题中ꎬ经常会有证明数列不等式ꎬ形如ðni=1ai<g(n)或ðni=1ai<A(A为常数)等形式成立的数列不等式设置.此类数列不等式的证明问题往往前后联系ꎬ与前面小题中的函数与导数的综合应用等着直接或间接的联系ꎬ需要借助函数的单调性㊁导数的基本性质以及不等式的性质等来应用ꎬ综合性强ꎬ时常是压轴题的首选ꎬ倍受各方关注.下面结合实例ꎬ就证明导数解答题中的数列不等式的思路策略加以剖析与应用ꎬ抛砖引玉[1].1抓住常用思路ꎬ进行逐项比较对于数列不等式ðni=1ai<g(n)ꎬ其中不等式的一边是某个数列的前n项和ꎬ而另一边g(n)如果可以看作另一个数列的前n项和ꎬ此时可以采用计算该数列的通项公式bnꎬ借助an<bn的转化ꎬ通过逐项比较ꎬ利用累加法加以分析与证明.例1㊀求证:对于任意的xɪ(0ꎬ+ɕ)ꎬ有x1+x<ln(1+x)<x恒成立.根据这个不等式证明:ln(n+1)<1+12+ +1n<lnn+1(nɪN∗).解析㊀令函数f(x)=ln(1+x)-x(x>0)ꎬ则fᶄ(x)=11+x-1=-x1+x<0ꎬ则知函数f(x)在(0ꎬ+ɕ)上单调递减ꎬ可得f(x)<f(0)=0ꎬ即ln(1+x)<x成立ꎻ令函数g(x)=x1+x-ln(1+x)(x>0)ꎬ则gᶄ(x)=1(1+x)2-11+x=-x(1+x)2<0ꎬ则知函数g(x)在(0ꎬ+ɕ)上单调递减ꎬ可得g(x)<g(0)=0ꎬ即x1+x<ln(1+x)成立ꎻ综上分析ꎬ可得对于任意的xɪ(0ꎬ+ɕ)ꎬ有x1+x<ln(1+x)<x恒成立.取x=1nꎬ可得x1+x=1n1+1n=1n+1<ln(1+x)=ln(1+1n)=lnn+1n=ln(n+1)-lnn<x=1nꎬ即831n+1<ln(n+1)-lnn<1nꎬ令n=1ꎬ2ꎬ ꎬ对应不等式累加可得12+13+ +1n+1<ln(n+1)<1+12+ +1nꎬ即ln(n+1)<1+12+ +1n<lnn+1(nɪN∗).点评㊀由函数不等式过渡到数列不等式的处理ꎬ就是合理对变量进行赋值处理ꎬ进而实现逐项比较的目的ꎬ同时在累加处理时ꎬ还要对不等式的形式进行巧妙处理ꎬ这里由12+13+ +1n+1<ln(n+1)可得1+12+13+ +1n<lnnꎬ进而得到1+12+ +1n<lnn+1.注意递推不等式的结构特征与应用.2融合可选思路ꎬ利用数列单调(性)对于数列不等式ðni=1ai<g(n)ꎬ通过恒等变形转化为证明bn=ðni=1ai-g(n)<0ꎬ先验证b1<0ꎬ接下来验证bn+1-bn<0恒成立ꎬ利用数列的单调性(单调递减)实现数列不等式的证明与应用[2].例2㊀设函数f(x)=(x-1)2+blnxꎬ其中b为常数.(1)判断函数f(x)在定义域上的单调性ꎻ(2)求证:132+142+ +1n2<ln(n+1)(nȡ3ꎬnɪN∗).㊀解析㊀由函数f(x)=(x-1)2+blnx(x>0)ꎬ则fᶄ(x)=2(x-1)+bx=2(x-12)2+b-12xꎬ所以当bȡ12时ꎬfᶄ(x)ȡ0ꎬ函数f(x)在(0ꎬ+ɕ)上单调递增ꎻ当b<12时ꎬ令fᶄ(x)=0ꎬ解得x1=12-1-2b2或x2=12+1-2b2ꎬ①当bɤ0时ꎬx1ɤ0舍去ꎬ而x2ȡ1ꎬ此时fᶄ(x)ꎬf(x)随x在定义域上的变化情况如下表:表1㊀函数单调性与导数关系x(0ꎬx2)x2(x2ꎬ+ɕ)fᶄ(x)-0+f(x)↘极小值↗x(0ꎬx1)x1(x1ꎬx2)x2(x2ꎬ+ɕ)fᶄ(x)+0-0+f(x)↗极大值↘极小值↗㊀㊀②当0<b<12时ꎬ0<x1<x2ꎬ此时fᶄ(x)ꎬf(x)随x在定义域上的变化情况如下表:综上分析ꎬ当bȡ12时ꎬ函数f(x)在(0ꎬ+ɕ)上单调递增ꎻ当0<b<12时ꎬ函数f(x)在(0ꎬ12-1-2b2)ꎬ(12+1-2b2ꎬ+ɕ)上单调递增ꎬ在(12-1-2b2ꎬ12+1-2b2)上单调递减ꎻ当bɤ0时ꎬ函数f(x)在(0ꎬ12+1-2b2)上单调递减ꎬ在(12+1-2b2ꎬ+ɕ)上单调递增.(2)设bn=132+142+ +1n2-ln(n+1)ꎬnȡ3ꎬnɪN∗ꎬ则b3=19-ln4<0显然成立ꎻ当nȡ3ꎬnɪN∗时ꎬbn+1-bn=1(n+1)2-ln(n+2)+ln(n+1)=1(n+1)2-lnn+2n+1ꎬ设x=n+2n+1=1+1n+1ɪ(1ꎬ54]ꎬ那么要证bn+1-bn<0ꎬ只需证(x-1)2-lnx<0ꎬ取b=-1ꎬ由(1)知函数f(x)在(0ꎬ1+32)上单调递减ꎬ而54<1+32ꎬ则知当xɪ(1ꎬ54]时ꎬf(x)=93(x-1)2-lnx<f(1)=0ꎬ从而bn+1-bn<0成立ꎬ即数列{bn}单调递减ꎬ则有bnɤb3<0ꎬ原数列不等式得证.点评㊀这里利用数列的单调性来证明相关的数列不等式成立时ꎬ其证明过程与逐项比较写的过程有点差异ꎬ但本质上两种方法之间有着异曲同工之妙.注意证明数列的单调性时ꎬ往往要回归题目前面部分所涉及的函数不等式问题ꎬ合理应用.3借助性质思路ꎬ合理放缩处理对于数列不等式ðni=1ai<Aꎬ经常可以借助函数的单调性质㊁不等式的基本性质等来加强命题ðni=1ai<g(n)且g(n)<Aꎬ通过合理的放缩与变形处理来巧妙转化与应用.放缩的关键是数列的求和与放缩ꎬ以及不等式性质的应用等[3].例3㊀已知函数f(x)=x-mlnx-1(mɪR)在x=1处取得极值A.(1)求出实数m的值ꎬ并判断A是函数f(x)的最大值还是最小值ꎻ(2)证明:对于任意正整数nꎬ不等式(1+12)(1+122) (1+12n)<e恒成立ꎬ其中e=2.71828 是自然对数的底数.解析㊀(1)由函数f(x)=x-mlnx-1(x>0)ꎬ则fᶄ(x)=1-mxꎬ由于x=1是函数f(x)的极值点ꎬ则有fᶄ(1)=0ꎬ即1-m1=0ꎬ解得m=1ꎬ此时函数f(x)=x-lnx-1ꎬfᶄ(x)=1-1x=x-1xꎬ则知当0<x<1时ꎬfᶄ(x)<0ꎬ函数f(x)单调递减ꎻ当x>1时ꎬfᶄ(x)>0ꎬ函数f(x)单调递增ꎬ所以函数f(x)在x=1处取得极值A=f(1)=0是最小值ꎻ(2)由(1)知ꎬ当x>1时ꎬf(x)>f(1)=0ꎬ即x-1>lnxꎬ不妨令x=1+12nꎬnɪN∗ꎬ则有ln(1+12n)<12nꎬnɪN∗ꎬ所以ln(1+12)+ln(1+122)++ln(1+12n)<12+122+ +12n=12(1-12n)1-12=1-12n<1ꎬ即ln[(1+12)(1+122) (1+12n)]<1=lneꎬ所以不等式(1+12)(1+122) (1+12n)<e恒成立.点评㊀在解决导数解答题中数列不等式的证明问题时ꎬ往往要先从前面小题的过程或结论中选取合适的函数不等式加以应用ꎬ这非常考验考生的观察能力.而在对数列不等式进行累加求和处理后ꎬ合理的放缩是正确证明的关键ꎬ要注意观察所要证明的数列不等式的结构特征加以巧妙放缩处理.在解决导数解答题中数列不等式的证明时ꎬ除了以上三种基本的证明思路策略ꎬ还可以借助推理与证明思维进一步加以综合与应用ꎬ利用可行的思路方法与技巧策略来剖析ꎬ有时在证明数列不等式时还可以多种证明思路策略联合应用ꎬ实现问题的综合应用与巧妙解决[4].参考文献:[1]韩文美.突出四个 基本点 ꎬ强化导数及应用[J].中学生数理化(高二数学)ꎬ2023ꎬ974(06):22-24ꎬ26.[2]白亚军.求解数列不等式的常见放缩技巧[J].高中数学教与学ꎬ2023(09):21-22ꎬ20.[3]蔡雯.例析高考中函数与数列不等式证明问题的突破[J].高中数理化ꎬ2023(07):26-27.[4]刘海涛.由一道高考题引发的对证明数列不等式的思考[J].中学数学月刊ꎬ2021(04):63-64.[责任编辑:李㊀璟]04。
导数与数列型不等式的整合
中学数学研究
分析:题设条件是一个数列递推武,直接论 证结论比较困难,若能先求出数列通项,则可转 化为证明关于竹的不等式.
证明:由递推式得3¨‘口。+1=3‰。+3净 3“+1口。+l一3%。=3,.‘.{3%。}是以3口l为首 项,3为公差的等差数列’..。3‰。=3盘l+(,2一
“、“
17
万与一丢(愚≥2).当,z=1时,显然成立;当竹
≥2时,毒口t≤4+[(1一丢)十(丢一号)+…+
(击一昙)]-5一吾<5.
②^瓦=蕊了忌而=南一 南,壹厄磊=(詈一号)+(号一号)+
…+(寿与一看h)=2一磊h.
综上,原不等式得证. 例3 过P(1,0)作曲线C:y=≯(工∈ (0,+∞),志∈N’,志>1)的切线,切点为Q1, 设Q1在工轴上的投影为P,,又过P,作曲线
1).两边取对数并利用巴知不等式碍ln口。十t≤
ln(1+杰+去j+ln%由例5(1)知ln(1+
z)≤z,所以ln(1+杰+刍)≤杰+
理‘十聍
Z“
咒‘+,2
去.故1n口。+-一Ino≤i矗≮可+毒(咒≥1).
1n口H=ln口l+(1nn2一lnnl)+(1n口3一ln口2)+…
+(1n口。一ln%,)≤南+焘+…+ 毒‰+丢+壶+...+刍=·一号+号一
பைடு நூலகம்
+c;·23+…+2”>4c:』2咒(,z一1),.·.焉< 果.
赡簟业童警}■}蕾}坐|}簟簟■}誊■章j‘皇重E誓}警}■章坐誊誊蕾}鲁}■}坐坐业坐jI譬警e—}蕾}簟jk■}誓}童}■}簟■}■P
导数与数列型不等式的整合
四川省苍溪中学 (628400)林明成姚智铭
数列型不等式在研究数列的单调性、有界 性、极限的存在性、甚至求极限中,都有特殊的 作用.数列型不等式的证明问题,既需要证明不 等式的基本思路和方法,又要结合数列本身的 结构和特点,有着较强的技巧性,是传统的综合 性问题.将导数内容与传统的综合性问题—— 数列型不等式有机地结合在一起,设计综合题, 充当把关者的角色,体现了导数的工具性作用, 凸显‘了知识的纵横联系,加强了能力的考察力 度,符合新课程高考的方向.一些构思精巧、新 颖别致、极富思考性和挑战性的导数与数列型 不等式整合的命题不断涌现,并已成为近几年 高考的一个新亮点,引人注目,令人回味.本文 通过几例说明“导数与数列型不等式整合”的题 型特征及其解题方法.
导数解答题之证明不等式
,
①当 m≤0 时 f′(x)>0 恒成立,∴f(x)在(0,+∞)上是增函数,无极值, ②当 m>0 时令 f′(x)>0,∴0<x< , 令 f′(x)<0,∴x> , 所以函数 f(x)在(0, )上为增函数,在( ,+∞)为减函数, 所以当 x= 时,有极大值,极大值为﹣ (ln2m+1),无极小值,
∴
由题意可知 a>x0+1,又 x0∈(3,4),a∈Z, ∴a 的最小值为 5.
多元不等式的证明
证明多元不等式通常的方法有两个 (1)消元:① 利用条件代入消元 ② 不等式变形后对某多元表达式进行整体换元 (2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与 自变量大小来证明不等式 (3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法.
证明一元不等式主要的方法
方法一:将含 x 的项或所有项均挪至不等号的一侧,将一侧的解析式构造为函数,通过分
析函数的单调性得到最值,从而进行证明,其优点在于目的明确,构造方法简单,但对于 移项后较复杂的解析式则很难分析出单调性
x 1
2e x
f (x) e ln x . f x 1 已知函数
证明:
上单 调递增 ,从
1
而
g(x)在(0,+∞)上的最小值为
g
e
=-1 e
设函数 h(x)=xe-x-2,则 h′(x)=e-x(1-x).所以当 x∈(0,1)时,h′(x)>0;当 x∈(1, e
+∞)时,h′(x)<0.故 h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而 h(x)在(0,+∞)
所以 h(x)max=h(x0)=
专题一 第5讲 导数与不等式的证明
可得h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h(x)=x-1-ln x≥h(1)=0,即x-1≥ln x.
于是,当a≤1时,ex-a≥x-a+1≥x+a-1≥ln(x+a), 注意到以上三个不等号的取等条件分别为x=a,a=1,x+a=1,它 们无法同时取等, 所以当a≤1时,ex-a>ln(x+a),即f(x)>0.
12
当a=e时,f(x)=ln(e-x)-x+e,
要证 f(e-x)<ex+2xe,即证 ln x+x<ex+2xe,即证lnxx+1<exx+21e.
设
g(x)=lnx
x+1(x>0),则
1-ln g′(x)= x2
x ,
所以当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
当t∈(0,1)时,g′(t)<0,g(t)单调递减, 假设g(1)能取到, 则g(1)=0,故g(t)>g(1)=0; 当t∈(1,+∞)时,g′(t)>0,g(t)单调递增, 假设g(1)能取到,则g(1)=0,故g(t)>g(1)=0,
x+ln1-x 综上所述,g(x)= xln1-x <1 在 x∈(-∞,0)∪(0,1)上恒成立.
方法二 f(x)=ln ex=1-ln x. 欲证 f(x)<1+1x-x2ex,只需证1-elxn x+x2-1x<1,
因为x∈(0,1),所以1-ln x>0,ex>e0=1,
则只需证 1-ln x+x2-1x<1, 只需证 ln x-x2+1x>0, 令 t(x)=ln x-x2+1x,x∈(0,1),
微专题 用导数证明数列型不等式
微专题 利用导数证明数列不等式 方法1 利用不等式)0(,1ln 11>-≤≤-x x x x 证明数列型不等式背景知识:12312-⋅⋅=n n n ,1ln 23ln 12ln ln -+++=n nn1. 求证:),2(,11211ln 13121*∈≥-+++<<+++N n n n n n证明:在不等式中令11>-=n n x ,111ln 11--<-<--n nn n n nn n ,3,2=,可得个不等式,相加可以得证。
2.求证:2,N*n n ≥∈,时,n n n 1ln 44ln 33ln 22ln <⋅⋅证明:1ln 0-<<n n ,∴nn n n 1ln 0-<< nn n n n 11433221ln 44ln 33ln 22ln =-⋅⋅<⋅⋅ 3.求证:2222ln(21)ln(31)ln(41)ln(1)12ln !(2,)n n n n N *++++++++<+≥∈证明 1ln -<x x 0>x ,令112+=nx ,则有2211111ln(1)(1)1n n n n n n +<<=---, 变形为1)11ln()141ln()131ln()121ln(2222<+++++++n ,),2(*∈≥N n n)11ln()141ln()131ln()121ln(2222+++++++n 111)111()4131()3121()211(<-=--+-+-+-<n n n4.(2018春•长汀县校级月考)已知函数x x x f ln )(=,)(2)(2R a a x x ax g ∈-+=(Ⅰ)若直线)0(>=t t x 与曲线)(x f y =和)(x g y =分别交于B A ,两点,且曲线)(x f y =在点A 处的切线与)(x g y =在点B 处的切线相互平行,求a 的取值范围; (Ⅱ)设333ln 33ln 22ln n n S n +++= ,证明:eS n 1<(其中*∈>N n n ,1,e=2.71828…是自然对数的底数)解:(Ⅰ)f (x )=xlnx ,(x >0),∴f′(x )=1+lnx ,∵,∴g′(x )=ax +1,∵曲线y=f (x )在点A 处的切线与y=g (x )在点B 处的切线相互平行, ∴f′(t )=g′(t )在(0,+∞)有解,即lnt=at 在(0,+∞)有解,∵t >0, ∴.令,则得x=e ,当x ∈(0,e )时,F′(x )>0,F (x )单调递增, 当x ∈(e ,+∞)时,F′(x )<0,F (x )单调递减,∴,∴a 的取值范围是.证明(Ⅱ)由(Ⅰ)得,且x >0,∴,令x=n ,n ∈N +得:,当n 取2,3,4…n 时,有,又=,∴.5.【2017新课标3理】已知函数()1ln f x x a x =--. (1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m +++<,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞.①若0a ≤,因为11=-+2<022f a ln ⎛⎫ ⎪⎝⎭,所以不满足题意;②若>0a ,由()1a x a f 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a=1时,()0f x ≥.故a=1 (2)由(1)知当()1,+x ∈∞时,1>0x ln x --,令1=1+2n x 得111+<22n n ln ⎛⎫ ⎪⎝⎭,从而 2211111111++1+++1+<+++=1-<12222222n n n ln ln ln ⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而231111+1+1+>2222⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 方法二 利用不等式)1(21ln xx x -≤)1(≥x6.求证:12)12ln(211n 2151311+++>-++++n nn 证明: x x x ln 21≥- 令11212>-+=n n x ,*N n ∈得1212ln212121212-+>+---+n n n n n n , 即1212ln 2)1221(1221-+>+---+n n n n ,所以)121-121(211212ln 21121+++>n n n n n上式中n=1,2,3,…,n ,然后n 个不等式相加得到12)12ln(2112151311+++>-++++n nn n7.已知函数R a ax x x x f ∈++=,1ln )(,(1)当0>x 时,若关于x 的不等式0)(≥x f 恒成立,求a 的取值范围 (2)当*∈N n 时,证明11ln 3ln 2ln 42222+<++++<+n nn n n n【分析】(1)由f (x )≥0,得xlnx +ax +1≥0(x >0).整理,得恒成立,即.令.利用导数研究其单调性极值与最值即可得出. (2)由为数列的前n 项和,为数列的前n 项和.因此只需证明)1(11ln )2)(1(12+<+<++n n n n n n 即可.由(1),当a=﹣1时,有xlnx ﹣x +1≥0,即.令,即得=.可得2111)2)(1(1)11(1ln 22+-+=++>+>+n n n n n n n . 现证明)1(11ln 2+<+n n n n ,即==.通过构造函数利用导数研究函数的单调性极值即可证明.解:(1)由f (x )≥0,得xlnx +ax +1≥0(x >0). 整理,得恒成立,即.令.则.∴函数F (x )在(0,1)上单调递减,在(1,+∞)上单调递增. ∴函数的最小值为F (1)=1.∴﹣a ≤1,即a ≥﹣1.∴a 的取值范围是[﹣1,+∞). (2)∵为数列的前n 项和,为数列的前n 项和.∴只需证明即可.由(1),当a=﹣1时,有xlnx ﹣x +1≥0,即.(x>1)令,即得=.∴2111)2)(1(1)11(1ln 22+-+=++>+>+n n n n n n n . 再证明)1(1n 1ln 2+<+n n n ,即111111111ln 2+-+=+-+=+<+n n n n n n n n n n 现证明.构造函数(x ≥1),则=.∴函数G (x )在[﹣1,+∞)上是增函数,即G (x )≥G (1)=0. ∴当x >1时,有G (x )>0,即(x>1)成立.令,则(*)式成立.综上,得)1(112ln )2)(1(1+<+<++n n n n n n对数列,,分别求前n 项和,得.【点评】本题考查了利用导数研究其单调性极值与最值、方程与不等式的解法、构造法,考查了推理能力与计算能力,属于难题.方法三 利用不等式 :221)1ln(x x x ≤+-)0(>x 8. 求证:)(,2)12ln(1221*=∈<+--∑Nn n i ni证明:令)3,2,1(122n i i x =-=,则有2)12(2)]12ln()12[ln(122-<--+--i i i i 当1=n 时,23ln 2<-当2≥i 时,121321)12(22---<-i i i ,)(,212113ln 2)1n 2ln(1221*=∈<--+-<+--∑N n n i ni方法四 利用1+≥x e x证明不等式9.设()xf x e ax a =--.(Ⅰ)若()0f x ≥对一切1x ≥-恒成立,求a 的取值范围;(Ⅱ)设()()xag x f x e =+,且112212(,),(,)()A x y B x y x x ≠是曲线()y g x =上任意两点,若对任意的1a ≤-,直线AB 的斜率恒大于常数m ,求m 的取值范围;(Ⅲ)求证:*13(21)(2)()1n n nn e n n n N e +++-<∈-. 【答案】(Ⅰ) 1a ≤;(Ⅱ)3m ≤;(Ⅲ)详见解析【错因】第一问中这个恒成立问题学生的主要问题主要出现在一个细节上:运用参数分离时不知道一定要单独考虑一下端点问题;第二问中绝大多数学生无法想到去构建一个新的函数:mx x g x F -=)()(,第三问中不等于的证明绝大多数学生无法想到第一问中的结论再结合放缩法进行对不等于的证明. 【正解】(Ⅰ) ()0f x ≥⇒(1)(1)1x xe x a e a x x +≤⇒≤>-+,令()1xe h x x =+,则2()(1)x xe h x x '=+,由2()0(1)xxe h x x '=>+得0x >.所以()h x 在(0,)+∞上单调递增, ()h x 在(1,0)-单调递减.所以()(0)1(1)h x h x ≥=>-,由此得:1a ≤又1x =-时,(1)xx a e +≤即为10a e -⨯≤ 此时a 取任意值都成立,综上得:1a ≤ (II)由题设得,直线AB 的斜率满足:m x x x g x g >--1212)()(,不妨设21x x <,则2121()()g x g x mx mx ->-即:2211()()g x mx g x mx ->- 令函数mx x g x F -=)()(,则由以上不等式知:()F x 在(,)-∞+∞上单调递增,所以()()0F x g x m ''=-≥恒成立 ,所以,对任意1,a x R ≤-∈, ()m g x '≤恒成立又)(2)(x xx xe a e e a a e x g -⋅≥--='a -=a a -+-231)1(2≥-+-=a ,故3m ≤ (Ⅲ)由(Ⅰ) 知1(0xe x x ≥+=时取等号),取2ix n=-,,12,3,1-=n i 得212ini e n --< ,即22()2i nn i e n --< 累加得 13232122222123531()()()()()22222n n n n n n nn n e e e e n n n n n--------++⋅⋅⋅+++<++⋅⋅⋅++ 121(1))1n n e e e e e e -----==-<- 所以 135(21))n n n nn e n n +++⋅⋅⋅+-<(2011山西适应性考试文)已知函数2ln (1)()().x x ax x a f x a x--+-=∈R (I )当1,()2a f x ≥时讨论的单调性; (II )证明:*111321(2,).2ln 23ln 3ln 2(1)n n n n n n n n ++++>-≥∈+2222)1)(1()1(11)(xa ax x x a x ax x a a x x f -+--=-++-=---=' 解:(1)当 21=a 时,0)(≤'x f 在R 上恒成立,在)(x f ),0(+∞上是减函数 (2)当121<<a 时,在)1,0(a a -上,0)(<'x f 在)(x f )1,0(a a-上为减函数在)1,1(a a -上0)(>'x f ,)(x f 在)1,1(aa -为增函数在),1(+∞上,0)(<'x f )(x f 在),1(+∞上为减函数(3)当1≥a 时,在)1,0(上,0)(>'x f ,)(x f 为增函数。
微专题。用导数证明数列型不等式
微专题。
用导数证明数列型不等式方法1:利用不等式1-≤lnx≤x-1,(x>1)证明数列型不等式背景知识:n=2×3×…×n,lnn=ln2+ln3+…+lnn-11.求证:1+1/2+…+1/n<lnn<1+1/2+…+1/n+(1/n+1)+(1/n+2)+…+(1/2n-1),(n≥2,n∈N*)证明:在不等式中令x>1,1-x≤lnx≤x-1,n=2,3,…,n,可得个不等式,相加可以得证。
ln2+ln3+…+lnn-1≤1+1/2+…+1/nln2+ln3+…+lnn-1>1+1/2+…+1/n+(1/n+1)+(1/n+2)+…+(1/2n-1)2.求证:n≥2,n∈N*,时,2×3×…×n<n^n-1证明:2×3×…×n<2×2×…×2=n^(n-1)3.求证:ln(n^2+1)<1+2lnn!(n≥2,n∈N*)证明:由lnx0),令x=n^2+1,则有ln(n^2+1)<2n^2/(n^2+1)2n^2/(n^2+1)<2lnn。
即n^2/(n^2+1)<lnn。
整理得ln(n^2+1)<1+2lnn!4.已知函数f(x)=xlnx,g(x)=x^2+x-a(a∈R)Ⅰ)若直线x=t(t>0)与曲线y=f(x)和y=g(x)分别交于A,B 两点,且曲线y=f(x)在点A处的切线与y=g(x)在点B处的切线相互平行,求a的取值范围;Ⅱ)设Sn=1/2+1/3+…+1/n,证明:ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<2Sn解:(Ⅰ)f(x)=xlnx,(x>0),∴f′(x)=1+lnx,∵曲线y=f(x)在点A处的切线与y=g(x)在点B处的切线相互平行,∴f′(t)=g′(t)在(0,+∞)有解,即lnt=a-t在(0,+∞)有解,∵t>0,∴a>0.令x=e,则得t=e,∴a=e-1 Ⅱ)当x∈(0,e)时,F′(x)>0,F(x)单调递增,其中F(x)=ln(x^2+1),则有ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<F(2)+F(3)+…+F(n),由于F(x)单调递增,故F(2)+F(3)+…+F(n)<∫(1,n)F(x)dx,又因为F(x)在(0,+∞)上单调递增,故∫(1,n)F(x)dx<∫(1,n)F(n)dx=nF(n)-ln(n^2+1)/2,所以ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<nlnn-ln(n^2+1)/2,即ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<2(1/2+1/3+…+1/n)=2Sn。
第19炼 利用函数证明数列不等式 Word版含解析
第19炼 利用函数证明数列不等式利用函数证明不等式是在高考导数题中比较考验学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数,数列,不等式连接在一起,也是近年来高考的热门题型。
一、基础知识: 1、考察类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式。
(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向。
其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式 3、常见恒成立不等式:(1)ln 1x x <- 对数→多项式 (2)1x e x >+ 指数→多项式4、关于前n 项和的放缩问题:求数列前n 项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第k 项与第1n k -+项的和为常数的特点(2)错位相减:通项公式为“等差⨯等比”的形式(例如2nn a n =⋅,求和可用错位相减)(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且na 裂开的某项能够与后面项裂开的某项进行相消。
注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑。
5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。
6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系) 二、典型例题: 例1: 已知函数()()2ln f x x a x x=+--在0x =处取得极值(1)求实数a 的值(2)证明:对于任意的正整数n ,不等式23412ln(1)49n n n +++++>+都成立解:(1)()'121f x x x a =--+0x =为()f x 的极值点()'10101f a a ∴=-=⇒=(2)思路一:联想所证不等式与题目所给函数的联系,会发现在()()2ln 1f x x x x=+--中,存在对数,且左边数列的通项公式22111n n a n n n +⎛⎫==+ ⎪⎝⎭也具备()f x 项的特征,所以考虑分析()ln 1x +与2x x +的大小关系,然后与数列进行联系。
导数压轴7-利用函数单调性证明数列型不等式教师
1 第七课:利用函数单调性证明数列型不等式利用导数来证明不等式,通常应从需要证明的结论入手。
一.如果所需证明不等式其中一边是数列求和的形式,但不能直接求和,那么证明大概分为以下几步:1. 将不等号两侧都化为求和形式,如果是乘积的并且出现e 的指数次幂的考虑取对数2. 将左右两侧的求和形式化为∑ a n< ∑b n的形式,找到a n 和b n 的通项公式3. 将n 换成 x 〔或其它 x 的表达式〕,利用导数证明a n < b n 例1. 函数 f (x ) = 1ax 2- ln x (x > 0) ,证明: 1 + .... + 1 >n -12对话与解答:ln 2 ln n n +111 首先不等式左边已经是求和的形式 + .... +一共n -1项,右边的 n -1 可变为ln 2 ln n n +11 + 1 + ... + 1 ,这样我们刚好把左右两边变为相同项数(n -1项) 的两个不同的数 n + 1 n + 1 n +1 n -1个1 1列,接下来写出通项公式,其中a k = ln k ,b k = n +1.下一步应该比拟两边通项大小,要证明原不等式,即证 > 1 (k ≤ n ) ,且k ∈ N *, n ∈ N *,而 11 1,可通过证明ln k n +1 ln k ln n ln n> 1 n +1 1 来得到结果,要证 ln n > 1n +1,即证n +1- ln n > 0 ,设 f (x ) = x +1- ln x ,其中x > 0 ,通过求导找 f (x ) 最小值:f '(x ) = 1- 1,当1 > x > 0 时,f '(x ) < 0 , f (x ) 单调递减,x当 x > 1 时, f '(x ) > 0 , f (x ) 单调递增。
∴ f (x ) ≥ f (1) > 0 在 x > 0 恒成立, ∴n +1- ln n > 0∴ 1 ln n > 1 n +1∴ 1 + .... + 1 n -1 n -1 > > ,证毕 ln 2 ln n ln n n +1例2. 设m 为整数,且对于任意正整数n ,(1+ 1)(1+ 1 ) (1)1) < m ,求m 的最小值。
导数之数列型不等式证明
导数之数列型不等式证明首先,我们需要明确什么是数列的导数。
在数学中,数列的导数是描述数列变化趋势的一个概念。
对于数列${a_n}$,它的导数数列${b_n}$定义为$b_n=a_{n+1}-a_n$。
导数数列可以用来描述原数列的变化速度。
接下来,我们将通过数学推导来证明一个关于数列导数的不等式。
我们假设${a_n}$是一个递增数列,并要证明它的导数数列${b_n}$也是递增数列。
即$b_n<b_{n+1}$。
证明过程如下:假设数列${a_n}$是一个递增数列,则对于任意的$n$,都有$a_n<a_{n+1}$成立。
我们来观察导数数列${b_n}$,根据导数数列的定义,我们可以得到$b_n=a_{n+1}-a_n$。
要证明导数数列也是递增数列,即证明$b_n<b_{n+1}$成立。
首先,我们将$b_n$表示成数列${a_n}$的形式,即$b_n=a_{n+1}-a_n$。
然后将$b_{n+1}$表示成数列${a_n}$的形式,即$b_{n+1}=a_{n+2}-a_{n+1}$。
然后,我们可以得到$b_{n+1}-b_n=(a_{n+2}-a_{n+1})-(a_{n+1}-a_n)=a_{n+2}-2a_{n+1}+a_n$。
根据数列${a_n}$是递增数列的假设,我们可以得到$a_{n+2}>a_{n+1}$且$a_{n+1}>a_n$。
将这两个不等式代入上面的等式中,我们可以得到$b_{n+1}-b_n=a_{n+2}-2a_{n+1}+a_n>0$。
由此可得,$b_{n+1}>b_n$,即导数数列${b_n}$是递增数列。
综上所述,我们通过数学推导证明了当数列${a_n}$是一个递增数列时,它的导数数列${b_n}$也是一个递增数列。
总结起来,数列导数之不等式证明是通过对数列的导数进行数学推导与证明,验证数列导数的性质。
通过上述证明过程,我们得出了当数列是递增数列时,其导数数列也是递增数列的结论。
导数证明数列不等式
21. 已知函数 f ( x) a ln x
已知函数 f ( x) e x ax 1( a 为常数),曲线 y f ( x) 在与 y 轴的交点 A 处的切线斜率为 1 . (Ⅰ)求 a 的值及函数 f ( x) 的单调区间;
x 2 (Ⅱ)证明:当 x 0 时, e x 1;
n 1 . 1 1 1 (Ⅲ)证明:当 n N 时, 1 ln 2 3 n 3en
证明如下:令 h( x ) e
x
所以 1
1 1 n 1 n 1 . 1 1 n 1 3 lnn 1 n ln 3 n ,即 1 ln 2 3 n 2 3 n 3en
3
分析式子构成形式和成分,进而寻求函数模型,利用函数运算公式,放缩思想,进而证明不等式; 解: (Ⅰ) f x
1 3 x .找到目标函数是第一步; 3
1 3 x ,则 h( x) e x x 2 . 3 x 2 由(2)知,当 x 0 时, e x ,所以 h( x) 0 .所以 h( x) 在 0, 上单调递增. 1 3 1 3 x 所以 h( x) h(0) 1 0 .所以 e x .所以 x ln x ,即 x ln 3 3 ln x . 3 3 2 3 n 1 依次取 x , , , ,代入上式,则 赋值是关键点。 1 2 n 2 2 3 3 n 1 n 1 ln 3 3 ln ; ln 3 3 ln ; ……….. ln 3 3 ln 1 1 2 2 n n 2 3 n 1 n 1 2 3 以上各式相加,有 n ln 3 3 ln . 1 2 n n 1 2 n 1 1 1 所以 n 1 n ln 3 3 lnn 1 n 2 3
数列不等式
数列不等式1、证明:1/2+1/3+。
+1/n < lnn 。
无非就是证明1/k<ln(k)-ln(k-1)对于k>=2都成立,这个高中生完全可以搞定.......尽管这个题的原型是中值定理和积分放缩...我们有(1+1/n)^n<e<(1+1/n)^(n+1)即nln(1+1/n)<1<(n+1)ln(1+1/n)即1/(n+1)<ln(1+1/n)<1/n然后分别令n=1,2,...,n-1 即1/2<ln2 1/3<ln(3/2) 1/4<ln(4/3) ... 1/n=ln(n/(n-1))再相加,即得1/2+1/3+...+1/n<ln(2.3/2.4/3...n/(n-1))=lnn1/(n+1)<ln(1+1/n)<1/n以上可以用导数来证,更符合教学实际:x/(1+x)<=ln(1+x)<=x以上讨论可以看出:1。
纯数列的要求更高 2。
涉及到lnn 的数列不等式应先介绍:用导数证明:x/(1+x)<=ln(1+x)<=x 再应用到数列: 1/(n+1)< ln(1+1/n) <1/n 得到: 1/(n+1)< ln(n+1)-lnn 于是:1/2+1/3+1/4+。
+1/n < ( ln2-ln1) + (ln3-ln2) + (ln4-ln3) +。
+ (lnn-ln(n-1)) = lnn2、3、下面是用n=k为真, 证明n=k+1为真的简略证明:n=k+1为真等价于4、5、6、6、回复 5# 的帖子由Catalan恒等式知a2n=(1+1/2+1/3+……+1/2n)-2(1/2+1/4+1/6+……+1/2n)=1/(n+1)+1/(n+2)……+1/2n,cn=1+1/2+ 1/3+……1/n-Inn收敛,lim(c2n-cn)=1/(n+1)+1/(n+2)+……1/2n-In(2n/n)=0a2n=In2>In(2-1/(n+1))7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、已知数列{}n x 满足1111,,.21n n x x n N x *+==∈+ (1)猜想数列{}n x 单调性并证明;(2)证明:1112.65n n n x x -+⎛⎫-≤ ⎪⎝⎭证(1)由1n+1244n 112513213821x x x x x x ===+==+及得, 由246x x x >>猜想:数列{}2n x 是递减数列下面用数学归纳法证明:(1)当n=1时,已证命题成立 (2)假设当n=k 时命题成立,即222k k x x +> 易知20k x >,那么23212224212321231111(1)(1)k k k k k k k k x x x x x x x x ++++++++--=-=++++ =22222122230(1)(1)(1)(1)k k k k k k x x x x x x ++++->++++ 即2(1)2(1)2k k x x +++>也就是说,当n=k+1时命题也成立,结合(1)和(2)知,命题成立(2)当n=1时,12116n n x x x x +-=-=,结论成立 当2n ≥时,易知1111101,12,12n n n n x x x x ---<<∴+<=>+ 111115(1)(1)(1)(1)212n n n n n x x x x x ----∴++=++=+≥+ 11111111(1)(1)n n n n n n n n x x x x x x x x -+---∴-=-=++++ 2n -111221n -12225551265n n n n x x x x x x ---≤-≤-≤≤-= ()()()。
高考数学复习:利用导数证明不等式
3
f(-1)=e,f(1)=e,f(2)=0,
∴函数 f(x)在区间[-1,2]的最大值为 e,最小值为 0. ....................................... 5 分
(2)证明 令
1 2
x 1 2
g(x)=f(x)-2x +x-2e=(2-x)e -2x +x-2e,则
解得x=2,当x∈(2,+∞)时,g'(x)<0;
当x∈(0,2)时,g'(x)>0,
∴g(x)在(2,+∞)内单调递减,在(0,2)内单调递增,可得g(x)max=f(2)=e2+2.
由于12>e2+2,即f(x)min>g(x)max,所以f(x)>g(x),
故当x>0时,f(x)>-x3+3x2+(3-x)ex.
3(3 -1)
=
3(-1)(2 ++1)
.
令f'(x)=0可得x=1,当x∈(1,+∞)时,f'(x)>0;当x∈(0,1)时,f'(x)<0,
∴f(x)在(1,+∞)内单调递增,在(0,1)内单调递减.
(2)证明 由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex,则g'(x)=-3x2+6x-ex+(3-x)ex=(2-x)(ex+3x),由g'(x)=0,
所以g(a)的单调递减区间是(1,+∞),单调递增区间是(0,1),
所以g(a)≤g(1)=0,即ln a≤a-1.
利用导数证明数列不等式问题二轮
②假设当n=k时,ln 2 ln 3 ln 4 ln k 1 成立.
234
kk
则n=k+1时,ln 2 ln 3 ln 4 ln k ln(k 1) 1 ln(k 1)
234
k k1 k k1
∵ln x≤x‒1,∴ln(k+1)≤k. ∴ ln(k 1) 1. k
∴ ln 2 ln 3 ln 4 ln(k 1) 1 .
当0<x<1时,f (x)<0不符合题意.
令 f ʹ (a) <0,得a>1.
②=0,
令 f ʹ (x) >0, 解 得 x > a ; 令 f ʹ (x) <0, 解 得 0 < x < a ;
∴只有当a=1时, a‒1‒aln a ≥ 0 成 立 , 故a=1.
热点聚焦
已知函数 f (x)=aln x‒ax‒ 3(a∈R).
(1)求函数f (x)的单调区间;
(2)求证:ln 2 ln 3 ln 4 ln n 1 (n N* , n 2).
234
nn
热点聚焦
已知函数 f (x)=aln x‒ax‒ 3(a∈R). (1)求函数f (x)的单调区间; 解: 函 数 f (x)的定义域为(0,+∞).
n1 =1 nn
∴ ln 2 ln 3 ln 4 ln n 1 (n N* , n 2).
234
nn
热点聚焦
(2)求证:ln 2 ln 3 ln 4 ln n 1 (n N* , n 2).
234
nn
证法2: (数学归纳法)
①当n=2时,ln 2 lne 1 . 原不等式成立. 2 22
f ( x) a(1 x), x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与导数解答题之数列型不等式证明
例1.已知函数()()ln 3f x a x ax a R =--∈
(1)讨论函数)(x f 的单调性;
(2)证明:*1111ln(1)()23n n N n
+
+++>+∈L (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ⋅⋅⋅<≥∈L (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +⎛⎫⋅⋅⋅<⋅≥∈ ⎪⎝⎭
L (5)证明:()444442
*44444ln 2ln 3ln 4ln 5ln (1)2,23454n n n n N n n
+⋅⋅⋅<≥∈L (6)求证:()()()
()222222121ln 2ln 3ln ...2,2321n n n n n N n n *-++++<≥∈+ (7)求证:()22221111111...12482n e n N *⎛⎫⎛⎫⎛⎫⎛⎫+
+++<∈ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
例2.已知函数2()ln(1)f x a x ax x =+--.
(1)若1x =为函数()f x 的零点,求a 的值;
(2)求()f x 的极值;
(3)证明:对任意正整数n ,2
22134232)1ln(n n n +++++
<+Λ.
例3.已知函数()x
f x e ax a =--(其中,a R e ∈是自然对数的底数, 2.71828e =…). (1)当a e =时,求函数()f x 的极值;(II )当01a ≤≤时,求证()0f x ≥;
(2)求证:对任意正整数n ,都有2111111222n e ⎛⎫⎛⎫⎛⎫+
+⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭
.
例4.设函数()ln 1f x x px =-+
(1)求函数()f x 的极值点;
(2)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围; (3)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n
n Λ
例5.已知函数()ln 1f x x x =-+。
(1)求()f x 的最大值;
(2)证明不等式:()*121
n n n
n e n N n n n e ⎛⎫⎛⎫⎛⎫+++<∈ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L
例6.已知函数()()2
ln 1f x x x =-+ (1)当0x >时,求证:()3
;f x x < (2)当n N *∈时,求证:
()33311111511...23421n
k f k n n n =⎛⎫<++++≤- ⎪+⎝⎭∑
例7.设函数()2
()ln(1)0f x x m x m =++≠ (1)若12m =-,求)(x f 的单调区间;
(2)如果函数)(x f 在定义域内既有极大值又有极小值,求实数m 的取值范围;
(3)求证:对任意的*N n ∈,不等式311ln n
n n n ->+恒成立。
例8.已知函数()ln(1)(1)1()f x x k x k =---+∈R ,
(1)求函数()f x 的单调区间;
(2)若()0f x ≤恒成立,试确定实数k 的取值范围;
(3)证明:
ln 2ln 3ln (1)3414
n n n n -+++<+L (),1n N n ∈>.
例9.已知函数)0()(>++=a c x
b ax x f 的图像在点))1(,1(f 处的切线方程为1-=x y 。 (1)用a 表示出
c b ,;
(2)若x x f ln )(≥在),1[+∞上恒成立,求a 的取值范围;
(3)证明:)1()
1(2)1ln(131211≥+++>++++
n n n n n Λ.
例10.已知函数2()2ln 1f x a x x =-+。
(1)当1a =时,求函数()f x 的单调区间及()f x 的最大值;
(2)令()()g x f x x =+,若()g x 在定义域上是单调函数,求a 的取值范围; (3)对于任意的*
2,n n N ≥∈,试比较22222ln 2ln 3ln 4ln 5ln n +++++L 与232(1)n n n n --+的大小并证明你的结论。。