梁纯弯曲正应力测定实验.

合集下载

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告一、实验目的本实验旨在通过对实验材料进行纯弯曲加载,测量其正应力和弯曲角度,从而掌握材料在纯弯曲状态下的应力特性,并探究材料性能的影响因素。

二、实验原理当梁在纯弯曲时,受到的载荷可以分解为一个弯矩和一个剪力。

由于实验中去除了外部作用力,剪力为零,因此我们只需要考虑弯矩作用下的应力情况。

在梁的截面上,由于受到弯曲,不同位置的应变不同,因此会形成不同大小的应力。

在正常情况下,当梁未发生破坏时,梁的内部应力呈线性分布,即受到的弯矩越大,所受到的应力也会相应增大。

三、实验设备本实验所使用的设备包括:1.纯弯曲实验台2.测力仪3.梁材料(一定长度的圆形钢管或方管)四、实验步骤1. 选择一段合适材质的梁进行实验。

2. 将梁固定在纯弯曲实验台上。

3. 在梁的一端加上一定荷载。

4. 通过测力仪测量在梁部位不同位置受到的正应力。

5. 在梁的另一端加上一定数量的荷载,并重复步骤4,记录正应力。

6. 重复以上操作,直到梁发生破坏。

五、实验结果在实验过程中,我们记录了梁不同位置受到的正应力,并根据实验数据分析了不同弯矩下的应力分布曲线。

实验结果表明,在纯弯曲状态下,梁的内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

六、实验分析根据实验结果,我们可以发现梁的性能会受到材料的影响。

不同的材料具有不同的弯曲特性,不同的性能和抗断性能。

而在实验中,我们也可以通过调整材料的材质和长度来控制弯曲的程度,从而控制梁的应力分布和破坏点位置。

七、实验结论本实验通过纯弯曲实验台对梁进行弯曲测试,得到了不同弯矩下的应力分布曲线。

实验结论表明,梁在纯弯曲状态下,其内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

同时,不同材质和长度的材料在弯曲状态下具有不同的弯曲特性和抗断性能。

纯弯曲梁正应力测定试验(精)

纯弯曲梁正应力测定试验(精)

实验四 纯弯曲梁正应力测定试验一、实验目的1. 掌握电测法测定应力的基本原理和电阻应变仪的使用。

2. 验证梁的理论计算中正应力公式的正确性,以及推导该公式时所用假定的合理性。

二、试验原理梁弯曲理论的发展,一直是和实验有着密切的联系。

如在纯弯曲的条件下,根据实验现象,经过判断,推理,提出了如下假设:梁变形前的横截面在变形后仍保持为平面,并且仍然垂直于变形后梁的轴线,只是绕截面内的某一轴旋转了一定角度。

这就是所说的平面假设。

以此假设及单向应力状态假设为基础,推导出直梁在纯弯曲时横截面上任一点的正应力公式为 y I M z=σ (4-1) 式中:M--横截面上的弯矩;I z —横截面轴惯性矩;Y —所求应力点矩中性轴的距离。

整梁弯曲试验采用矩形截面的低炭钢单跨简支梁,梁承受荷载如图4-1所示。

图4-1 整梁弯曲试验装置 在这种载荷的作用下,梁中间段受纯弯曲作用,其弯矩为Fa ,而在两侧长度各为a 的两段内,梁受弯曲和剪切的联合作用,这两段的剪力各为±F 。

实验时,在梁纯弯曲段沿横截面高度自上而下选八个测点,在测点表面沿梁轴方向各粘贴一枚电阻应变片,当对梁施加弯矩M 时,粘贴在各测点的电阻应变片的阻值将发生变化。

从而根据电测法的基本原理,就可测得各测点的线应变值εj (角标j 为测点号,j=1,2,3, …,8)。

由于各点处于单向应力状态,由虎克定律求得各测点实测应力值R 实j ,即 j j E εσ=实梁表面的横向片是用来测量横向应变的,可用纵向应变与横向应变的关系求得横向变形系数μ值。

所谓叠梁,是两根矩形截面梁上下叠放在一起,两界面间加润滑剂,如图3-2所示。

两根梁的材料可相同,也可不同;两根梁的截面高度尺寸可相同,亦可相异。

只要保证在变形时两梁界面不离开即可。

图4-2 所示的叠梁,在弯矩M 的作用下,可以认为两梁界面处的挠度相等,并且挠度远小于梁的跨度;上下梁各自的中性轴,在小变形的前提下,各中性层的曲率近似相等。

梁纯弯曲实验

梁纯弯曲实验

纯弯曲梁的正应力测定实验一、实验目的1. 测定梁在纯弯曲时横截面上正应力大小和分布规律2. 验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具1. 组合实验台中纯弯曲梁实验装置2. XL2118A 系列静态电阻应变仪3. 游标卡尺、钢板尺 三、实验原理及方法在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力,计算公式为σ=M·y/I z式中:M ——为弯矩;M=P·a/2;I z ——为横截面对中性轴的惯性矩;y ——为所求应力点至中性轴的距离。

铰支梁受力变形原理分析简图如图1所示。

图1 纯弯曲梁受力分析简化图为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片(如图2)。

实验可采用半桥单臂、公共补偿、多点测量方法。

加载采用增量法,即每增加等量的载荷ΔP ,测出各点的应变增量Δεi 实,然后分别取各点应变增量的平均值ε,依次求出各点的应力增量Δσi 实=EΔεi 实 ( i=1,2,3,4,5)纯弯曲实验装置简图弯矩: M=F a F=P/2F QMc)构件AB 力学简化模型将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。

图 2应变片在梁中的位置实验接线方法实验接桥采用1/4桥(半桥单臂)方式,应变片与应变仪组桥接线方法如图3所示。

使用弯曲梁上的应变片Ri(R1,R2,R3,R4,R5即工作应变片)分别连接到应变仪测点的A/B上,测点上的B和B1用短路片短接;温度补偿应变片Rt连接到桥路选择端的A/D上,桥路选择短接线将D1/D2短接,并将所有螺钉旋紧。

四、实验步骤1.设计好本实验所需的各类数据表格。

2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离y i。

见附表13.拟订加载方案。

可先选取适当的初载荷P0=200N,估算P max(该实验载荷范围P max≤2000N),分4级加载(300N,600N,900N,1200N)。

梁的纯弯曲正应力实验

梁的纯弯曲正应力实验
2.温度补偿: 由于温度对电阻值变化影响很 大, 利用电桥特性, 可以采用适 当的方法消除这种影响。
梁的纯弯曲正应力实验
工作片
R1
B
A
R2 温度补偿片 C 固定电阻
相同应变片R1.R2,R1贴 在构件受力处,R2贴在附 近不受力处,环境温度对 R1.R2引起的阻值变化相 同,为DRT,则
R4
R3
D
梁的纯弯曲正应力实验
五、实验数据的记录与计算
梁的纯弯曲正应力实验
六、注意事项
1.加载时要缓慢, 防止冲击。 2.读取应变值时, 应保持载荷稳定。 3.各引线的接线柱必须拧紧, 测量过程中不要触动引线, 以 免引起测量误差。
梁的纯弯曲正应力实验
一、实验目的
1.测定纯弯曲下矩形截面梁横截面上正应力的 分布规律,并与理论值比较;
2.熟悉电测法基本原理和电阻应变仪的使用。 二、实验仪器 1.纯弯曲试验装置;
2.YD-15型静态数字电阻应变仪。
梁的纯弯曲正应力实验
三、试验原理
1. 结构示意图及理论值计算
b hz
y
F/2 a
F/2
DR1 R1
-
DR2 R2
DR3 R3
-
DR4 R4
)
E 4
K
(
1
-
2
3
-
4
)
梁的纯弯曲正应力实验
4.电桥接法及温度补偿 1.电桥接法: 全桥接法(四个电阻均为应变片);
半桥接法(R1、R2为应变片, R3.R4为固定电阻)
两种接法中的应变片型号、阻值尽可能相同 或接近, 固定电阻与应变片阻值也应接近。
F F/2
ma m
FQ +

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。

本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。

二、实验原理。

梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。

在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。

根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。

三、实验装置和仪器。

本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。

其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。

四、实验步骤。

1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。

五、实验数据处理和分析。

通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。

通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。

六、实验结论。

通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。

因此,本实验取得了预期的实验目的。

七、实验总结。

本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。

希望通过本次实验,能够对大家有所帮助。

八、参考文献。

[1] 《材料力学实验指导书》。

[2] 《材料力学实验讲义》。

以上为梁的纯弯曲正应力实验报告,谢谢阅读。

实验六纯弯曲梁正应力的测定一、实验目的二、实验仪器

实验六纯弯曲梁正应力的测定一、实验目的二、实验仪器

实验六 纯弯曲梁正应力的测定一、实验目的1. 初步掌握电测法的基本原理和方法。

2. 测定梁在纯弯曲时横截面上正应力大小和分布规律;验证纯弯曲梁的正应力计算公式。

二、实验仪器、设备和工具1、组合实验台纯弯曲梁实验装置。

2、静态电阻应变仪。

3、游标卡尺、钢板尺。

三、实验原理梁受纯弯曲时,纯弯曲正应力计算公式为:ZI My=σ式中:M-弯矩-横截面对中性轴的惯矩Z I y-所求应力点到中性轴的距离由上述可知,梁在纯弯曲时,各点处的正应力沿横截面高度按直线规律分布。

如将电阻应变计粘贴在距中性层不等的位置上(见图),测得纯弯曲时沿横截面高度各点的纵向应变ε。

根据理论推导可知,各纵向纤维层只受简单拉伸或压缩,由单向应力状态的虎克定律εσE =,可求出各点处的实验应力实σ。

要测纯弯曲梁沿截面高度各点的应变值,可采用温补半桥组桥方法,见电阻应变片各种接桥方法(1)。

加载采用增量法,即每增加等量的载荷,测出各点的应变增量P ΔεΔ,然后分别取各点应变增量的平均值i εΔ,记录应变仪读数并填入表中,依次求出各点的应变增量实i εΔ.实实i E εσΔ=将实测应力值实σ与理论应力值理σ进行比较,以验证弯曲正应力公式。

四、实验步骤(一)、实验准备1、 按规定位置粘贴电阻应变计,焊线、防护(己由生产厂家准备好)。

2、 制定加载方案,四级加载:20Kg、40Kg、60Kg、80Kg。

3、 接通传感器和负荷显示器及电阻应变仪,预热10分钟。

4、 记录梁的截面尺寸,载荷作用点到支点距离及各应变计的位置。

见附表15、 加初载荷0P (一般取0P =10%max P 左右)估算max P ,记下初读数。

(二)、进行实验1、 均匀缓慢加载到初载荷0P ,记下各点应变的初始读数:后分级等量加载,每增加一级载荷,依次记录各点电阻应变片的应变值仪i ε,直到最终载荷。

实验至少重复两次。

见附表2 2、 按力值对照表分四级加载。

3、 做完实验后,卸掉载荷,仪器复原。

梁纯弯曲正应力测定实验(最全)word资料

梁纯弯曲正应力测定实验(最全)word资料

梁纯弯曲正应力测定实验(一)实验目的*在承受纯弯曲的钢梁上,测取其横截面上各点的正应力,验证梁的正应力公式和观察应力的分布规律;*熟悉电测初步知识和测量方法。

(二)实验原理*试件、尺寸、设备——见系网页中“教学资源栏目”之“实验指导” *操作步骤、仪器使用(同上) (三)数据处理 *测量过程记录表*注:应力平均值(增量)计算:=E 理论值计算:zM yI σ∆⋅∆=,对应载荷增量∆F 所产生的弯矩:∆M=0.5∆F .a (四)思考题*弯曲正应力的大小与材料的弹性模量E 是否有关?*分析理论值计算与实验值产生的误差原因。

(列出可能的几种) *若在实验中出现与中性层对应的点的数值为“非零”,是什么原因?临床实验室定量测定室内质量控制一术语和定义1偏倚 bias试验结果偏离可接受参考值的系统偏离(带有正负号)。

2不精密度 imprecision一组重复测定结果的随机离散,其值由统计量定量表示为标准差或变异系数。

3质量控制quality control质量管理的一部分,致力于满足质量要求。

[GB/T 19000-2000,]4 质量控制策略 quality control strategy质控品种类、每种检测频次、放置的位置,以及用于质控数据解释和确定分析批是在控还是失控的规则。

5 随机误差 random error测量结果与在重复性条件下对同一被测量进行无限多次测量所得结果的平均值之差。

6 系统误差 systematic error在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。

7 可报告范围 reportable range在仪器、试剂盒或系统的测定响应之间的关系,显示是有效的期间内试验值范围。

8 标准差 standard deviation观察值或测定结果中不精密度的统计度量。

变异性/离散的度量是总体方差的正平方根。

二质量控制的目的质量控制方法是用来监测检验方法的分析性能,警告检验人员存在的问题。

6 纯弯曲梁的正应力实验

6 纯弯曲梁的正应力实验

实验六纯弯曲梁的正应力实验一、实验目的1. 梁在纯弯曲时横截面上正应力大小和分布规律;2. 验证纯弯曲梁的正应力计算公式;3. 测定泊松比μ;4. 掌握电测法的基本原理;二、实验设备1. 材料力学多功能实验台;2. 静态数字电阻应变仪一台;3. 矩形截面梁;4. 游标卡尺;三、实验原理1. 测定弯曲正应力本实验采用的是低碳钢制成的矩形截面试件,当力F 作用在辅助梁中央A 点时,通过辅助梁将压力F 分解为两个集中力2/F 并分别作用于主梁(试件)的B 、C 两点。

实验装置受力简图如下图所示。

根据内力分析,BC 段上剪力0=S F ,弯矩Fa M 21=,因此梁的BC 段发生纯弯曲。

在BC 段中任选一条横向线(通常选择BC 段的中间位置),在离中性层不同高度处取5个点,编号分别为①、②、③、④、⑤,在5个点的位置处沿着梁的轴线方向粘贴5个电阻应变片,如下图所示。

D C B a F/2F/2E a ⑥ ⑤ ①② ④ ③ hb根据单向受力假设,梁横截面上各点均处于单向应力状态,应用轴向拉伸时的胡克定律,即可通过测定的各点应变,计算出相应的实验应力。

采用增量法,各点的实测应力增量表达式为:i i E 实实εσ∆=∆式中:i 为测量点的编号,i =1、2、3、4、5;i 实ε∆ 为各点的实测应变平均增量;为各点的实测应力平均增量; 纯弯梁横截面上正应力的理论表达式为:z i i I y M ⋅=σ ; 增量表达式为: zi i I y M ⋅∆=∆σ 通过同一点实测应力的增量与理论应力增量计算结果比较,算出相对误差,即验证纯弯曲梁的正应力计算公式。

以截面高度为纵坐标,应力大小为横坐标,建立平面坐标系。

将5个不同测点通过计算得到的实测应力平均增量以及各测点的测量高度分别作为横坐标和纵坐标标画在坐标平面内,并连成曲线,即可与横截面上应力理论分布情况进行比较。

2. 测定泊松比在梁的下边缘纵向应变片⑤附近,沿着梁的宽度方向粘贴一片电阻应变片⑥(电阻应变片⑥也可贴在梁的上边缘),测出沿宽度方向的应变,利用公式εεν'=,确定泊松比。

纯弯曲梁正应力测定 工程力学实验报告

纯弯曲梁正应力测定 工程力学实验报告

纯弯曲梁正应力测定一、 实验目的1.测定梁在纯弯曲时横截面上的正应力分布,验证平面假设理论和弯曲正应力公式。

2.学习电测应力实验方法。

二、 实验设备1.简支梁及加载装置。

2.电阻应变仪。

3.直尺,游标卡尺。

三、 实验原理根据弯曲梁的平面假设沿着梁横截面高度的正应力分布规律应当是直线。

为了验证这一假设,我们在梁的纯弯曲段内粘贴7片电阻应变片:1#、2#、3#、4#、5#、6#、7#,见指导书中图,由应变仪测出读数即知道沿着梁横面高度的正应力分布规律。

四、 实验步骤1.用游标卡尺测量梁的尺寸b 和h ,用钢尺量梁的支点至力作用点的距离d 。

2.将各点的应变片和温度补偿片以半桥的形式接入应变仪。

被测应变片接在AB 上,补偿片接在BC 上。

仪器操作步骤:1)半桥测量时将D 1DD 2接线柱用连接片连接起来并旋紧。

2)将标准电阻分别与A 、B 、C 接线柱相连。

3)接通电源开关。

4)按下“基零”键仪表显示“0000”或“-0000”(仪表内部已调好)。

5)按下“测量”键,显示测量值,将测量值调到“0000”或“-0000”。

6)按下“标定”键仪表显示-10000附近值,按照所使用应变片灵敏度K=2.17,调节灵敏度使显示为-9221。

7)将“本机、切换”开关置“切换”状态。

主机的 A 、B 、C 接线柱上的标准电阻去掉,将各被测量应变片一端分别与左上对应的各A (A 1~A 7)接线柱相连,公共输出端与一B 接线柱相连,温度补偿片接在B 、C 之间。

被测点(应变片号) 6 4 2 1 3 5 7 接线端子(通道号) 1 2 3 4 5 6 78)切换开关, 按次序所有点的平衡都调节在0000或-0000值上。

9)转动手轮,使梁加载荷,逐点测量、记录应变值。

采用增量法加载,每次0.5kN 。

注意不能超载。

0.5 kN , 初载荷调零; 1.0 kN , 1.5 kN ,2.0 kN ,2.5 kN ,读出应变值10)实验结束。

纯弯曲梁上正应力测量实验

纯弯曲梁上正应力测量实验

纯弯曲梁上正应力测量实验一、实验目的1. 学习并掌握悬臂梁、在梁上测量正应力的原理和方法;2. 掌握应变片的使用方法,并能够对应变片测量结果进行处理和分析;3. 掌握数据测量和处理的方法。

二、实验原理1. 悬臂梁的基本原理悬臂梁是在一端固定,另一端悬挂自由的梁,通常用于测量其上部的受力情况。

当悬挂的重物作用在悬臂梁上时,梁会因受到弯曲而产生应力,该应力会在梁的顶端和底端产生反向的作用力,使得悬挂重物处的应力得以计算。

2. 在梁上测量正应力的原理和方法在梁上测量正应力的方法通常是利用应变片测量梁的应变,再通过材料的本构关系,将应变转换成应力。

通常情况下,对于悬臂梁而言,其应变受到压缩和拉伸的影响,因此需要使用两个应变片来分别测量这两个方向的应变。

3. 应变片的使用方法应变片通常是由两个细金属片组成的,其中一个片子是支撑物,用于将另一个片子粘贴到测量物体上。

应变片的测量原理是通过使用一个电桥,将应变片的电阻与一个标准电阻串联,进而测量应变片所处的电压。

这样,一旦应变片受到负载,其电阻发生变化,从而改变了电桥的输出电压。

最后,通过根据应变片材料的应变-电阻关系,得出测量值。

三、实验器材和材料2. 应变片;3. 电桥;4. 计算机和专业数据测量软件;5. 数据处理软件。

四、实验步骤1. 编写测量程序,将电桥的值与悬臂梁上的应变片数据记录下来;2. 使用数码示波器进一步测量电桥的输出电压,以确保精确的输入;3. 修改程序,以将使用应变片测量的应变转换为悬臂梁上的应力;4. 进行多组实验,并分别测量不同情况下悬臂梁的应变和应力;5. 通过悬臂梁的应变和应力,计算出悬挂重物的质量;6. 对实验数据进行处理和分析,撰写实验报告。

五、实验注意事项1. 在实验之前,必须一定要理解悬臂梁的测量原理和规律,并熟悉使用应变片进行测量的技术,以确保实验的准确性和可靠性;2. 实验中的数据处理要准确,需要了解数据处理的方法和技巧,以确保实验数据的准确性、真实性和可靠性;3. 实验的操作要小心谨慎,特别是接线和使用数码示波器等特殊器材的时候一定要严谨,以防止意外事故的发生。

纯弯曲梁的正应力测定的实验报告

纯弯曲梁的正应力测定的实验报告
试件尺寸
贴片位置
b
8
y3
0
h
16
y2(y4)
a
200
y1(y5)
3应变读数记录
读数A
应变片号
载荷
1
2
3
4
A
0
120
567
168
637
92
4500
0
7449
91
4
522
606
4500
7481
8
120
461
184
576
92
4500
0
7510
89
12
399
545
4500
7540
16
120
338
185
514
三.实验原理及方法:
梁受纯弯曲时,根据平面假设和纵向纤维间无挤压的假设,得纯弯曲时正应力公式:
图1
在矩形截面梁纯弯曲部分(见图1,CD段),贴有四个应变片,其中3在中性层上,1,2和4,5分别贴在离中性层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出个测量点的纵向应变 ,可确定横截面上正应力分布规律。
2:学习电测法。
主要实验仪器:1:弯曲试验装置。
2:电阻应变仪和预调平衡箱。
主要实验步骤:
一:取一矩形截面的等截面剪支梁AB,其上作用两个对称的集中力P/2,未加载前,在中间CD段表面画些平行于梁轴线的纵向线和垂直于梁轴线的横向线。加载后在梁的AC和DB两段内,各横截面上有不同的剪力和弯矩M。
二;在矩形截面梁弯曲部分,贴有四个应变片,其中3在中性层上,1,2,4,5分别在离中性层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出各测量点的纵向应变,可确定横截面上的应变分布规律。

纯弯曲梁正应力电测实验报告

纯弯曲梁正应力电测实验报告

纯弯曲梁正应力电测实验报告纯弯曲梁正应力电测实验是一种常用的材料力学实验方法,用于测量梁在弯曲过程中的正应力分布情况。

本实验通过加载施加在金属横截面上的外力,测量由于弯曲产生的电势差,从而得到梁在各个截面上的正应力大小。

下面是一份纯弯曲梁正应力电测实验报告的参考内容。

实验目的:1. 理解材料在弯曲过程中的正应力分布特性;2. 掌握纯弯曲梁正应力电测实验的原理和方法;3. 学习使用实验仪器和数据处理软件。

实验仪器:1. 弯曲实验台;2. 弯曲应变计;3. 电压采集仪;4. 电压放大器;5. 计算机。

实验原理:在纯弯曲梁实验中,通过加载施加在梁上的外力,梁发生弯曲变形。

根据材料力学理论,梁在弯曲过程中会产生正应力。

实验中利用弯曲应变计测量梁在各个截面上的应变大小。

弯曲应变计通过压电效应将应变转化为电荷,产生电势差。

通过电压采集仪和电压放大器将电势差放大并记录下来,就可以得到梁在各个截面上的正应力大小。

实验步骤:1. 将要进行实验的梁固定在弯曲实验台上,调整梁的位置和姿态,使其能够正常受力并产生弯曲变形;2. 将弯曲应变计安装在梁的截面上,保证其能够准确测量应变;3. 连接弯曲应变计和电压采集仪,调整采集仪的参数,使其能够正常采集电势差;4. 将电压采集仪与电压放大器连接,调整放大器的增益,保证能够得到合适范围的电压信号;5. 开始加载外力,在加载过程中,实时记录电压采集仪采集到的电势差数据;6. 加载外力达到一定值后停止,记录下此时的电势差数据。

数据处理:1. 将采集到的电势差数据导入计算机;2. 对电势差数据进行处理,根据电压放大器的增益和弯曲应变计的灵敏度,将电势差数据转换为应变数据;3. 根据应变计的位置和梁的材料参数,计算出各个截面上的应变值;4. 利用梁的几何参数和材料参数,计算出各个截面上的正应力大小。

实验结果:根据数据处理的结果,可以得到梁在各个截面上的正应力大小的分布情况。

通过绘制应力-位置曲线,可以直观地观察梁在弯曲过程中正应力的变化趋势,并分析其特点和规律。

纯弯曲梁的正应力实验报告

纯弯曲梁的正应力实验报告

姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。

采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。

四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。

3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。

按清零键,使测力计显示零。

4.应变仪调零。

按下“自动平衡”键,使应变仪显示为零。

5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。

用应变仪右下角的通道切换键来显示第5测点的读数。

以后,加力每次500N,到3000N 为止。

6.读完3000N应变读数后,卸下载荷,关闭电源。

六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。

纯弯曲梁正应力实验报告

纯弯曲梁正应力实验报告

纯弯曲梁正应力实验报告纯弯曲梁正应力实验报告引言:纯弯曲梁正应力实验是结构力学实验中的一项重要内容,通过对纯弯曲梁的加载和变形进行观察和测量,可以研究梁的正应力分布规律,探索材料的力学性质以及结构的强度和稳定性。

本实验旨在通过实际操作和数据分析,深入了解纯弯曲梁的正应力分布特点,并对实验结果进行讨论和总结。

实验目的:1. 了解纯弯曲梁的正应力分布规律;2. 掌握测量和计算纯弯曲梁的正应力的方法;3. 分析实验结果,验证理论计算和实验测量的一致性。

实验原理:纯弯曲梁在受到外力作用时,梁的上表面受到拉应力,下表面受到压应力,而中性轴上则不受应力。

根据梁的几何形状和材料特性,可以通过理论计算得到梁上各点的正应力大小。

实验装置:1. 纯弯曲梁实验台:用于支撑和加载梁;2. 弯曲梁加载装置:用于施加力矩,产生弯曲变形;3. 应变计:用于测量梁上各点的应变;4. 数据采集系统:用于记录和分析实验数据。

实验步骤:1. 将纯弯曲梁固定在实验台上,并调整加载装置,使其施加合适的力矩;2. 在梁上选择若干个测量点,安装应变计,并进行校准;3. 施加力矩后,使用数据采集系统实时记录梁上各点的应变数据;4. 停止加载后,记录应变计的读数,并进行数据处理和分析。

实验结果:通过实验测量和数据处理,得到了纯弯曲梁上各点的应变数据。

根据应变-应力关系,可以计算出相应点的正应力大小。

通过对实验结果的分析,可以得到纯弯曲梁的正应力分布规律,验证理论计算和实验测量的一致性。

讨论与分析:1. 实验结果与理论计算相比,是否存在较大的误差?如果有,可能的原因是什么?2. 实验中是否存在其他因素对结果产生影响?如温度变化、材料非均匀性等。

3. 在实际工程中,纯弯曲梁的正应力分布特点对结构设计和施工有何重要意义?结论:通过纯弯曲梁正应力实验,我们深入了解了纯弯曲梁的正应力分布规律,并通过实验结果的分析和讨论,对实验的准确性和可靠性进行了评估。

梁弯曲正应力电测实验报告

梁弯曲正应力电测实验报告
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε
式中E是梁所用材料的弹性模量。

图3-16
为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε
hhhh
y1?=15mm;y2?=;y3=0cm;y4????;y5????15mm;E=210Gpa。
2442
23
抗弯曲截面模量WZ=bh/6惯性矩JZ=bh/12
(2)应变?记录:
(3)取各测点?值并计算各点应力:
??1=16×10;??2=7×10;??3= 0;??4=8×10;??5=15×10;??1=E?1=;??2=E??2=;??3=0;
二、实验仪器和设备
1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。4、温度补偿块一块。三、实验原理和方法
弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:
×10-6=
??2=
×10=
-6
??3=
×10=
-6
??4=
×10-6=
??5=
×10-6=
六、计算结果
1.各点正应力增量??i实,理论值??i理及相对误差填入表4-4表4-4
2.实验所得横截面上正应力分布图
七、思考题
1.两个几何尺寸及受载情况完全相同的梁,但材料不同,试问在同一位置处测得的应变是否相同?应力呢?

纯弯曲梁正应力电测实验报告

纯弯曲梁正应力电测实验报告

纯弯曲梁正应力电测实验报告一、实验目的本次实验旨在通过纯弯曲梁正应力电测实验,掌握梁的正应力计算方法以及电阻应变计的使用方法,并了解梁的受力特性和变形规律。

二、实验原理1.梁的受力特性当梁受到外力作用时,会产生内部应力和变形。

根据材料力学原理,内部应力可以分为正应力和剪应力。

在纯弯曲情况下,梁内部只存在正应力,且沿截面法线方向呈线性分布。

2.电阻应变计电阻应变计是一种常用的测量金属材料应变的仪器。

当金属材料发生形变时,其电阻值也会发生微小变化。

通过测量这种微小变化来计算金属材料的应变值。

3.纯弯曲梁正应力计算公式在纯弯曲情况下,梁内部只存在正应力。

根据受拉或受压状态下截面上某点处的正应力公式:σ = M*y/I其中,σ为该点处的正应力;M为作用于该点处剪跨截面上侧边缘的弯矩;y为该点到中性轴的距离;I为该截面的惯性矩。

三、实验器材和试件1.器材:纯弯曲梁实验台、电阻应变计、数字万用表等。

2.试件:长度为1.2m,宽度为20mm,厚度为2mm的钢板梁。

四、实验步骤1.将钢板梁放置在纯弯曲梁实验台上,并调整好实验台的支承距离。

2.将电阻应变计粘贴在梁上,保证其与梁表面紧密贴合,并接好电路。

3.通过旋钮调节实验台施加的力矩大小,使得钢板梁发生一定程度的弯曲变形,并记录下此时电阻应变计显示的电压值。

4.重复以上步骤,每次增加一定大小的力矩,直至达到最大载荷或者出现塑性变形等异常情况。

5.根据所得到的数据,计算出不同载荷下钢板梁各点处的正应力值,并绘制出正应力-距离曲线图和载荷-挠度曲线图。

五、实验结果分析1.正应力-距离曲线图通过计算所得到的正应力-距离曲线图,可以看出钢板梁内部正应力随着距离的增加而减小,且呈线性分布。

在最大载荷下,梁中心处的正应力最大,约为200MPa。

2.载荷-挠度曲线图通过实验数据计算得到的载荷-挠度曲线图,可以看出钢板梁的弯曲刚度随着载荷的增加而降低。

当达到最大载荷时,梁发生塑性变形并无法恢复原状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梁纯弯曲正应力测定实验
(一)实验目的
*在承受纯弯曲的钢梁上,测取其横截面上各点的正应力,验证梁的正应力公式和观察应力的分布规律;
*熟悉电测初步知识和测量方法。

(二)实验原理
*试件、尺寸、设备——见系网页中“教学资源栏目”之“实验指导” *操作步骤、仪器使用(同上) (三)数据处理 *测量过程记录表
*注:应力平均值(增量)计算:=E 理论值计算:z
M y
I σ∆⋅∆=
,对应载荷增量∆F 所产生的弯矩:∆M=0.5∆F .a (四)思考题
*弯曲正应力的大小与材料的弹性模量E 是否有关?
*分析理论值计算与实验值产生的误差原因。

(列出可能的几种) *若在实验中出现与中性层对应的点的数值为“非零”,是什么原因?。

相关文档
最新文档