人教版高三数学专题总复习及参考答案
「精选」人教版最新高考数学总复习(各种专题训练)附参考答案-精选文档
第1讲集合第2讲(附参考答案)一.课标要求:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
二.命题走向有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。
考试形式多以一道选择题为主,分值5分。
预测2013年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。
具体题型估计为:(1)题型是1个选择题或1个填空题;(2)热点是集合的基本概念、运算和工具作用。
三.要点精讲1.集合:某些指定的对象集在一起成为集合。
a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作Ab∉;记作A(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
高三数学总复习专题6 解三角形(答案及解析)
高三数学总复习专题6 解三角形方法点拨1.对于解三角形中的简单的求边长、求角的题型,要求对正余弦定理熟悉以及对边角的互换灵活使用.2.解三角形的大题不仅需要对边与角的互换可以灵活使用,还要求对三角函数的恒等变换公式熟悉,涉及求面积、周长等的范围或最值问题时,一般考虑余弦定理结合基本不等式或利用正弦定理转化成三角函数求值域的问题. 3.若涉及三角形的中线问题则考虑使用向量进行处理.4.对于涉及角平分线的解三角形题型,一般可以考虑角平分线定理或列两个小三角形的面积等于大三角形的面积的方程进行处理.经典题汇编一、选择题.1.(江西省南昌市2021届高三一模)ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a =45B =︒,75C =°,则b =( )A .2BC .D .2.(四川省达州市2021-2022学年高三一模)ABC 中,1cos 4A =,2AB =,4BC =,则BC 边上的高为( )A B C D 3.(安徽省池州市2021届高三一模)如图所示,在四边形ABCD 中,AC =AD =CD =7,∠ABC =120°,sin ∠BAC 且BD 为∠ABC 的平分线,则BD =( )A .6B .9C .D .84.(青海省海东市2021届高三一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知3a =cos sin A a B =,则ABC 面积的最大值是( )A .2B .4C .8D .165.(安徽省合肥市2020-2021学年高三一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若sin 2sin 2sin cos a A c C b C A +=,则角A 的最大值为( ) A .6πB .4πC .3πD .23π 6.(多选)(广东省佛山市顺德区2022届高三一模)在ABC 中,A 、B 、C 所对的边为a 、b 、c ,设BC 边上的中点为M ,ABC 的面积为S ,其中a =2224b c +=,下列选项正确的是( )A .若3A π=,则S =B .S 的最大值为C .3AM =D .角A 的最小值为3π二、填空题.7.(宁夏中卫市2021届高三一模)如图,已知圆的半径为10,其内接三角形ABC 的内角A ,B 分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC 内的概率为_______.8.(广东省珠海市2021届高三一模)ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足()2cos cos tan tan B C B C +cos tan cos tan B B C C =+,则cos A 的最小值是___________.三、解答题.9.(四川省内江市高中2022届一模)在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,满足2cos cos cos a A b C c B =+.(1)求A 的大小;(2)若a =ABC 的面积为ABC 的周长.10.(江西省赣州市2021届高三3月一模)在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且sin 3c B π⎛⎫+= ⎪⎝⎭. (1)求角C ;(2)设5BC =,7AB =,若延长CB 到D ,使cos 7ADC ∠=,求CD 的长. 11.(四川省成都市2020-2021学年高三一模)在ABC 中,点M 在边AC 上,3CM MA =,tan ABM ∠=tan BMC ∠= (1)求角A 的大小;(2)若BM =,求ABC 的面积.12.(广东省佛山市顺德区2022届高三一模)在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,()sin sin sin A B C B -=-,角A 的角平分线交BC 于点D ,且3b =,5c =.(1)求角A 的大小; (2)求线段AD 的长.13.(福建省福州市2021届高三3月份一模)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos cos a b c B b C +=-. (1)求角C 的大小;(2)设CD 是ABC 的角平分线,求证:111CA CB CD+=. 14.(河南省鹤壁市2021届高三一模)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin sin b C a A b B c C +=+.(1)求A ;(2)设D 是线段BC 的中点,若2c =,AD =a .15.(贵州省盘州市2021届高三一模)在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且cos sin a B A =.(1)求B ; (2)已知23ACB π∠=,2AB =,延长BC 至D ,使得2CD BC =,求AD .16.(河南省郑州市2020-2021学年高三一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知45b c B ==∠=.(1)求边BC 的长﹔(2)在边BC 上取一点D ,使得4cos 5ADB ∠=,求sin DAC ∠的值.17.(湖南省湘潭市2021-2022学年高三上学期一模)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若40sin B c b -=.(1)求sin C 的值;(2)是否存在角A ,B (A B <),满足tan tan A B =若存在,求出A ,B 的值;若不存在,请说明理由.18.(广西柳州市2021届高三一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()()22222cos b c b a c abc C --+=.(1)求角A 的大小;(2)若3ABC π∠=,D 为ABC 外一点,2BD =,1CD =,四边形ABDC 的面积是24+,求BDC ∠的大小.19.(江苏省苏州市八校2020-2021学年高三一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知)()sin sin 1cos c os c A C c A C -=-. (1)求B 的值;(2)在①4ABC S =△,②4A π=,③2a c =这三个条件中任选一个,补充在下列问题中,并解决问题.若3b =,_______,求ABC 的周长.20.(湖南师范大学附属中学2021届高三一模)已知ABC 的内角A B C 、、所对的边分别是,,a b c ,在以下三个条件中任选一个:①22(sin sin )sin sin sin B C A B C -=-;②sin4A =;③sin sin 2B Cb a B +=.并解答以下问题: (1)若选___________(填序号),求A ∠的值;(2)在(1)的条件下,若(0)a b m m ==>,当ABC 有且只有一解时,求实数m 的范围及ABC 面积S 的最大值.21.(沭阳如东中学2021届高三一模)已知ABC 中,D 是AC 边的中点,且①3BA =;②BC =BD =60A ∠=︒.(1)求AC 的长;(2)BAC ∠的平分线交BC 于点E ,求AE 的长.上面问题的条件有多余,现请你在①,②,③,④中删去一个,并将剩下的三个作为条件解答这个问题,要求答案存在且唯一.你删去的条件是___________,请写出用剩余条件解答本题的过程.22.(江西省九江市2021届高三一模)ABC 中,,,a b c 分别为角,,A B C 的对边,已知()cos 3sin cos b c A b A a C +=-. (1)求角A ;(2)若ABC 为锐角三角形,求bc 的取值范围.23.(福建省龙岩市2021届高三一模)在①sin 3cos c B b C =,②232cos sin 22cos 2C C C π⎛⎫--= ⎪⎝⎭,③sin ABC S CA CB C =⋅⋅△.三个条件中任选一个,补充在下面的问题中,并解决该问题.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足,2c =. (1)求角C ;(2)求ABC 周长的取值范围.24.(贵州省贵阳市2021届高三一模)如图所示,在平面四边形ABCD (A ,C 在线段BD 异侧)中,6BAD π∠=,2BCD π∠=,3AB =4AD =.(1)求BD 的长;(2)请从下面的三个问题中任选一个作答:(作答时用笔在答题卡上把所选题目对应题号的方框填涂)①求四边形ABCD 的面积的取值范围; ②求四边形ABCD 的周长的取值范围;③求四边形ABCD 的对角线AC 的长的取值范围.25.(江苏省南通市学科基地2021届高三一模)在①2sin sin 2sin cos A B C B -=,②()()()sin sin sin a c A C B a b +-=-,③()1sin sin sin 2ABC S c a A b B c C =+-△这三个条件中任选一个,补充到下面的问题中并作答.问题:在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且___________. (1)求角C ;(2)若2c =,求2a b -的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、选择题. 1-5CCDBA 6.【答案】ABC【解析】对于A ,由余弦定理可得222122cos 24a b c bc A bc ==+-=-,得12bc =,故1sin 2S bc A ==,A 对;对于B ,由基本不等式可得22242b c bc =+≥,即12bc ≤,当且仅当b c ==由余弦定理可得22224126cos 22b c a A bc bc bc+--===,则11sin 22S bc A ====,B 对; 对于C ,AMB AMC π∠+∠=,则()cos cos cos AMB AMC AMC π∠=-∠=-∠,由余弦定理可得2224cos a AM c AMB AM a +-∠=⋅,2224cos a AM b AMC AM a+-∠=⋅, 所以,22222244a a AM c AM b AM a AM a+-+-=-⋅⋅,整理可得2222924b c a AM +=-=, 则3AM =,C 对;对于D ,由余弦定理可得2222212121cos 222b c a A bc bc b c +-==≥=+,当且仅当b c ==因为()0,A π∈且函数cos y x =在()0,π上单调递减,故03A π<≤,D 错,故选ABC . 二、填空题. 7. 【解析】在ABC 内,由正弦定理可得2sin sin BC AC R A B ==,即20sin 60sin 45BC AC==︒︒,解得BC=AC=故sin sin()sin(6045)sin60cos45cos60sin45C A B=+=︒+︒=︒︒+︒︒=,所以11sin3)22ABCS AC BC C=⋅⋅⋅=⨯=,又210100Sππ=⋅=圆,故豆子落在三角形ABC内的概率为)253100ABCSSπ==圆,故答案为34π+.8.【答案】12【解析】()sin sin2cos cos tan tan2cos coscos cosB CB C B C B CB C⎛⎫+=+⎪⎝⎭()2sin cos2sin cos2sin2sinB C C B B C A=+=+=,cos tan cos tan sin sinB BC C B C+=+,所以sin sin2sinB C A+=,由正弦定理得2b c a+=,由余弦定理得()22222222313112cos2284442b cb c b cb c a bcAbc bc bc bc+⎛⎫+- ⎪++-⎝⎭===-≥-=,当且仅当b c a==时取等号,此时3Aπ=,故答案为12.三、解答题.9.【答案】(1)3Aπ=;(2)10+【解析】(1)∵2cos cos cosa Ab Cc B=+,∴由正弦定理,得2sin cos sin cos sin cosA ABC C B=+,∴2sin cos sinA A A=,∵0A π<<,∴1cos 2A =,故3A π=.(2)由(1)知,3A π=,∵1sin 2ABCSbc A ==24bc =, ∵由余弦定理知2222cos a b c bc A =+-,∴2228b c bc +-=, 故()2100b c +=,∴10b c +=,故10a b c ++=+ ∴ABC的周长为10+10.【答案】(1)60C =︒;(2)10CD =. 【解析】(1)由正弦定理及条件得,1sin (sin )2C B B A =,即1sin (sin ))cos sin 2C B B B C B C B C +=+=+,整理得tan C =又C 为三角形内角,所以60C =︒.(2)在ABC 中,由余弦定理得225549AC AC +-=,解得8AC =,cos 7ADC ∠=,则sin 7ADC ∠==, ACD △中,1sin sin()sin cos cos sin 72CAD C D C D C D ∠=+=+=+= 由正弦定理得sin sin CD ACCAD ADC =∠∠147=, 所以10CD =. 11.【答案】(1)2π3A =;(2) 【解析】(1)∵tan BMC∠=,∴tan BMA∠=∵()() tan tanπtanA ABM BMA ABM BMA=-∠-∠=-∠+∠,∴tan tantan1tan tanABM BMAAABM BMA+∠+∠=-==-∠⋅∠∵0πA<<,∴2π3A=.(2)∵tan BMA∠=tan ABM∠=∴sin7BMA∠=,sin14ABM∠=.在ABM中,由正弦定理,得sin sinAB BMBMA A=∠,∴sinsinBM BMAABA⋅∠===∴ABM的面积11sin2214ABMS BM AB ABM=⋅⋅⋅∠==△.∵点M在边AC上,3CM MA=,∴ABC的面积4ABC ABMS S==△△12.【答案】(1)3Aπ=;(2)AD=.【解析】(1)在ABC中,()()sin sin sinC A B A Bπ=-+=+⎡⎤⎣⎦,因()sin sin sinA B C B-=-,则有sin cos cos sin sin cos cos sin sinA B A B A B A B B-=+-,即2cos sin sin 0A B B -=, 又sin 0B ≠,即有1cos 2A =, 而()0,A π∈,所以3A π=.(2)在ABC 中,由(1)知3A π=,因为AD 为角A 的角平分线,则有30BAD CAD ∠=∠=︒,由ABCABD ACD SSS=+得:11135sin 605sin 303sin 30222AD AD ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得AD =所以线段AD 的长为8. 13.【答案】(1)23C π=;(2)证明见解析. 【解析】(1)因为cos cos a b c B b C +=-, 由正弦定理得sin sin sin cos sin cos A B C B B C +=-, 因为sin()sin()sin B C A A π+=-=,所以sin()sin sin cos sin cos B C B C B B C ++=-,所以2sin cos sin 0B C B +=, 因为(0,)B π∈,所以sin 0B ≠,所以1cos 2C =-, 又(0,)C π∈,所以23C π=. (2)因为CD 是ABC 的角平分线,且23C π=,所以3ACD BCD π∠=∠=. 在ABC 中,ABC ACD BCD S S S =+△△△, 则由面积公式得1211sinsin sin 232323CA CB CA CD CD CB πππ⋅=⋅+⋅, 即CA CB CA CD CD CB ⋅=⋅+⋅, 两边同时除以CA CB CD ⋅⋅,得111CA CB CD+=.14.【答案】(1)3π;(2).【解析】(1)根据正弦定理,由sin sin sin sin b C a A b B c C +=+可得222bc a b c +=+, 即222bc b c a =+-,由余弦定理可得2221cos 22b c a A bc +-==, 因为A 为三角形内角,所以3A π=.(2)因为D 是线段BC 的中点,2c =,AD = 所以ADB ADC π∠+∠=,则cos cos 0ADB ADC ∠+∠=,所以222222022AD BD AB AD DC AC AD BD AD DC+-+-+=⋅⋅,即22221321344022a ab a a +-+-+=,整理得22244a b =-, 又22222cos 42a bc bc A b b =+-=+-,所以2242244b b b +-=-,解得6b =或8b =-(舍), 因此2224428a b =-=,所以a = 15.【答案】(1)6π;(2)2.【解析】(1)由cos sin a B A =及正弦定理,得sin cos sin A B B A =, 由0A π<<,得sin 0A >,所以cos B B =,即tan B =, 由0B π<<,得6B π=.(2)在ABC 中,由正弦定理,得sin sin AB ACACB B=∠,则2sinsin 62sin sin 3AB B AC ACB ππ∠=== 又2366BAC ACB B πππππ∠=-∠-∠=--=,6B π∠=,所以ABC为等腰三角形,从而3BC AC ==,23CD BC ==. 在ACD △中,233ACD ACB ππ∠π∠π=-=-=,由余弦定理,得2AD ===. 16.【答案】(1)3BC =;(2)25. 【解析】在ABC中,因为b =c =45B ∠=︒, 由余弦定理2222cos b a c ac B =+-,得25222a a =+-⨯, 所以2230a a --=,解得3a =或1a =-(舍), 所以3BC =.(2)在ABC 中,由正弦定理sin sin b cB C=,得sin 45sin C =︒,所以sin 5C =, 在ADC 中,因为()5co 4c s os 180cos A D DB ADB A C -∠=-=∠=-∠, 所以ADC ∠为钝角.而180ADC C CAD ∠+∠+∠=,所以C ∠为锐角,故cos C ==因为4cos 5ADC ∠=-,所以3sin 5ADC ∠===, ())sin sin 180sin(DAC ADC C ADC C ∠=-∠-∠=∠+∠34sin cos cos sin 55ADC C ADC C =∠∠+∠∠=-=17.【答案】(1)4;(2)存在,4A π=,3B π=. 【解析】(1)因为40sin B c b -=,由正弦定理,得40sin sin sin C B B -=, 又因为02B π<<,所以sin 0B ≠,故sin C =(2)假设存在角A ,B (A B <),满足tan tan A B =由sin C =02C π<<,可得tan 2C =, 因为A B C π+=-,所以()tan 2A B +=- 由()tan 2tan tan ta tan 1n A BB A BA ++==--tan ta 1n A B +=由tan tan tan tan 1A B A B ⎧=⎪⎨+=+⎪⎩A B <,解得tan 1A =,tan B = 从而4A π=,3B π=,故存在4A π=,3B π=满足题意.18.【答案】(1)3A π=;(2)56π.【解析】(1)()()22222cos b c b a c abc C --+=,∴()()2222cos 2b c b c a a C bc-+-=,由余弦定理可得()2cos cos b c A a C -=,由正弦定理可得2sin cos sin cos sin cos B A C A A C -=,A B C π++=,∴()2sin cos sin cos cos sin sin sin B A C A C A C A B =+=+=,sin 0B ≠,∴1cos 2A =, 由()0,A π∈,则3A π=.(2)如图,在BCD 中,2BD =,1CD =,由余弦定理得:22212212cos 54cos BC D D =+-⨯⨯=-,3A B π==,∴3C π=,ABC ∆为等边三角形,∴21sin 23ABC S BC D π=⨯⨯=△, 1=sin sin2BDCSBD DC D D ⨯⨯⨯=,∴2sin 2sin 3ABDC S D D D π⎛⎫=+=+-= ⎪⎝⎭四边形, ∴sin()13D π-=, (0,)D π∈,即56D π=.19.【答案】(1)3π;(2)若选择①,ABC 的周长为9.若选择②,ABC 的周长为62+.若选择③,ABC 的周长为3.【解析】(1)因为)()sin sin 1cos c os c A C c A C -=-,利用正弦定理边化角可得)()n sin sin si sin 1cos cos B C A C C A C -=-, 因为(0,)C π∈,所以sin 0C ≠,n sin si 1cos cos B C A A C -=-,即cos cos sin sin 1A C C A B -+=,所以cos()1A C B +=, 又A B C π++=,则A C B π+=-, 所以cos()cos()cos A C B B π+=-=-,cos 1B B -=,即1sin()62B π-=,因为(0,)B π∈,则5(,)666B πππ-∈-,所以66B ππ-=或566B ππ-=(舍),解得3B π=. (2)若选择①,则1sin 2ABCSac B ==,所以9ac =, 又22222()21cos 222a c b a c ac b B ac ac +-+--===,且3b =,所以2()1891182a c +--=,解得6a c +=,所以ABC 的周长639=+=.若选择②:因为sin sin a b A B=,所以3sin sin b Aa B ===又22221cos 22a cb B ac +-===, 因为0c >,解得2c +=, 所以ABC的周长6322=+=. 若选择③:22222491cos 2222a cbc c B ac c c +-+-===⨯⨯, 因为0c >,解得c =2a c == 所以ABC的周长33=.20.【答案】(1)条件选择见解析;60A =;(2)({}2m ∈,max 4S =. 【解析】(1)若选①,由已知化简得222sin sin sin sin sin B C A B C +-=, 由正弦定理得222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==, 因为0180A ︒︒<<,所以60A =︒.若选②,由二倍角公式2cos12sin 24A A =-=,故21cos 2cos 122A A =-=, 因为0180A ︒︒<<,所以60A =︒.若选③,由题设及正弦定理得sin sinsin sin 2B CB A B +=, 因为0180A ︒︒<<,sin 0B ≠,所以sin sin 2B CA +=,由180A B C ++=,可得sin cos 22B C A +=,故cos 2sin cos 222A A A=,因为0902A ︒<<︒,cos 02A ≠,故1sin ,22A =26A π=,因此60A =︒.(2)由已知60A =︒,当ABC 有且只有一解时,sin a b A =或a b ≥,sin 3m π=0m >,故2m =或0m <≤({}2m ∴∈,①当2m =时,ABC 为直角三角形,B 为直角,2,2sin 60b a ==︒=1c =,所以111222S ac ==⋅=;②当0m <≤3,3a A π==,由余弦定理可得2222cos 2a b c bc A bc bc bc =+-≥-=,3bc ∴≤,当且仅当b c =时等号成立,∴三角形面积为11sin 322S bc A =≤⨯=,即ABC 面积的最大值max S =,综上,ABC 面积的最大值max 4S =.21.【答案】删去条件见解析;(1)2;(2)5. 【解析】删①.(1)设,AD CD x BA y ===,在ABD △中,由余弦定理可得227x y xy +-=, 在ABC 中,由余弦定理可得22427x y xy +-=,联立方程解得1,3x y ==,所以3,2BA AC ==. (2)设AE m =,则由ABEACEABCSSS+=,得1113sin 302sin 3032sin 60222m m ⨯︒+⨯︒=⨯⨯︒,解得m =. 删②,则在ABD △中,由余弦定理有2222cos BD AB AD AB AD A =+-⋅⋅, 即2796cos60AD AD =+-⋅︒,解得1AD =或2AD =, 则2AC =或4,有2解,不满足题意. 删③,在ABC 中,由余弦定理可得2222cos BC AB AC AB AC A =+-⋅⋅, 即2796cos60AC AC =+-⋅,解得1AC =或2,有2解,不满足题意. 删④.(1)设AD CD x ==,在ABD △中,由余弦定理有22222cos2BD AD AB ADB BD AD ∠+-===⋅,同理,在BCD △中,cosCDB ∠=,cos cos ADB CDB ∠∠=-,2=,解得1x =,2AC ∴=. (2)设AE m =,则由ABEACEABCSSS+=,得1113sin 302sin 3032sin 60222m m ⨯︒+⨯︒=⨯⨯︒,解得5m =. 22.【答案】(1)3π;(2)1,22⎛⎫ ⎪⎝⎭. 【解析】(1)由正弦定理得(sin sin )cos sin sin cos B C A B A A C +=-,所以sin cos sin cos cos sin sin B A C A C A B A ++=,即sin cos sin()sin B A A C B A ++=,因为sin()sin A C B +=,所以sin cos sin sin B A B B A +=, 因为sin 0B >,所以cos 1A A +=, 所以1sin()62A π-=,因为(66A ππ-∈-,5)6π,所以66A ππ-=,所以3A π=. (2)1sin sin sin()122sin sin sin 2C Cb B A Cc C C C +====+, 因为ABC 为锐角三角形,所以02C π<<,232B C ππ=-<, 所以62C ππ<<,所以tan C >,所以112222tan C <+<,即b c 的取值范围是1,22⎛⎫⎪⎝⎭. 23.【答案】(1)条件性选择见解析,3C π=;(2)(4,6].【解析】(1)选①,sin cos c B C =,由正弦定理得sin sin cos C B B C =,因为sin 0B >,所以sin C C =,即tan C = 由C 为三角形内角得,3C π=.选②,232cos sin(2)2cos 2C C C π--=, 22cos cos 22cos C C C +=,整理得1cos 2C =, 由C 为三角形内角得3C π=.选③,sin cos sin ABC S CA CB C ba C C =⋅⋅=△,由三角形面积公式得1cos sin sin 2ab C C ab C =,故1cos 2C =, 由C 为三角形内角得,3C π=.(2)因为2c =,由余弦定理得2222cos c a b ab C =+-,故24()3a b ab =+-, 所以22()4343()2a b a b ab ++=+≤+⨯,当且仅当a b =时取等号,解得4a b +≤,因为2a b c +>=,故24a b <+≤, ABC 周长a b c ++的取值范围(4,6].24.【答案】(1)2;(2)答案见解析.【解析】(1)在ABD 中,6BAD π∠=,AB =4AD =,2222cos 4BD AD AB AD AB BAD ∴=+-⋅⋅∠=,2BD ∴=.(2)由(1)知222AB BD AD +=,2ABD π∴∠=, 令CBD θ∠=,由2BCD π∠=,0,2πθ⎛⎫∴∈ ⎪⎝⎭, 则2cos BC θ=,2sin CD θ=.若选①:112sin 2cos 2sin 222ABCD ABD BCD S S S θθθ∆∆=+=⨯⋅+⨯=+0,2πθ⎛⎫∈ ⎪⎝⎭,∴由0sin 21θ<≤,可知四边形ABCD 的面积的取值范围是(+. 若选②:2sin 2cos 444ABCD C AB BC CD DA πθθθ⎛⎫=+++=++=++ ⎪⎝⎭,0,2πθ⎛⎫∈ ⎪⎝⎭,sin 124πθ⎛⎫∴<+≤ ⎪⎝⎭,64ABCD C ∴+<≤,∴四边形ABCD 的周长的取值范围是(64⎤⎦+. 若选③:2222cos AC AB BC AB BC ABC =+-⋅⋅∠2124cos 22cos cos 2πθθθ⎛⎫=+-⨯⋅+ ⎪⎝⎭2cos 4cos 1222cos 214θθθθθ=⋅++=++2214θθ⎫=++⎪⎪⎭,令sinϕ=cos ϕ=,0,2πϕ⎛⎫∈ ⎪⎝⎭, 则()2214AC θϕ=++, 又0,2πθ⎛⎫∈ ⎪⎝⎭,2ϕθϕπϕ∴<+<+,()sin 2113θϕ∴-<+≤,21214AC ∴<≤,1AC ∴<≤,∴四边形ABCD 的对角线AC 的长的取值范围是(1⎤⎦. 25.【答案】条件选择见解析;(1)3C π=;(2)()2,4-.【解析】(1)选择条件①: 解法一:因为2sin sin 2sin cos A B C B -=,所以()2sin sin 2sin cos B C B C B +-=,即2sin cos sin B C B =. 因为sin 0B ≠,所以1cos 2C =.又()0,C π∈,所以3C π=.解法二:因为2sin sin 2sin cos A B C B -=,所以222222a c b a b c ac+--=⋅, 即222c a b ab =+-,所以2221cos 222a b c ab C ab ab +-===. 又()0,C π∈,所以3C π=.选择条件②: 因为()()()sin sin sin a c A C B a b +-=-,所以()()()a c a c b a b +-=-,即222c a b ab =+-,所以2221cos 222a b c ab C ab ab +-===, 又()0,C π∈,所以3C π=.选择条件③: 因为()1sin sin sin 2ABC S c a A b B c C =+-△,所以()i 1sin s n s s 12i in 2n C A B C ab c a b c =+-,从而222ab a b c =+-,所以2221cos 222a b c ab C ab ab +-===, 又()0,C π∈,所以3C π=.(2)因为2c =,所以2sin 3sin 3c C π==,从而2sin sin 33333a b A B A A π⎛⎫-=-=-+ ⎪⎝⎭2cos 4sin 6A A A π⎛⎫=-=- ⎪⎝⎭, 因为203A π<<,所以662A πππ-<-<, 从而1sin 126A π⎛⎫-<-< ⎪⎝⎭,所以2a b -的取值范围为()2,4-.。
2020-2021学年人教版 高三数学复习《2.7 函数及其表示》练习及解析答案
第七节 幂函数一、基础知识考点一 幂函数的图象与性质[典例] (1)幂函数y =f (x )的图象经过点(3,33),则f (x )是( )A .偶函数,且在(0,+∞)上是增函数B .偶函数,且在(0,+∞)上是减函数C .奇函数,且在(0,+∞)上是增函数D .非奇非偶函数,且在(0,+∞)上是减函数 (2)已知幂函数f (x )=(n 2+2n -2)x 23-n n(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n的值为( )A .-3B .1C .2D .1或2[题组训练]1.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的为( ) A .y =x -4 B .y =x -1 C .y =x 2D .y =x 132.已知当x ∈(0,1)时,函数y =x p 的图象在直线y =x 的上方,则p 的取值范围是________.考点二 比较幂值大小[典例] 若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <a D .b <a <c[题组训练]1.若a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a2.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. [课时跟踪检测]1.若幂函数y =f (x )的图象过点(4,2),则f (8)的值为( ) A .4 B. 2 C .2 2 D .12.若幂函数f (x )=x k 在(0,+∞)上是减函数,则k 可能是( ) A .1 B .2 C.12D .-13.已知幂函数f (x )=(m 2-3m +3)x m+1为偶函数,则m =( )A .1B .2C .1或2D .34.已知幂函数f (x )的图象过点⎝⎛⎭⎫2,14,则函数g (x )=f (x )+x24的最小值为( ) A .1 B .2 C .4D .65.幂函数y =x |m -1|与y =x 23-m m (m ∈Z)在(0,+∞)上都是增函数,则满足条件的整数m 的值为( )A .0B .1和2C .2D .0和36.已知a =345,b =425,c =1215,则a ,b ,c 的大小关系为( ) A .b <a <c B .a <b <c C .c <b <aD .c <a <b7.设x =0.20.3,y =0.30.2,z =0.30.3,则x ,y ,z 的大小关系为( ) A .x <z <y B .y <x <z C .y <z <x D .z <y <x8.已知幂函数f (x )=(m -1)2x242-+m m 在(0,+∞)上单调递增,函数g (x )=2x -k ,当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]9.若f (x )是幂函数,且满足f (9)f (3)=2,则f ⎝⎛⎭⎫19=________. 10.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在(0,+∞)上为增函数,则实数m 的值是________. 11.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2,则f (x ),g (x ),h (x )的大小关系是________________.12.已知幂函数f (x )=x 12-,若f (a +1)<f (10-2a ),则a 的取值范围是________.13.已知幂函数f (x )=x ()21-+m m (m ∈N *)的图象经过点(2,2).(1)试确定m 的值;(2)求满足条件f (2-a )>f (a -1)的实数a 的取值范围.第七节 幂函数(答案)一、基础知识1.幂函数的概念 一般地,形如y =x α(α∈R)的函数称为幂函数,其中底数x 是自变量,α为常数. 幂函数的特征(1)自变量x 处在幂底数的位置,幂指数α为常数;(2)x α的系数为1;(3)只有一项. 2.五种常见幂函数的图象与性质 函数特征性质 y =x y =x 2 y =x 3y =x 12y =x -1图象定义域 R R R {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增(-∞,0)减, (0,+∞)增增 增(-∞,0)和 (0,+∞)减公共点(1,1)二、常用结论对于形如f (x )=x nm (其中m ∈N *,n ∈Z ,m 与n 互质)的幂函数:(1)当n 为偶数时,f (x )为偶函数,图象关于y 轴对称; (2)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称;(3)当m 为偶数时,x >0(或x ≥0),f (x )是非奇非偶函数,图象只在第一象限(或第一象限及原点处).考点一 幂函数的图象与性质[典例] (1)(2019·赣州阶段测试)幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数 (2)已知幂函数f (x )=(n 2+2n -2)x23-n n (n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n的值为( )A .-3 B .1 C .2 D .1或2[解析] (1)设f (x )=x α,将点(3,33)代入f (x )=x α,解得α=13,所以f (x )=x 13,可知函数f (x )是奇函数,且在(0,+∞)上是增函数,故选C.(2)∵幂函数f (x )=(n 2+2n -2)x23-n n在(0,+∞)上是减函数,∴⎩⎪⎨⎪⎧n 2+2n -2=1,n 2-3n <0,∴n =1,又n =1时,f (x )=x -2的图象关于y 轴对称,故n =1.[答案] (1)C (2)B[解题技法] 幂函数y =x α的主要性质及解题策略(1)幂函数在(0,+∞)内都有定义,幂函数的图象都过定点(1,1).(2)当α>0时,幂函数的图象经过点(1,1)和(0,0),且在(0,+∞)内单调递增;当α<0时,幂函数的图象经过点(1,1),且在(0,+∞)内单调递减.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.(4)幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.[题组训练] 1.[口诀第3、4、5句]下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的为( ) A .y =x -4B .y =x -1C .y =x 2D .y =x 13解析:选A 函数y =x-4为偶函数,且在区间(0,+∞)上单调递减;函数y =x-1为奇函数,且在区间(0,+∞)上单调递减;函数y =x 2为偶函数,且在区间(0,+∞)上单调递增;函数y =x 13为奇函数,且在区间(0,+∞)上单调递增.2.[口诀第2、3、4句]已知当x ∈(0,1)时,函数y =x p 的图象在直线y =x 的上方,则p 的取值范围是________. 解析:当p >0时,根据题意知p <1,所以0<p <1;当p =0时,函数为y =1(x ≠0),符合题意;当p <0时,函数y =x p 的图象过点(1,1),在(0,+∞)上为减函数,符合题意.综上所述,p 的取值范围是(-∞,1).答案:(-∞,1)考点二 比较幂值大小[典例] 若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <a D .b <a <c[解析] 因为y =x 23在第一象限内是增函数,所以a =⎝⎛⎭⎫1223>b =⎝⎛⎭⎫1523,因为y =⎝⎛⎭⎫12x 是减函数,所以a =⎝⎛⎭⎫1223<c =⎝⎛⎭⎫1213,所以b <a <c .[答案] D [题组训练] 1.若a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >b D .b >c >a解析:选B 因为y =x 25在第一象限内为增函数,所以a =⎝⎛⎭⎫3525>c =⎝⎛⎭⎫2525,因为y =⎝⎛⎭⎫25x 是减函数,所以c =⎝⎛⎭⎫2525>b =⎝⎛⎭⎫2535,所以a >c >b . 2.若(a +1)12<(3-2a )12,则实数a 的取值范围是________.解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23. 答案:⎣⎡⎭⎫-1,23 [课时跟踪检测] 1.若幂函数y =f (x )的图象过点(4,2),则f (8)的值为( )A .4 B. 2 C .2 2 D .1解析:选C 设f (x )=x n,由条件知f (4)=2,所以2=4n,n =12,所以f (x )=x 12,f (8)=812=2 2.2.若幂函数f (x )=x k 在(0,+∞)上是减函数,则k 可能是( )A .1B .2 C.12 D .-1 解析:选D 由幂函数的性质得k <0,故选D.3.已知幂函数f (x )=(m 2-3m +3)x m+1为偶函数,则m =( )A .1 B .2 C .1或2 D .3解析:选A ∵函数f (x )为幂函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件;当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.4.(2018·邢台期末)已知幂函数f (x )的图象过点⎝⎛⎭⎫2,14,则函数g (x )=f (x )+x24的最小值为( ) A .1 B .2 C .4 D .6解析:选A 设幂函数f (x )=x α. ∵f (x )的图象过点⎝⎛⎭⎫2,14,∴2α=14,解得α=-2. ∴函数f (x )=x -2,其中x ≠0. ∴函数g (x )=f (x )+x 24=x -2+x 24=1x 2+x 24≥21x 2·x 24=1, 当且仅当x =±2时,g (x )取得最小值1. 5.(2019·安徽名校联考)幂函数y =x |m -1|与y =x 23-m m (m ∈Z)在(0,+∞)上都是增函数,则满足条件的整数m 的值为( )A .0B .1和2C .2D .0和3 解析:选C 由题意可得⎩⎪⎨⎪⎧|m -1|>0,3m -m 2>0,m ∈Z ,解得m =2.6.已知a =345,b =425,c =1215,则a ,b ,c 的大小关系为( ) A .b <a <c B .a <b <c C .c <b <aD .c <a <b解析:选C 因为a =8115,b =1615,c =1215,由幂函数y =x 15在(0,+∞)上为增函数,知a >b >c7.设x =0.20.3,y =0.30.2,z =0.30.3,则x ,y ,z 的大小关系为( )A .x <z <yB .y <x <zC .y <z <xD .z <y <x 解析:选A 由函数y =0.3x 在R 上单调递减,可得y >z .由函数y =x 0.3在(0,+∞)上单调递增,可得x <z .所以x <z <y .8.已知幂函数f (x )=(m -1)2x242-+m m 在(0,+∞)上单调递增,函数g (x )=2x -k ,当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选D ∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x -2在(0,+∞)上单调递减,不满足条件.若m =0,则f (x )=x 2在(0,+∞)上单调递增,满足条件,即f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4);当x ∈[1,2)时,g (x )∈[2-k,4-k ),即B =[2-k,4-k ).∵A ∪B =A ,∴B ⊆A ,∴2-k ≥1且4-k ≤4,解得0≤k ≤1.9.若f (x )是幂函数,且满足f (9)f (3)=2,则f ⎝⎛⎭⎫19=________. 解析:设f (x )=x α,∵f (9)f (3)=9α3α=3α=2,∴f ⎝⎛⎭⎫19=⎝⎛⎭⎫19α=⎝⎛⎭⎫132α=132α=122=14.答案:14 10.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在(0,+∞)上为增函数,则实数m 的值是________.解析:由f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3.又f (x )在(0,+∞)上是增函数,所以m =3.答案:311.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2,则f (x ),g (x ),h (x )的大小关系是________________.解析:分别作出y =f (x ),y =g (x ),y =h (x )的图象如图所示,可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )12.(2019·银川模拟)已知幂函数f (x )=x12-,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:由题意得,幂函数f (x )=x -12的定义域为(0,+∞),且函数f (x )在(0,+∞)上单调递减,由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧a +1>10-2a ,a +1>0,10-2a >0,解得3<a <5.答案:(3,5)13.已知幂函数f (x )=x()21-+m m (m ∈N *)的图象经过点(2,2).(1)试确定m 的值;(2)求满足条件f (2-a )>f (a -1)的实数a 的取值范围. 解:(1)∵幂函数f (x )的图象经过点(2,2),∴2=2()21-+m m ,即212=2()21-+m m .∴m 2+m =2,解得m =1或m =-2.又∵m ∈N *,∴m =1.(2)由(1)知f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1),得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎡⎭⎫1,32.。
(江苏专用)高考数学总复习 专题1.1 集合试题(含解析)-人教版高三全册数学试题
专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
(上海专用)高考数学总复习 专题07 不等式分项练习(含解析)-人教版高三全册数学试题
第七章不等式一.基础题组1. 【2017高考某某,3】不等式11x x-> 的解集为 . 【答案】(),0-∞ 【解析】不等式即:1110x--> , 整理可得:10x-> , 解得:0x < ,不等式的解集为:(),0-∞ .2.【2016高考某某文数】若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.【答案】2-【考点】线性规划及其图解法【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目来看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.3. 【2015高考某某文数】若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数y x z 2+=的最大值为.【答案】3【解析】不等式组表示的平面区域如图OAB ∆(包括边界),联立方程组⎩⎨⎧=+=2y x xy ,解得⎩⎨⎧==11y x ,即)1,1(A , 平移直线02=+y x 当经过点A 时,目标函数y x z 2+=的取得最大值,即321max =+=z .【考点定位】不等式组表示的平面区域,简单的线性规划.【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 4. 【2015高考某某文数】下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D.218322>+++x x x 【答案】B【考点定位】同解不等式的判断.【名师点睛】求解本题的关键是判断出022)1(3222>≥++=++x x x . 本题也可以解出各个不等式,再比较解集.此法计算量较大.5. 【2014某某,理5】 若实数x,y 满足xy=1,则2x +22y 的最小值为______________.【答案】22【解析】22222222222x y x y xy +≥⋅=⋅=,当且仅当222x y =时等号成立. 【考点】基本不等式. 6. 【2013某某,文1】不等式21xx -<0的解为______. 【答案】0<x <12【解析】x (2x -1)<0⇒x ∈(0,12). 7. 【2013某某,文13】设常数a >0.若9x +2a x≥a +1对一切正实数x 成立,则a 的取值X 围为______. 【答案】[15,+∞) 【解析】考查均值不等式的应用.由题知,当x >0时,f (x )=9x +2a x ≥229a x x⨯=6a ≥a +1⇒a ≥15.8. 【2012某某,文10】满足约束条件|x |+2|y |≤2的目标函数z =y -x 的最小值是__________. 【答案】-29. 【2011某某,理4】不等式13x x+≤的解为______. 【答案】x <0或12x ≥ 【解析】10. 【2011某某,理15】若a ,b ∈R ,且ab >0.则下列不等式中,恒成立的是( )A .a 2+b 2>2ab B .2a b ab +≥C.11 a b ab+> D .2b a a b +≥ 【答案】D 【解析】11. 【2011某某,文6】不等式1<1x的解为________. 【答案】{x |x <0或x >1} 【解析】12. 【2011某某,文9】若变量x,y满足条件30350x yx y-≤⎧⎨-+≥⎩,则z=x+y的最大值为________.【答案】5 2【解析】13. 【2010某某,理1】不等式042>+-xx的解集为_______________; 【答案】)2,4(-【点评】本题考查分式不等式的解法,常规方法是化为整式不等式或不等式组求解. 14. 【2010某某,文14】将直线l 1:nx +y -n =0、l 2:x +ny -n =0(n ∈N *,n ≥2)、x 轴、y 轴围成的封闭图形的面积记为S n ,则lim n →∞S n =________.【答案】1【解析】如图阴影部分为直线l 1,l 2与x 轴、y 轴围成的封闭图形.∴S阴=S △OAM +S △OCM =12×|OA |×|y M |+12|OC |×|x M |=12×1×1n n ++12×1×1n n +=1nn +. ∴lim n →∞S n =limn →∞1n n +=lim n →∞111n+=1. 15. 【2010某某,文15】满足线性约束条件232300x y x y x y +≤⎧⎪+≤⎪⎪≥⎨⎪≥⎪⎪⎩的目标函数z =x +y 的最大值是( )A .1 B. 32C .2D .3 【答案】C【解析】如图为线性可行域由2323x y x y +=⎧⎨+=⎩求得C (1,1),目标函数z 的几何意义为直线在x 轴上的截距.画出直线x +y =0,平移,可知:当直线过C (1,1)时目标函数取得最大值,即z max =1+1=2.16. (2009某某,理11)当 0≤x≤1时,不等式kx x≥2sin π成立,则实数k 的取值X 围是____________. 【答案】k≤1【解析】∵0≤x≤1时,不等式kx x≥2sin π成立,设2sinx y π=,y=kx ,做出两函数的图象,∴由图象可知,当k≤1时,kx x≥2sinπ17. (2009某某,文7)已知实数x 、y 满足⎪⎩⎪⎨⎧≤-≥≤,3,2,2x x y x y 则目标函数z=x-2y 的最小值是_________. 【答案】-918. 【2008某某,理1】不等式|1|1x -<的解集是.19. 【2007某某,理5】已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____20. 【2007某某,理13】已知,a b 为非零实数,且a b <,则下列命题成立的是 A 、22a b < B 、22ab a b < C 、2211ab a b< D 、b aa b <21. 【2007某某,理15】已知()f x 是定义域为正整数集的函数,对于定义域内任意的k ,若 ()2f k k ≥成立,则()()211f k k +≥+成立,下列命题成立的是A 、若()39f ≥成立,则对于任意1k ≥,均有()2f k k ≥成立;B 、若()416f ≥成立,则对于任意的4k ≥,均有()2f k k <成立;C 、若()749f ≥成立,则对于任意的7k <,均有()2f k k <成立;D 、若()425f =成立,则对于任意的4k ≥,均有()2f k k ≥成立。
人教A版数学课本优质习题总结训练-必修二参考答案-2025届高三数学一轮复习
人教A 版数学课本优质习题总结训练——必修二参考答案:1.A【分析】设AB 中点为D ,确定AO AD =,ABO 为正三角形,再计算向量的投影得到答案.【详解】设AB 中点为D ,则22AO AB AC AD =+= ,即AO AD =,故BC 边为圆O 的直径,则AO OB =,又AO AB = ,则ABO 为正三角形,则有12BA BC = ,向量BA 在向量BC 上的投影向量1cos604BC BA BC BC ︒⨯=,故选:A2.OD OA OB OC=-+ 【解析】由OD OA AD =+ ,AD BC = ,BC OC OB =-,即可得到结论.【详解】OD OA AD OA BC OA OC OB OA OB OC =+=+=+-=-+.【点睛】本题考查向量加法,向量减法,属于基础题.3.(1(2)合理【分析】(1)结合图形作辅助线在直角三角形中求解;(2)根据平面向量基本定理,12,e e作为一组基底,则平面内任意向量都有唯一有序数对(),x y 使得12OP xe ye =+.【详解】解:(1)建立如图所示的直角坐标系,将OP分解到Ox '轴和Oy '轴可求得|||4PM OM ==,所以||OP ==.(2)12,e e 作为一组基底,对于任意向量12,,OP xe ye x y =+都是唯一确定的,所以本题中对向量坐标的规定合理.【点睛】此题考查平面向量基本运算,涉及数形结合处理模长问题,对平面向量基本定理辨析4.2【分析】利用平面向量基本定理表示出AO,列方程组即可求解.【详解】因为点O 是BC 的中点,所以1111=2222AO AB AC mAM nAN =++ .而M 、N 、O 三点共线,所以()1AO t AM t AN =+-,则有122112m t m n n t ⎧=⎪⎪⇒+=⎨⎪=-⎪⎩5.()()sin sin -sin -h ααγβγα=【详解】主要考查正弦定理的应用.解:在ABP 中,180+ABP γβ∠=- ,()()()180- 180-180+ =-BPA ABP αβαβγβγα∠=--∠=--- .在ABP 中,根据正弦定理,()()()()sin sin sin -sin 180+αsin -sin -AP ABABP APBAP AP αγαγβγβγα=∠∠=-⨯=所以山高为()()sin sin -sin sin -h AP ααγβαγα==.6.D 【分析】由0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭可得AB AC =,再由12AB AC AB AC ⋅=可求出A ∠,即得三角形形状.【详解】因为||AB AB 和AC ACuuu r uuu r 分别表示向量AB 和向量AC 方向上的单位向量,由0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭,可得A ∠的角平分线与BC 垂直,所以ABC 为等腰三角形,且AB AC =,22||||cos AB AC AB AC A ⋅=⋅⋅12AC AC = ,所以1cos 2A Ð=,又()0,πA ∠∈,所以π3A ∠=,所以π3B C A ∠=∠=∠=,所以三角形为等边三角形.故选:D .7.C【详解】试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++= ,则NA NB NC +=- ,取AB 的中点E ,则2N A N B N E C N +=-= ,所以2NE CN = ,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅= ,即0AC PB ⋅= ,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.8.tan sin sin()s θβαβ⋅+【详解】在△BCD 中,CBD παβ∠=--.由正弦定理得,sin sin BC CDBDC CBD=∠∠所以sin sin CD BDC BC CBD∠=∠sin .sin()s βαβ⋅=+在Rt △ABC 中,tan AB BC ACB=∠tan sin .sin()s θβαβ⋅=+塔高AB 为tan sin sin()s θβαβ⋅+.9【解析】MPN ∠即为AM 与AN 的夹角,先用,AB AC 将AM 与AN表示出来,求出AM BN ⋅ 以及AM ,AN ,代入公式cos ||||AM BNMPN AM BN ⋅∠=即可.【详解】解:∵M ,N 分别是BC ,AC 的中点,11(),22AM AB AC BN AN AB AC AB ∴=+=-=- .AM 与BN 的夹角等于,cos ||||AM BNMPN MPN AM BN ⋅∠∴∠=.11()22AM BN AB AC AC AB ⎛⎫⋅=+⋅- ⎪⎝⎭211114242AB AC AB AC AB AC =⋅-+-⋅ 2211125cos 60253424︒=-⨯⨯⨯-⨯+⨯=,||2AM ===,||2BN =,cos 91MPN ∴∠=.【点睛】本题考查平面向量基本定理以及向量的夹角公式,考查计算能力,是中档题.10.证明见解析【分析】利用余弦定理的推理将左边的余弦式进行角化边,化简整理即可得到右边.【详解】根据余弦定理的推论222222cos ,cos 22b c a c a b A B bc ca +-+-==,得左边222222222222(cos cos )()(2222a c b b c a a c b b c a c a B b A c a b c ac bc c c+-+-+-+-=-=⋅-⋅=-22221(22)2a b a b =-=-=右边,故等式成立.【点睛】本题考查了余弦定理的推理的应用,考查了证明等式的方法及推理论证能力,属于基础题.11.(1)见解析(2)见解析(3)见解析【解析】(1)设三角形的三边a ,c 的对角分别为A ,B ,C ,则由余弦定理可得222cos 2a b c C ab+-=,求出sin C 并代入三角形面积公式in 12s S ab C =,设1()2p a b c =++,则111(),(),()222b c a p a c a b p b a b c p c +-=-+-=-+-=-,即可化简得证;(2)由(1)可得S =.而又因为2l a b c p =++=,12S lr =,结合上述两式即可得证;(3)由三角形面积公式可得111222a b c S ah bh ch ====,即可得解.【详解】证明:(1)根据余弦定理的推论得222cos 2a b c C ab+-=,则sin C ==in 12s S ab C =,得12S ===又1()2p a b c =++,所以111(),(),()222b c a p a c a b p b a b c p c +-=-+-=-+-=-,代入可得S =;(2)因为1()2p a b c =++,所以三角形的周长2l a b c p =++=,又三角形的面积11222S lr p r pr ==⋅⋅=,其中r 为内切圆半径,所以S r p ==(3)根据三角形的面积公式111222a b c S ah bh ch ===,得2a S h a ==同理可证b h =c h =【点睛】本题主要考查了余弦定理、三角形面积公式,平方差公式的应用,计算量较大,属于中档题.12.(1)π3A =(2)2b c ==【分析】(1)在ABC 中,由cos sin 0a C C b c --=及正弦定理得到π1sin 62A ⎛⎫-= ⎪⎝⎭,得出角A ;(2)由三角形面积公式结合余弦定理可得2b c ==.【详解】(1)根据正弦定理,cos sin 0a C Cbc +--=变为sin cos sin sin sin 0A C A C B C --=,即sin cos sin sin sin A C A C B C =+,也即()sin cos sin sin sin A C A C A C C =++,所以sin cos sin sin cos cos sin sin A C A C A C A C C =++.cos 1A A -=,即11cos 222A A -=,所以()π1sin ,0,π62A A ⎛⎫-=∈ ⎪⎝⎭,所以ππ66A -=,则π3A =.(2)由π3A =,1sin 2ABC S bc A == ,得4bc =.由余弦定理,得()22222cos 22cos a b c bc A b c bc bc A =+-=+--,则()223=4+12=16b c a bc +=+,所以4b c +=.则2b c ==.13.D【详解】试题分析:由已知得,而,,CA AC DB BD =-=- 所以4OA OB OC OD OM +++=,选D.考点:平面向量的线性运算,相反向量.14.B【分析】利用向量减法和向量相等的定义即可求得,,,a b c d之间的关系,进而得到正确选项.【详解】OB OA AB OC OD DC -=-=,,而在平行四边形ABCD 中,AB DC = ,所以OB OA OC OD -=-,又OA a = ,OB b = ,OC c = ,OD d = ,则b a c d -=-,也即0a b c d -+-= .故选:B .15.B【分析】先求得12e e ⋅ 的值,根据数量积的运算法则求得a b ⋅以及,a b 的模,再根据向量的夹角公式,即可求得答案.【详解】因为1e ,2e是夹角为60︒的两个单位向量,所以12111cos602e e ⋅=⨯⨯︒= ,故2212121122(2)(32)62a b e e e e e e e e ⋅=+⋅-+=-+⋅+ 176222=-++=-,||a == ,||b=故712cos,2||||a ba ba b-⋅〈〉==-⋅,由于0,180a b︒≤〈〉≤︒,故,120a b〈〉=︒.故选:B.16.C【分析】根据给定条件,利用向量运算律计算即得.【详解】由向量a,b,c两两的夹角相等,得,,,0a b b c a c〈〉=〈〉=〈〉=或2π,,,3a b b c a c〈〉=〈〉=〈〉=,当,,,0a b b c a c〈〉=〈〉=〈〉=时,||5a b c++=,当2π,,,3a b b c a c〈〉=〈〉=〈〉=时,||a b c++=2==.故选:C17.cos()cos()cosa Bb A cθθθ⋅-+⋅+=⋅【分析】由BA BC CA=+,结合数量积可得DE BA DE BC DE CA⋅=⋅+⋅,再运用数量积定义可分别求出DE BA⋅、DE BC⋅、DE CA⋅,代入整理即可.【详解】如图所示,因为BA BC CA=+,所以()DE BA DE BC CA⋅=⋅+,即DE BA DE BC DE CA⋅=⋅+⋅,又因为||||cos||cosDE BA DE BA EDA c DEθ⋅=∠=,||||cos()||cos()DE BC DE BC B a DE Bθθ⋅=-=-,||||cos()||cos()DE CA DE CA A b DE Aθθ⋅=+=+,所以||cos ||cos()||cos()c DE a DE B b DE A θθθ=-++,即cos cos()cos()c a B b A θθθ=-++.18.(1)4i3x =±(2)12x =-±【分析】根据题意,由一元二次方程的解法结合复数的运算,即可得到结果.【详解】(1)将方程29160x +=的二次项系数化为1,得2160.9x +=得2169x =-,即4i.3x =±所以原方程的根为4i3x =±(2)方程210x x ++=的二次项系数为1,配方,得21324x ⎫-⎛+= ⎪⎝⎭,由Δ0<,知()30.4-->可得12x +=所以原方程的根为122x =-±.19.(1)24(2)(2)x x i x i +=+-;(2)44()()()()a b a b a b a bi a bi -=+-+-.【解析】(1)运用平方差公式进行因式分解即可;(2)运用平方差公式进行因式分解即可.【详解】(1)22224(4)(2)(2)(2)x x x i x i x i +=--=-=+-;(2)442222()()()()()()a b a b a b a b a b a bi a bi -=-+=+-+-.【点睛】本题考查了在复数范围内因式分解,考查了平方差公式的应用,属于基础题.20.9716λ-≤≤.【详解】试题分析:当12z z =时,复数的实部和虚部分别相等,求得24sin 3sin =-λθθ,根据[]sin 1,1θ∈-,求函数的值域.试题解析:∵12z z =,∴()()242cos 3sin m m i i θλθ+-=++,∴22{43m cos m sin θλθ=-=+,消去m 得:24cos 3sin θλθ-=+,∴22394sin 3sin 4sin 816λθθθ⎛⎫=-=-- ⎪⎝⎭,∵1sin 1θ-≤≤,∴当3sin 8θ=时,min 916λ=-.当sin 1θ=-时,max 7λ=.所以λ的取值范围为:9716λ-≤≤.21【解析】设圆锥的底面半径为r ,母线长为l ,根据圆锥的表面积公式和半圆的面积公式列方程组,解出即可.【详解】解:设圆锥的底面半径为r ,母线长为l ,则由题意得2a r rl ππ=+.又圆锥的侧面展开图为半圆,2r l ππ∴=,即2l r =.将②式代入①式得23a r π=,23a r π∴=,即r =.【点睛】本题考查圆锥的表面积公式,是基础题.22.6【分析】按侧面11ABB A 放置时,液面以上部分为三棱柱,其体积为原来棱柱的14,故可得水的体积为棱柱的34,由此可得按底面ABC 放置时液面的高.【详解】设三棱锥的体积为V ,按侧面11ABB A 水平放置时液面以上部分的体积为14V ,故水的体积为34V ,设按底面ABC 放置时液面的高为h ,则33484h V ==,故6h =.【点睛】一定形状的几何体容器,按不同位置放置时容器内的液体的体积计算方法不一致,可根据同一体积的不同计算方法得到关键几何量之间的相互关系.23.222123111V V V +=【解析】直角三角形ABC 的两条直角边分别为a ,b ,斜边为c ,依照题意,得到三个几何体的体积.【详解】解:设直角三角形ABC 的两条直角边分别为a ,b ,斜边为c ,以a 为轴,进行旋转,形成底面半径为b ,高为a 的圆锥,其体积221133V b a ab ππ=⨯⨯⨯=;以b 为轴,进行旋转,形成底面半径为a ,高为b 的圆锥,其体积222133V a b a b ππ=⨯⨯⨯=,以c 为轴,进行旋转,形成底面半径为abc,高的和为c 的两个圆锥的组合体,其体积22231(33ab a b V c c cππ=⨯⨯⨯=.()222222242422442442291199933b a c a b a b a b a b ab a b ππππππ++=+=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭所以222123111V V V +=.【点睛】本题考查几何体的体积公式.较易.解题时要认真审题,仔细解答.24.27个部分【分析】根据题意画出图形即可得出答案.【详解】如图,图中画出了正方体最上层把空间分成9个部分,同理中层、下层也分别把空间分成9个部分,因此共将空间分成27个部分.【点睛】本题主要考查的是平面基本性质,正确理解确定平面的几个公理及由题意画出图形且有较强的空间想象能力是解题的关键,是中档题.25.证明见解析【分析】推导出P ,Q ,R 都在平面ABC 与平面α的交线上,即可证明.【详解】证明:法一:∵AB ∩α=P ,∴P ∈AB ,P ∈平面α.又AB ⊂平面ABC ,∴P ∈平面ABC .∴由基本事实3可知:点P 在平面ABC 与平面α的交线上,同理可证Q ,R 也在平面ABC与平面α的交线上.∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.26.画线见解析.【详解】试题分析:利用线面平行的判定定理去确定.试题解析:过平面内一点作直线,交于,交于;过平面内一点作直线,交于,则,所确定的截面为所求.考点:棱锥的结构特征,线面平行的判定和实际应用.27.(1)(2)(4)(5)【分析】根据题意,结合棱柱的特征进行判断,观察即可得到答案.【详解】根据棱柱的定义知,有两个面是互相平行且是全等的多边形,其余每相邻两个面的交线也互相平行,而这些面都是平行四边形,所以(1)和(2)正确;因为水面EFGH所在四边形,从图2,图3可以看出,有两条对边边长不变而另外两条对边边长随倾斜度变化而变化,所以水面四边形EFGH的面积是变化的,(3)错误;因为棱11A D始终与BC平行,BC与水面始终平行,所以(4)正确;因为水的体积是不变的,高始终是BC 也不变,所以底面积也不会变,即BE BF ⋅是定值,所以(5)正确;综上知(1)(2)(4)(5)正确,故答案为:(1)(2)(4)(5).28.外中点垂【分析】(1)由PO α⊥可得PO AO ⊥,PO BO ⊥,根据题意可得POA POB ∆≅∆,可得OA OB =,从而可得OA OB OC ==,从而得到结果;(2)由(1)得到OA OB OC ==,根据在直角三角形中,斜边的中线是斜边的一半可得,点O 为斜边AB 的中点;(3)由PA PB ⊥,PB PC ⊥可得PB ⊥平面PAC ,进而可得PB AC ⊥,又PO AC ⊥,可得AC ⊥平面PBO ,进而可得BO AC ⊥,同理可得CO AB ⊥,AO BC ⊥,从而得出答案。
人教版高三数学复习---球的切、接、截面问题(有答案)及参考答案
人教版高三数学复习---球的切、接、截面问题(有答案)及参考答案(附参考答案)一.选择题(共16小题)1.(2014•广西)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为B..B C16πB32πC64πB C.B C.△ACD、△ADB 的面积分别为、、,则该三棱锥外接球的表面积为()π.∠ABC=,则棱锥O﹣ABC的体积为()A.B.C.D.球半径r的比值为()A.5B.C.10 D.A.B.C.D.1折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个A.B.3πC.D.2πA.B.C.D.17.(2014•乌鲁木齐二模)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于_________ .18.(2014•江西模拟)正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为_________ .19.(2014•呼伦贝尔二模)设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是_________ .20.(2014•河南模拟)已知四棱锥P﹣ABCD的底面是边长为a的正方形,所有侧棱长相等且等于a,若其外接球的半径为R,则等于_________ .21.(2012•辽宁)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为_________ .22.(2009•湖南)在半径为13的球面上有A,B,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC的距离为_________ ;(2)过A,B两点的大圆面与平面ABC所成二面角为(锐角)的正切值为_________ .23.正三棱锥P﹣ABC的四个顶点同在一个半径为2的球面上,若正三棱锥的侧棱长为2,则正三棱锥的底面边长是_________ .24.与四面体的一个面及另外三个面的延长面都相切的球称为该四面体的旁切球,则棱长为1的正四面体的旁切球的半径r= _________ .截面问题一.填空题(共8小题)1.过正三棱锥一侧棱及其半径为R的外接球的球心O所作截面如图,则它的侧面三角形的面积是__ .2.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为_________(只填写序号).3.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是_________ .4.已知正三棱锥S﹣ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为_________ .5.(2012•桂林模拟)如图,已知球O是棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为_________ .6.已知正方体ABCD﹣A1B1C1D1内有一个球与正方体的各个面都相切,经过DD1和BB1作一个截面,正确的截面图是_________ .7.已知空间中动平面α,β与半径为5的定球相交所得的截面的面积为4π与9π,其截面圆心分别为M,N,则线段|MN|的长度最大值为_________ .8.球O的球面上有三点A,B,C,且BC=3,∠BAC=30°,过A,B,C三点作球O 的截面,球心O到截面的距离为4,则该球的体积为_________ .9.(2014•上海二模)设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为r的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?2015年高三数学复习---球的切接问题组参考答案与试题解析一.选择题(共16小题)1.(2014•广西)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为B(R=,(=本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题..r===.它的对角线的长为球的直径:,球的半径为:.,B C考点:球内接多面体;球的体积和表面积.解:由题意所以球的体积为:.5.(2014•临汾模拟)三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正16πB32πC64π。
人教版数学必修三复习参考题及答案
⼈教版数学必修三复习参考题及答案 数学课较为枯燥,不是每个学⽣都具有良好的学习数学的兴趣。
但是可以通过做题来接触数学,养成学习数学的好习惯。
下⾯是店铺分享给⼤家的数学必修三复习参考题及答案的资料,希望⼤家喜欢! 数学必修三复习参考题及答案⼀ 题试题,请考⽣练习。
1.把集合C={a+bi|a,bR}中的数,即形如a+bi(a,bR)的数叫作________,其中i叫作____________,复数的全体组成的集合C叫作__________. 2.复数通常⽤z表⽰,z=____________叫作复数的代数形式,其中________分别叫复数z的实部与虚部. 3.设z=a+bi(a,bR),则当且仅当________时,z为实数.当________时,z为虚数,当____________时,z为纯虚数. 4.实数集R是复数集C的__________,即__________.这样复数包括实数和虚数. 5.a+bi=c+di(a,b,c,dR)的充要条件是_____________________________________. 6.复数与点、向量间的对应 如图,在复平⾯内,复数z=a+bi (a,bR)可以⽤点________或向量________表⽰. 复数z=a+bi (a,bR)与点Z(a,b)和向量的⼀⼀对应关系如下: 7.复数的模 复数z=a+bi (a,bR)对应的向量为,则的模叫作复数z的模,记作|z|,且|z|=__________. ⼀、选择题 1.“a=0”是“复数a+bi (a,bR)为纯虚数”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.设a,bR,若(a+b)+i=-10+abi (i为虚数单位),则(-)2等于( )A.-12B.-8C.8D.10 3.若z=(x2-1)+(x-1)i为纯虚数,则实数x的值为( )A.-1B.0C.1D.-1或1 4.下列命题中: 两个复数不能⽐较⼤⼩; 若z=a+bi,则当且仅当a=0且b≠0时,z为纯虚数; x+yi=1+ix=y=1; 若a+bi=0,则a=b=0. 其中正确命题的个数为( ) A.0B.1C.2D.3 5.若(m2-5m+4)+(m2-2m)i>0,则实数m的值为( )A.1B.0或2C.2D.0 6.在复平⾯内,若z=(m2-4m)+(m2-m-6)i所对应的点在第⼆象限,则实数m的取值范围是( )A.(0,3)B.(-∞,-2)C.(-2,0)D.(3,4) ⼆、填空题 7.已知复数z1=(3m+1)+(2n-1)i,z2=(n+7)-(m-1)i,若z1=z2,实数m、n的值分别为________、________. 8.给出下列⼏个命题: 若x是实数,则x可能不是复数; 若z是虚数,则z不是实数; ⼀个复数为纯虚数的充要条件是这个复数的实部等于零; -1没有平⽅根; 若aR,则(a+1)i是纯虚数; 两个虚数不能⽐较⼤⼩. 则其中正确命题的个数为________. 9.在复平⾯内,向量对应的复数是1-i,将P向左平移⼀个单位后得向量P0,则点P0对应的复数是________. 三、解答题 10.实数m分别为何值时,复数z=+(m2-3m-18)i是:(1)实数;(2)虚数;(3)纯虚数. 11.(1)求复数z1=3+4i及z2=--i的模,并⽐较它们的模的⼤⼩; (2)已知复数z=3+ai,且|z|<4,求实数a的取值范围. 能⼒提升 12.已知集合P={5,(m2-2m)+(m2+m-2)i},Q={4i,5},若P∩Q=PQ,求实数m的值. 13.已知复数z表⽰的点在直线y=x上,且|z|=3,求复数z. 1.对于复数z=x+yi只有当x,yR时,才能得出实部为x,虚部为y(不是yi),进⽽讨论复数z的性质. 2.复数相等的充要条件是复数问题实数化的依据. 3.复数与复平⾯上点⼀⼀对应,与以原点为起点的向量⼀⼀对应. 4.复数z=a+bi (a,bR)的模为⾮负实数,利⽤模的定义,可以将复数问题实数化.知识梳理 1.复数 虚数单位 复数集 2.a+bi(a,bR) a与b 3.b=0 b≠0 a=0且b≠0 4.真⼦集 R?C 5.a=c且b=d 6.Z(a,b) 7. 作业设计 1.B [复数a+bi (a,bR)为纯虚数a=0且b≠0.] 2.A [由, 可得(-)2=a+b-2=-12.] 3.A [z为纯虚数,∴x=-1.] 4.A 5.D [由题意得:解得m=0.故选D.] 6.D [z=(m2-4m)+(m2-m-6)i,对应点在第⼆象限,则解得3,|z1|>|z2|. (2)∵z=3+ai (aR),|z|=, 由已知得32+a2<42,a2<7,a∈(-,). 12.解 由题知P=Q, 所以(m2-2m)+(m2+m-2)i=4i, 所以,解得m=2. 13.解 设z=a+bi(a,bR), 则b=a且=3, 解得或. 因此z=6+3i或z=-6-3i. 数学必修三复习参考题及答案⼆ 1.如图所⽰程序框图,能判断任意输⼊的数x的奇偶性:其中判断框内的条件是( )A.m=0B.x=0C.x=1D.m=1 2.算法的过程称为“数学机械化”,数学机械化的最⼤优点是可以让计算机来完成,中国当代数学家在这⽅⾯研究处于世界领先地位,为此⽽获得⾸届⾃然科学500万⼤奖的是( )A.袁隆平B.华罗庚C.苏步青D.吴⽂俊 3. 算法 S1 m=a S2 若b S3 若c S4 若d S5 输出m,则输出m表⽰ ( ) A.a,b,c,d中最⼤值 B.a,b,c,d中最⼩值 C.将a,b,c,d由⼩到⼤排序 D.将a,b,c,d由⼤到⼩排序 4. 如图程序运⾏后输出的结果为 ( )A. 50B. 5C. 25D. 0 5.计算机执⾏下⾯的程序段后,输出的结果是 ( )A.1,3B.4,1C.0,0D.6,0 6.⽤“辗转相除法”求得459和357的最⼤公约数是( )A.3B.9C.17D.51 7.算法的三种基本结构是 ( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构 8.下⾯为⼀个求20个数的平均数的程序,在横线上应填充的语句为 ( )A.i>20B.i<20C.i>=20D.i<=20 9.⽤秦九韶算法计算多项式当时的值时,需要做乘法和加法的次数分别是 ( )A.6 , 6B.5 , 6C.5 , 5D.6 , 5 10.给出以下⼀个算法的程序框图(如图所⽰),该程序框图的功能是( ) A.求输出a,b,c三数的最⼤数 B.求输出a,b,c三数的最⼩数 C.将a,b,c按从⼩到⼤排列 D.将a,b,c按从⼤到⼩排列 11.若输⼊8时,则下列程序执⾏后输出的结果是 . 12.下左程序运⾏后输出的结果为_________. x=5 y=-20 IF x<0 THEN x=y-3 ELSE y=y+3 END IF PRINT x-y ; y-x END (第12题) 13.⽤直接插⼊排序法对:7,1,3,12,8,4,9,10进⾏从⼩到⼤排序时,第四步得到的⼀组数为: _ _ . 14.求⽅程的近似根,要先将它近似地放在某两个连续整数之间,则应当在区间上. 15.学了算法你的收获有两点,⼀⽅⾯了解我国古代数学家的杰出成就,另⼀⽅⾯,数学的机械化,能做许多我们⽤笔和纸不敢做的有很⼤计算量的问题,这主要归功于算法语句的 . 16.上右程序输出的n的值是____________. j=1 n=0 WHILE j<=11 j=j+1 IF j MOD 4=0 THEN n=n+1 END IF j=j+1 WEND PRINT n END (第1 6题) 17.函数y= 请设计算法流程图,要求输⼊⾃变量,输出函数值. 18.某电信部门规定:拨打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话不⾜1分钟时按1分钟计),试设计⼀个计算通话费⽤的算法.要求写出算法,画出程序框图,编写程序. 19.把“五进制”数转化为“⼗进制”数,再把它转化为“⼋进制”数. 20.给定⼀个年份,写出该年是不是闰年的算法,程序框图和程序. 21.已知正四棱锥的底⾯边长为3,⾼为4,求正四棱锥的体积和表⾯积,写出算法的伪代码,并画出相应图. 数学必修三复习参考题及答案三 ⼀、选择题 1.图中表⽰的区域满⾜不等式( )A.2x+2y-1>0B.2x+2y-1≥0C.2x+2y-1≤0D.2x+2y-1<0 答案:B 2.不等式组x≥2x-y+3≤0表⽰的平⾯区域是下列图中的( ) 答案:D 3.如图阴影部分⽤⼆元⼀次不等式组表⽰为( ) A.y≤2,2x-y+4≥0 B.0≤y≤2x≤02x-y+4≥0 C.y≤2,x≤02x-y+4≥0 D.0≤y≤22x-y+4≤0x≤0 解析:选B.2x-y+4≤0在直线2x-y+4=0上及左上⽅,故D错,A、C均缺y≥0,A还缺x≤0. 4.设点P(x,y),其中x,y∈N,则满⾜x+y≤3的点P的个数为( )A.10B.9C.3D.⽆数 解析:选A.当x=0时,y可取0,1,2,3有4个点; 当x=1时,y可取0,1,2有3个点; 当x=2时,y可取0,1有2个点; 当x=3时,y可取0,有1个点,故共有10个点,选A. 5.已知点(-3,1)和(0,-2)在直线x-y-a=0的⼀侧,则a的取值范围是( )A.(-2,4)B.(-4,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-4)∪(2,+∞) 解析:选D.(-3-1-a)(0+2-a)>0, 即(a+4)(a-2)>0,∴a>2或a<-4. 6.在平⾯直⾓坐标系中,若不等式组x+y-1≥0x-1≤0ax-y+1≥0(a为常数)所表⽰的平⾯区域的⾯积等于2,则a的值为( )A.-5B.1C.2D.3 解析:选D.如图, 由y=ax+1,x=1, 得A(1,a+1), 由x=1,x+y-1=0,得B(1,0), 由y=ax+1,x+y-1=0,得C(0,1). ∵△ABC的⾯积为2, ∴S△ABC=12(a+1)=2, ∴a=3.。
人教版新高三数学起始考复习练习题含答案
新高三数学起始考复习练习题1学校:___________姓名:___________班级:___________考号:___________新高三数学起始考复习练习题1学校:___________姓名:___________班级:___________考号:___________一、解答题1.在等差数列{}n a 中,38a =,724a a a =+. (1)求数列{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S .2.记n S 为等差数列{}n a 的前n 项和,已知36a =-,728S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.3.等差数列{}n a 中,1239a a a ++=,12n n a a +-=. (1)求{}n a 的通项公式; (2)求{}2nn a +的前n 项和nS.4.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为矩形,E 为PC 的中点,且3PD =,2AD =,4AB =. (1)求证:PA 平面BDE ;(2)若点F 为线段PC 上一点,且AF BD ⊥,求四棱锥F ABCD -的体积.5.如图,已知PA ⊥平面ABCD ,ABCD 为矩形,M N 、分别为AB PC 、的中点,,2,PA AD AB AD ===.(1)求证:MN ∥平面PAD ; (2)求证:面MPC ⊥平面PCD ; (3)求点B 到平面MNC 的距离.6.如图所示,在四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ∆为等腰三角形,APD 90︒∠=,平面PAD ⊥平面ABCD ,且1,2,,AB AD E F ==分别为,PC BD的中点.(1)证明://EF 平面PAD ; (2)证明:平面PDC ⊥平面PAD ; (3)求三棱锥E ABD -的体积.7.已知函数2()cos 2cos f x x x x =+. (I )求()f x 最小正周期; (Ⅱ)求()f x 在闭区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.8.已知函数())cos()f x x x ωϕωϕ=+++,0,02πωϕ⎛⎫><< ⎪⎝⎭的图像经过点3π⎛⎝且相邻两条对称轴间的距离为π. (1)求函数()f x 的解析式和单调减区间; (2)若将()f x 的图像上所有点的横坐标变为原来的13,纵坐标不变,得到函数()h x 的图像,求函数()h x 在区间,63ππ⎛⎫⎪⎝⎭上的值域.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc . (1)求角A 的大小;(2)设函数2()sin cos 222x x xf x =,当f (B )取最大值时,判断△ABC 的形状.10.在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,且cos cos a B b A b c -=+. (1)求角A 的大小;(2)若4a =,b c +=ABC ∆的面积.11.在ABC ∆中,已知()cos cos 2sin cos 0B A A C +-=. (1)求角C 的余弦值;(2)若BC =,AB 边上的中线CD =,求ABC ∆的面积.12.已知函数()222cos 1f x x x =--,x ∈R(1)求函数()f x 的最小正周期;(2)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且c =()0f C =,()sin sin 2sin 2C B A A +-=,求ABC ∆的面积.13.已知椭圆C :()222210x y a b a b+=>>的右焦点为()1,0F ,点()2,0A 在椭圆C 上,过F 点的直线l 与椭圆C 交于不同两点M 、N . (1)求椭圆C 的方程;(2)设直线l 斜率为1,求线段MN 的长;(3)设线段MN 的垂直平分线交y 轴于点()00,p y ,求0y 的取值范围.14.已知椭圆C 的焦点为1F (-和2F ,长轴长为6,设直线y=x+2交椭圆C 于A 、B 两点.求:(1)椭圆C 的标准方程; (2)弦AB 的中点坐标及弦长.15.已知椭圆22221(0)x y E a b a b =+=>>CH 在椭圆上.(1)求椭圆E 的方程;(2)①直线:(0)l y kx m k =+≠与椭圆E 交于两点,A B .求AB 的弦长;②若直线l 与椭圆E 交于两点,A B .且线段AB 的垂直平分线经过点10,2⎛⎫⎪⎝⎭,求AOB∆的面积的最大值.(O 为原点)16.已知椭圆C :22221(0)x y a b a b+=>>的短轴长为12,直线l :()1y k x =-与椭圆C 交于不同的两点M ,N ,A 为椭圆C 的左顶点.(1)求椭圆C 的标准方程;(2)当AMN ∆的面积为7时,求l 的方程.一、解答题1.在等差数列{}n a 中,38a =,724a a a =+. (1)求数列{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S .【答案】(1)22n a n =+(2)22nn +【解析】 【分析】(1)利用等差数列的性质可求出1,a d ,进而可求出{}n a 的通项公式;(2)()1121n n b na n n ==+11121n n ⎛⎫=- ⎪+⎝⎭,由裂项相消求和法可求出n S . 【详解】解:(1)设等差数列{}n a 的公差为d ,则()11n a a n d +-=.因为37248,a a a a =⎧⎨=+⎩所以11112863a d a d a d a d +=⎧⎨+=+++⎩,解得14a =,2d =,所以数列{}n a 的通项公式为22n a n =+. (2)由题意知()1121n n b na n n ==+11121n n ⎛⎫=- ⎪+⎝⎭, 所以111111122231n S n n ⎛⎫=-+-++-= ⎪+⎝⎭1112122n n n ⎛⎫-= ⎪++⎝⎭. 【点睛】本题考查了等差数列的通项公式的求法,考查了利用裂项相消求数列的前n 项和,属于基础题.2.记n S 为等差数列{}n a 的前n 项和,已知36a =-,728S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)212n a n =-;(2)2212111( 5.5)4n S n n n =-=--,30-. 【解析】 【分析】(1)先求出公差d 和首项1a ,可得通项公式;(2)由(1)可得前n 项和n S ,由二次函数性质可得最小值(只要注意n 取正整数). 【详解】(1)设{}n a 的公差为d ,由题意得126a d +=-,17(3)28a d +=-, 解得110a =-,2d =.所以{}n a 的通项公式为212n a n =-. (2)由(1)得22(10212)12111( 5.5)24n n n S n n n -+-==-=--因为*n N ∈所以当5n =或6n =时,n S 取得最小值,最小值为-30. 【点睛】本题考查等差数列的通项公式和前n 项和公式,方法叫基本量法. 3.等差数列{}n a 中,1239a a a ++=,12n n a a +-=. (1)求{}n a 的通项公式; (2)求{}2nn a +的前n 项和nS.【答案】(1)21n a n =-;(2)2122n n S n +=+-.【解析】 【分析】(1)由12n n a a +-=得出等差数列{}n a 的公差为2,再利用1239a a a ++=,得出1a 的值,再利用等差数列的通项公式求出数列{}n a 的通项公式; (2)求出数列{}2nn a +的通项公式,再利用分组求和法求出nS.s【详解】(1)12n n a a +-=Q ,∴等差数列{}n a 的公差为2,()()1231111222369a a a a a a a ∴++=++++⨯=+=,解得11a =,因此,()12121n a n n =+-=-; (2)()2212nnn a n ∴+=-+,()()()()123123252212nn S n ⎡⎤∴=+++++++-+⎣⎦L()()123135212222nn =++++-+++++⎡⎤⎣⎦L L()()2121212122212nn n n n+-+-=+=+--,因此,2122n n S n +=+-.【点睛】本题考查等差数列的通项与分组求和法,对于等差数列通项,一般利用首项和公差建立方程组求解,对于等差与等比相加所构成的新数列,一般利用分组求和法进行求和,考查计算能力,属于基础题。
人教版高中数学必修一专题复习及参考答案
人教版高中数学必修一专题复习及参考答案知识架构第一讲集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;①两个集合的交集:= ;A B {}x x A x B ∈∈且②两个集合的并集: =;A B {}x x A x B ∈∈或③设全集是U,集合,则A U ⊆U C A ={}x x U x A ∈∉且{|B x x ={|B x x =★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。
难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。
重难点:1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性,在解题过程中最易被忽视,因此要对结果进行检验;2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如、、等的差别,如果对集合中代表元素认识不清,将导致求解错误:{})(x f y x ={})(x f y y ={})(),(x f y y x =问题:已知集合( ) 221,1,9432x y x y M x N y ⎧⎫⎧⎫=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭则M N= A. ;B.;C. ;D. Φ{})2,0(),0,3([]3,3-{}3,2[错解]误以为集合表示椭圆,集合表示直线,由于这直线过椭圆的两个顶点,于是错选B M 14922=+y x N 123=+y x [正解] C ; 显然,,故{}33≤≤-=x x M R N =]3,3[-=N M(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用Venn 图。
3.集合间的关系的几个重要结论(1)空集是任何集合的子集,即A ⊆φ(2)任何集合都是它本身的子集,即A A ⊆(3)子集、真子集都有传递性,即若,,则B A ⊆C B ⊆C A ⊆4.集合的运算性质(1)交集:①;②;③;④,⑤;A B B A =A A A = φφ= A A B A ⊆ B B A ⊆ B A A B A ⊆⇔=(2)并集:①;②;③;④,⑤;A B B A =A A A = A A =φ A B A ⊇ B B A ⊇ A B A B A ⊆⇔=(3)交、并、补集的关系①;φ=A C A U U A C A U =②;)()()(B C A C B A C U U U =)()()(B C A C B A C U U U =★热点考点题型探析考点一:集合的定义及其关系题型1:集合元素的基本特征[例1](2008年江西理)定义集合运算:.设{}|,,A B z z xy x A y B *==∈∈{}{}1,2,0,2A B ==,则集合的所有元素之和为()A B *A .0;B .2;C .3;D .6[解题思路]根据的定义,让在中逐一取值,让在中逐一取值,在值就是的元素A B *x A y B xy A B *[解析]:正确解答本题,必需清楚集合中的元素,显然,根据题中定义的集合运算知=,故应选择D A B *A B *{}4,2,0【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。
「精选」人教版最新高三复习数学题及参考答案-精选文档
精选文档 可编辑修改1 俯视图侧视图正视图334高考复习数学试题(附参考答案)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合33{|0},{|||},""""122x P x Q x x m P m Q x =≤=-≤∈∈-那么是的 ( )A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.公差不为0的等差数列{}n a 中,2200520072009330a a a -+=,数列{}n b 是等比数列,且20072007b a =,则20062008b b =( )A .4B .8C .16D .363. 若纯虚数z 满足2(2i)4(1i)z b -=-+(其中i 是虚数单位,b 是实数),则b =( )A .2-B .2C .-4D .44.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A. 123B. 363C. 273D. 65.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M ,,O 是坐标原点,则OM ·ON =( ) A .- 1 B .- 1 C . - 2 D .2 6.设0(sin cos )a x x dx π=+⎰,则二项式61()a x x-,展开式中含2x 项的系数是( ) A. 192- B. 192 C. -6 D. 6 7.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )8.关于x 的方程2(1)10(0,)x a x a b a a b +++++=≠∈R 、的两实根为12,x x ,若A B C D精选文档 可编辑修改212012x x <<<<,则ba的取值范围是( ) A .4(2,)5--B .34(,)25--C .52(,)43--D .51(,)42--第Ⅱ卷(非选择题)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9. 右图是2008年北京奥运会上,七位评委为某奥运项目打出 的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ;方差为 .10.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为_______.11. 在如下程序框图中,已知:0()x f x xe =,则输出的是_________ _.12. 设椭圆()222210x y a b a b+=>>的两个焦点分别为12,F F ,点P 在椭圆上,且120PF PF ⋅=,123tan 3PF F ∠=,则该椭圆的离心率为 . (二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12OM OP ⋅=.设R 为l 上任意一点,则RP 的最小值 .14. (不等式选讲选做题)若关于x 的不等式1x x a +-<(a ∈R )的解集为∅,则a 的取值范围是 .15. (几何证明选讲选做题)如图,⊙O 1与⊙O 2交于M 、N 两点,直线AE 与这两个圆及MN 依次交于A 、B 、C 、D 、E .且AD =19,BE =16,BC =4,则AE = .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知在ABC V 中,A B C ∠∠∠﹑﹑所对的边分别为a ﹑b﹑c ,若cos cos A bB a= 且sin cos C A = (Ⅰ)求角A 、B 、C 的大小;(Ⅱ)设函数()()sin cos 222C f x x x A ⎛⎫=+-+ ⎪⎝⎭,求函数()f x 的单调递增..区间,并指出它相邻两对称轴间的距离.7 98 4 4 6 4 7 9 3否 是开始 输入f 0 (x ) 0=i )()(1'x f x f i i -= 结束1+=i i i =2009输出 f i (x )精选文档 可编辑修改317. (本小题满分13分)在2008年北京奥运会某项目的选拔比赛中, A 、B 两个代表队进行对抗赛, 每队三名队员, A 队队员是123,A A A 、、B 队队员是123,B B B 、、按以往多次比赛的统计, 对阵队员之间胜负概率如下表, 现按表中对阵方式出场进行三场比赛, 每场胜队得1分,负队得0分, 设A 队、B 队最后所得总分分别为ξ、η, 且3ξη+=.(Ⅰ)求A 队得分为1分的概率;(Ⅱ)求ξ的分布列;并用统计学的知识说明哪个队实力较强.18. (本小题满分13分)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,左右顶点分别为A C 、,上顶点为B ,过C B F ,,三点作圆P ,其中圆心P 的坐标为()n m ,.(Ⅰ)当0m n +≤时,椭圆的离心率的取值范围. (Ⅱ)直线AB 能否和圆P 相切?证明你的结论.19. (本小题满分13分)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1).将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小; (III )求二面角B -A 1P -F 的余弦值. 20. (本小题满分14分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4, 公差为2的等差数列.(Ⅰ)求证:数列{}n a 是等比数列; (Ⅱ) 若()n n n b a f a =⋅,当2k =时,求数列{}n b 的前n 项和n S ;(III )若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由. 21. (本小题满分14分)已知函数F (x )=|2x -t |-x 3+x +1(x ∈R ,t 为常数,t ∈R ).对阵队员A 队队员胜 A 队队员负 1A 对1B 23 132A 对2B 2535 3A 对3B 37 35精选文档 可编辑修改 4(Ⅰ)写出此函数F (x )在R 上的单调区间;(Ⅱ)若方程F (x )-k =0恰有两解,求实数k 的值.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分. 文科共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
高考数学一轮复习 专题18 任意角、弧度制及任意角的三角函数(含解析)-人教版高三全册数学试题
专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通 1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx(x ≠0). 三个三角函数的性质如下表:三角函数 定义域第一象限符号第二象限符号第三象限符号 第四象限符号sinαR+ + - - cosR+--+αtanα{α|α≠k π+π2,k ∈Z } +-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=x r,tan α=y x(x ≠0).重点难点突破 【题型一】角及其表示【典型例题】已知集合{α|2k πα≤2k π,k ∈Z },则角α的终边落在阴影处(包括边界)的区域是( )A .B .C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的X 围,然后根据k 的可能取值确定kα或αk的终边所在位置. 【题型二】弧度制 【典型例题】已知扇形的周长是6cm,面积是2cm2,试求扇形的圆心角的弧度数()A.1B.4C.1或 4D.1或 2【解答】解:设扇形的圆心角为αrad,半径为Rcm,则,解得α=1或α=4.故选:C.【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1 三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2 三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a =sin ,b =cos ,c =tan ,则( )A .b <a <cB .c <b <aC .b <c <aD .a <b <c【解答】解:因为,所以cos sin ,tan 1,所以b <a <c . 故选:A .思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的X 围.基础知识训练1.【某某省某某市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()2,3-,则( )A .5B .15-C .15D .5-【答案】A【解析】由任意角的三角函数定义可知:3 tan2θ=-本题正确选项:A2.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是()A.B.C.D.【答案】C【解析】由题意可知:角的终边不能落在坐标轴上,当角终边在第一象限时,当角终边在第二象限时,当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P的坐标为,则sinα的值为()A.12B.1-2C3D.3【答案】B 【解析】解:角α的终边上一点P 的坐标为31,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【某某省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值X 围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sinα+cosα,tanα)在第四象限, ∴,由sinα+cosα2=(α4π+), 得2kπ<α4<π+2kπ+π,k∈Z,即2kπ4π-<α<2kπ34π+π,k∈Z. 由tanα<0,得kπ2π+<α<kπ+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【某某省示X 高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【某某省某某市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是() A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D. 7.【某某某某市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm .A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420C .0660D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C.9.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是()A.钝角是第二象限角B.第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的X围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的X围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【某某省某某市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【某某省某某市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟,故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届某某省某某市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P --,则sin α的值为__________.【答案】43310-+ 【解析】解:∵点P (1,2)在角α的终边上,∴tan α2=, 将原式分子分母除以cos α,则原式故答案为:5.16.【某某省涟水中学2018-2019学年高二5月月考】欧拉公式(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3i e -表示的复数在复平面中位于第_______象限. 【答案】三 【解析】由题e -3i=cos3-i sin3,又cos3<0, sin3>0,故3i e -表示的复数在复平面中位于第三象限. 故答案为三17.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大? 【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100. 【解析】(1)设扇形的圆心角大小为α()rad ,半径为r ,则由题意可得:.联立解得:扇形的圆心角2α=. (2)设扇形的半径和弧长分别为r 和l , 由题意可得240r l +=, ∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2l rα,∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【某某市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD,,,平方海里,由题意建立平面直角坐标系,如图所示;由题意知,点P在圆B上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°X围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z};(2) {α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}. 【解析】(1)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z}={α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}.能力提升训练1.【某某省某某市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则( )A .B .C .D .【答案】D 【解析】∵点A 为单位圆上一点,,点A 沿单位圆逆时针方向旋转角α到点,∴A (cos ,sin ),即A (),且cos (α),sin (α).则sinα=sin[(α)]=sin (α)cos cos (α)sin,故选:D .2.【某某省某某实验中学2018-2019学年高一下学期期中考试】在ABC ∆中,若,那么ABC∆是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∆为锐角三角形.∴ABC故选A.3.【某某省某某市2018-2019学年高一下学期期中考试】已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】由,得异号,则角是第二或第三象限角,故选:.【某某省某某市2018-2019学年高一下学期期中考试】已知角α的终边经过点P(-3,y),且y<0,cosα=-,4.则tanα=()A.B.C.D.【答案】C 【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C .5.【某某省某某市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,23)P x ,则x 的值为( ) A .±2 B .2C .﹣2D .﹣4【答案】C 【解析】 ∵已知角83πθ=的终边经过点(,23)P x ,∴23x,则2x =-,故选:C .6.【某某省某某市第三中学2019届高三上学期期中考试】,则3f π⎛⎫=⎪⎝⎭( ) A .32B .33C .12D .3【答案】C 【解析】根据题意,,且123π<<,则.故选:C .7.【某某省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π 【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【某某省某某市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】 因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【某某省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sinα+cosα的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),∴sinα=则sinα+cosα=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】【解析】由于“”,故为第二象限角,故概率为.。
人教版最新高三数学专题总复习及参考答案
人教版最新高三数学专题总复习及参考答案
高考数学
复习专题
专题一集合、逻辑与不等式
集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关简易逻辑的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.不等式是高中数学的重点内容之一,是工具性很强的一部分内容,解不等式、不等式的性质等都有很重要的应用.
关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.
§1-1 集合
【知识要点】
1.集合中的元素具有确定性、互异性、无序性.
2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:
(1)从属关系——元素与集合间的关系;
1 / 21。
(通用版)高考数学复习 专题三 三角函数 3.2 解三角形基础题练习 理-人教版高三全册数学试题
3.2 解三角形基础题命题角度1利用正弦、余弦定理解三角形高考真题体验·对方向1.(2019全国Ⅰ·11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a sin A-b sin B=4c sin C ,cosA=-14,则bb =()A.6B.5C.4D.3,得a 2-b 2=4c 2,由余弦定理的推论,得-14=cos A=b 2+b 2-b 22bb, ∴b 2-4b 22bb =-14,∴-3b 2b =-14,∴b b =32×4=6,故选A .2.(2018全国Ⅱ·6)在△ABC 中,cos b2=√55,BC=1,AC=5,则AB=()A.4√2B.√30C.√29D.2√5cos C=2cos 2b 2-1=-35,∴AB 2=BC 2+AC 2-2BC ·AC cos C=1+25+2×1×5×35=32.∴AB=4√2.3.(2018全国Ⅲ·9)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为b 2+b 2-b 24,则C=()A.π2B.π3C.π4D.π6S=b2+b2-b24=12ab sin C,得c2=a2+b2-2ab sin C.又由余弦定理c2=a2+b2-2ab cos C,∴sin C=cos C,即C=π4.4.(2017某某·9)在△ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A cos C+cos A sin C,则下列等式成立的是()A.a=2bB.b=2aC.A=2BD.B=2Asin B(1+2cos C)=2sin A cos C+cos A sin C,∴sin B+2sin B cos C=(sin A cos C+cos A sin C)+sin A cos C,∴sin B+2sin B cos C=sin B+sin A cos C, ∴2sin B cos C=sin A cos C,又△ABC为锐角三角形,∴2sin B=sin A,由正弦定理,得a=2b.故选A.5.(2019全国Ⅱ·15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为.√3b2=a2+c2-2ac cos B,∴(2c)2+c2-2×2c×c×12=62,即3c 2=36,解得c=2√3或c=-2√3(舍去).∴a=2c=4√3.∴S △ABC =12ac sin B=12×4√3×2√3×√32=6√3.典题演练提能·刷高分1.在△ABC 中,若原点到直线x sin A+y sin B+sin C=0的距离为1,则此三角形为()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定解析由已知可得√22=1,∴sin 2C=sin 2A+sin 2B ,∴c 2=a 2+b 2,故三角形为直角三角形.选A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C+c=2a ,且b=√13,c=3,则a=() A.1 B.√6C.2√2D.42b cos C+c=2a ,由正弦定理可得2sin B cos C+sin C=2sin A=2sin(B+C )=2sin B cos C+2cos B sin C ,∴sin C=2cos B sin C ,∵sin C ≠0,∴cos B=12.由余弦定理可得b 2=a 2+c 2-2ac cos B ,又知b=√13,c=3,解得a=4.故选D .3.(2019某某某某高三质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a sin B=2b sinC ,b=3,cos B=14,则△ABC 的面积为()A.9√15B.9√1516C.3√1516D.916a sin B=2b sin C ,结合正弦定理可得ab=2bc ,则a=2c.由余弦定理b 2=a 2+c 2-2ac cos B ,可得9=(2c )2+c 2-2×2c ×c ×14,解得c=32,则a=3.又sin B=√1-cos 2b =√154,所以S △ABC =12ac sin B=12×3×32×√154=9√1516.故选B .4.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若2cos 2b +b2-cos 2C=1,4sin B=3sin A ,a-b=1,则c 的值为()A.√13B.√7C.√37D.6解析∵2cos2b +b2=2cos 2π-b 2=2cos 2π2−b 2=2sin 2b2=1-cos C ,∴1-cos C-cos2C=1.∴cos2C=-cos C.∴2cos 2C+cos C-1=0,解得cos C=12.因为{b -b =1,4b =3b ,故得到{b =3,b =4.根据余弦定理得到12=b 2+b 2-b 22bb,解得c 的值为√13.5.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若a=5,B=π3,cos A=1114,则△ABC 的面积S=()A.10√33B.10C.10√3D.20√3cos A=1114,所以sin A=5√314,由正弦定理得到bsin b=bsin b,解得b=7,由正弦定理得到sin C=sin(A+B )=4√37,△ABC 的面积S=12×5×7×4√37=10√3.6.(2019某某某某高三二调)在△ABC 中,角A ,B ,C 成等差数列,且对边分别为a ,b ,c ,若bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =20,b=7,则△ABC 的内切圆的半径为()A.√3B.7√33C.2D.3角A ,B ,C 成等差数列,∴2B=A+C=π-B ,即B=π3,∴bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =ca cos π3=20,即ca=40,由余弦定理b 2=c 2+a 2-2ca cos B ,可得49=a 2+c 2-ac=(a+c )2-3ac=(a+c )2-120,解得a+c=13.故a=5,c=8.设△ABC 的内切圆的半径为r ,则12(a+b+c )r=12ac sin B ,可得12(5+8+7)r=12×5×8×√32,可得△ABC 的内切圆的半径r=√3.故选A .7.如图,平面四边形ABCD 中,AC 与BD 交于点P ,若3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AB=AD=√3BC ,∠CAD+∠ACB=56π,则bbbb=() A.√213B.√214C.2√63D.√62BC=1,则AB=AD=√3,延长BC 到E ,使BE=3BC ,所以CE=2,依题意3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以AC ∥DE ,所以bb bb=bb bb=12,由正弦定理得{bb sin b =bbsin b ,bb sin b=bb sin b,两式相除得2sin b=√3sin b, 所以2sin5π6-α=√3sin α,所以α=π2,β=π3.在△ABC 中,由余弦定理得3=1+AC 2-2AC cos π3,AC=2,在Rt △ACD 中CD=√3+4=√7,故bbbb =√7√3=√213,选A .8.在△ABC 中,AB=2,AC=√7,∠ABC=2π3,则BC=.,根据余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B ,即BC 2+2BC-3=0,解得BC=1,或BC=-3(舍去负值).9.在△ABC 中,a=1,b=√7,且△ABC 的面积为√32,则c=.或2√3△ABC =12ab sin C=12×1×√7×sin C=√32,则sin C=√217,cos C=±2√77, 当cos C=2√77时,c 2=1+7-2×1×√7×2√77=4,c=2;当cos C=-2√77时,c 2=1+7+2×1×√7×2√77=12,c=2√3.10.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为米..5由题意画出图象,如图所示,且AB=13里=6500米,BC=14里=7000米,AC=15里=7500米.在△ABC 中,由余弦定理有cos B=bb 2+bb 2-bb 22bb ·bb=132+142-1522×13×14=513,B 为锐角,sin B=√1-cos 2b =1213.设△ABC 外接圆半径为R ,则由正弦定理有bsin b =2R ,R=b2sin b =75002×1213=4062.5(米).命题角度2与三角形有关的最值和X 围问题高考真题体验·对方向1.(2015全国Ⅰ·16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值X 围是.√6−√2,√6+√2).作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°.在△CBE中,由正弦定理得,EB=√6−√2.延长CD交BA的延长线于F,则∠F=30°.在△BCF中,由正弦定理得,BF=√6+√2,所以AB的取值X围为(√6−√2,√6+√2).2.(2014全国Ⅰ·16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.√3,可得(2+b)(a-b)=(c-b)·c.∵a=2,∴a2-b2=c2-bc,即b2+c2-a2=bc.由余弦定理,得cos A=b2+b2-b22bb =12.∴sin A=√32.由b2+c2-bc=4,得b2+c2=4+bc.∵b2+c2≥2bc,即4+bc≥2bc,∴bc≤4.∴S△ABC=12bc·sin A≤√3,即(S△ABC)max=√3.典题演练提能·刷高分1.(2019某某某某高三一模)在△ABC中,AB=2,C=π6,则AC+√3BC的最大值为() A.4√7 B.3√7C.2√7D.√7ABC 中,AB=2,C=π6,则2R=bbsin b =4,则AC+√3BC=4sin B+4√3sin A=4sin 5π6-A +4√3sin A=2cos A+6√3sin A=4√7sin(A+θ),其中sin θ=√714,cos θ=3√2114,由于0<A<5π6,0<θ<π2,所以0<A+θ<4π3,所以最大值为4√7.故选A .2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A=π3,a=2√2,则△ABC 面积的最大值为()A.√2B.2√3C.√6D.√3ABC 中,由余弦定理知a 2=b 2+c 2-2bc cos A ,即8=b 2+c 2-2bc cos π3=b 2+c 2-bc ≥2bc-bc=bc ,即bc ≤8,当且仅当b=c 时,等号成立,所以△ABC 面积的最大值为S=12bc sin A=12×8sin π3=2√3,故选B .3.已知锐角△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=a (a+c ),则sin 2bsin(b -b )的取值X 围是()A.(0,√22)B.(12,√32) C.(12,√22) D.(0,√32)b 2=a (a+c ),由余弦定理,得a 2+c 2-2ac cos B=a (a+c ), 化简得c-a=2a cos B.由正弦定理,得sin C-sin A=2sin A cos B ,∵C=π-(A+B ),∴sin(A+B )-sin A=2sin A cos B ,化简得sin(B-A )=sin A.∵△ABC 是锐角三角形,∴B-A=A ,即B=2A ,∵{0<b <π2,π2<b +b <π,即{0<2b <π2,π2<3b <π,∴π6<A<π4,∴sin 2bsin(b -b )=sin A ∈(12,√22).4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为√3,且cos(b +b )cos b=b2b +b ,则c 的最小值是()A.2B.2√2C.2√3D.4∵cos(b +b )cos b=b 2b +b ,∴-cos b cos b =b2b +b ,∴根据正弦定理可得-cos bcos b =sin b2sin b +sin b ,即-2sin A cos C=sin A.∵sin A ≠0,∴cos C=-12.∵C ∈(0,π),∴C=2π3.∵△ABC 的面积为√3,∴S △ABC =12ab sin C=√3,即ab=4.∵cos C=b 2+b 2-b 22bb=-12, ∴c 2=a 2+b 2+ab ≥2ab+ab=3ab=12,当且仅当a=b 时取等号. ∴c min =2√3,故选C .5.在△ABC 中,已知a 2+b 2-c 2=4S (S 为△ABC 的面积),若c=√2,则a-√22b 的取值X 围是()A.0,√2B.-1,0C.-1,√2D.-√2,√2a 2+b 2-c 2=4S ,∴a 2+b 2-c 2=4×12ab sin C=2ab sin C.∴b 2+b 2-b 22bb =sin C ,∴cos C=sin C.∴C=π4. ∵bsin b =bsin b =bsin b =√2√22=2,∴a=2sin A ,b=2sin B ,又a-√22b=2sin A-√22×2sin B=2sin A-√2sin B=2sin A-√2sin3π4-A=sin A-cos A=√2sin A-π4,∵0<A<3π4,∴-π4<A-π4<π2, ∴-1<√2sin A-π4<√2,∴-1<a-√22b<√2,故选C .6.已知平面四边形ABCD 中,AB=AD=2,BC=CD ,∠BCD=90°,则四边形ABCD 面积的最大值为()A.6B.2+2√3C.2+2√2D.4,设∠DAB=θ,BC=CD=x ,则BD=√2x.在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos θ,即(√2x )2=4+4-8cos θ=8-8cos θ,∴x 2=4-4cos θ.∴四边形ABCD 的面积为S=12×22×sin θ+12x 2=2sin θ+(2-2cos θ)=2√2sin θ-π4+2.∵0<θ<π,∴-π4<θ-π4<3π4,∴当θ-π4=π2,即θ=3π4时,S 有最大值,且S max =2√2+2.选C .7.已知点O 是△ABC 的内心,∠BAC=60°,BC=1,则△BOC 面积的最大值为.BOC=180°-180°-60°2=120°,在△OBC 中,BC 2=OB 2+OC 2-2OB ·OC ·cos120°,即1=OB 2+OC 2+OB ·OC ≥3OB ·OC ,即OB ·OC ≤13,所以S △OBC =12OB ·OC sin120°≤√312,当OB=OC 时取得最大值.8.在△ABC 中,AB=AC ,D 为AC 的中点,BD=1,则△ABC 面积的最大值为.ABD 中,设AB=AC=b ,由余弦定理得cos A=b 2+b 24-12b ·b 2=54−1b 2,则sin A=√1-(54-1b 2) 2,所以△ABC 的面积为S=12b 2sin A=12b 2·√1-(54-1b2)2=18√-9(b 2-209)2+2569≤23,所以△ABC 的面积的最大值为23.9.在△ABC 中,角A ,B ,C 所对边的边长分别为a ,b ,c ,若|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,则△ABC 面积的最大值为.|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,∴|AB|=3.∵bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,∴ab cos C=6.∴cos C=6bb .由余弦定理得9=a 2+b 2-2ab cos C=a 2+b 2-12≥2ab-12,∴ab ≤212.∴S=12ab sin C=12ab √1-cos 2b=12ab √1-36b 2b 2=12√b 2b 2(1-36b 2b 2 =12√b 2b 2-36≤12√(212) 2-36=3√334.。
高三数学总复习试卷及答案
一、选择题(每题5分,共50分)1. 已知函数$f(x) = x^3 - 3x^2 + 4x + 6$,则$f(-1)$的值为:A. 2B. 0C. -2D. -62. 下列函数中,是奇函数的是:A. $y = x^2 + 1$B. $y = |x|$C. $y = \frac{1}{x}$D. $y = x^3$3. 若$a, b, c$是等差数列的前三项,且$a + b + c = 9$,则$abc$的值为:A. 27B. 9C. 3D. 14. 已知复数$z = 2 + 3i$,则$|z|$的值为:A. 5B. 2C. 3D. 15. 在$\triangle ABC$中,若$A = 60^\circ$,$a = 2\sqrt{3}$,$b = 4$,则$AB$的长度为:A. 2B. 4C. 2$\sqrt{3}$D. 4$\sqrt{3}$6. 下列命题中,正确的是:A. 对于任意实数$x$,$x^2 \geq 0$B. 对于任意实数$x$,$x^3 \geq0$ C. 对于任意实数$x$,$x^4 \geq 0$ D. 以上都不正确7. 已知函数$y = ax^2 + bx + c$在$x = 1$时取得最大值,则:A. $a > 0$,$b > 0$B. $a > 0$,$b < 0$C. $a < 0$,$b > 0$D. $a < 0$,$b < 0$8. 下列数列中,是等比数列的是:A. $1, 2, 4, 8, 16, \ldots$B. $1, 3, 5, 7, 9, \ldots$C. $1, 3, 6, 10, 15, \ldots$D. $1, 2, 4, 8, 16, \ldots$9. 若$a, b, c$是等差数列的前三项,且$a^2 + b^2 + c^2 = 36$,则$ab + bc + ca$的值为:A. 6B. 9C. 12D. 1810. 在直角坐标系中,点$A(2, 3)$关于直线$y = x$的对称点$B$的坐标为:A. $(2, 3)$B. $(3, 2)$C. $(-2, -3)$D. $(-3, -2)$二、填空题(每题5分,共25分)11. 函数$f(x) = \frac{x^2 - 4}{x - 2}$的定义域为______。
高考数学一轮总复习 专题1.2 命题及其关系、充分条件与必要条件练习(含解析)理-人教版高三全册数学
专题1.2 命题及其关系、充分条件与必要条件真题回放1.【2017年全国一卷理数(3)】设有下面四个命题1p :若复数满足1z ∈R ,则z ∈R ;2p :若复数满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B2.【2017年卷理数第6题】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A 【解析】试题分析:若0λ∃<,使m n λ=,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<T ,若0m n ⋅<,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A. 3.【2017年某某卷理数第4题】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A4.【2017年某某数学第6题】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 +S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】试题分析:由d d a d a S S S =+-+=-+)105(22110211564,可知当0>d ,则02564>-+S S S ,即5642S S S >+,反之,02564>⇒>+d S S S ,所以为充要条件,选C .【考点】 等差数列、充分必要性 考点分析考点 了解A 掌握B 灵活运用C命题的概念 A 四种命题的相互关系 B 全称命题与特称命题 B 充分条件与必要条件C高考对命题及其关系和充分条件、必要条件的考查主要是以小题的形式来考查,由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要有两个:一是考查命题的四种形式以及真假判断,考查等价转化数学思想;二是以函数、方程、不等式、立体几何线面关系为背景的充分条件和必要条件的判定以及由充分条件和必要条件探求参数的取值X 围. 融会贯通题型一 四种命题的关系及真假判断【典例1】【2017届某某某某市高三理一诊】命题“若a b >,则a c b c +>+”的否命题是( ).A .若a b ≤,则a c b c +≤+B .若a c b c +≤+,则a b ≤C .若a c b c +>+,则a b >D .若a b >, 则a c b c +≤+ 【答案】A 【解析】试题分析:“若p 则”的否命题是“若p ⌝则q ⌝”,所以原命题的否命题是“若b a ≤,则c b c a +≤+”,故选A.考点:四种命题【例2】有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题,其中真命题的序号是________.【答案】②③解题方法与技巧:(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p ,则q ”的形式,应先改写成“若p ,则q ”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例. (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(4) 否命题与命题的否定是两个不同的概念:①否命题是将原命题的条件否定作为条件,将原命题的结论否定作为结论构造的一个新的命题;②命题的否定只是否定命题的结论,常用于反证法. 【变式训练】【2017届某某抚州市七校高三理上学期联考】,,A B C 三个学生参加了一次考试,,A B 的得分均为70分,C 的得分为65分.已知命题:p 若及格分低于70分,则,,A B C 都没有及格.在下列四个命题中,为p 的逆否命题的是( ) A .若及格分不低于70分,则,,A B C 都及格 B .若,,A B C 都及格,则及格分不低于70分 C .若,,A B C 至少有一人及格,则及格分不低于70分D .若,,A B C 至少有一人及格,则及格分高于70分 【答案】C考点:原命题与它的逆否命题之间的关系. 知识: 一.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题. 二.四种命题及其关系 1.四种命题 命题 表述形式 原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝逆否命题若q ⌝,则p ⌝即:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题。
统编教材部编版人教版高考数学复习专题04 数 列(新高考地区专用)(原卷版附解析答案)
专题04 数 列一.等比数列前n 项和规律n n n n 11111n n a (1q )a a q a a S q S =A-Aq 1q 1q 1q 1q --===-⇔----简记:,指数次数只能为n 次方常数与指数函数的系数成相反数二.单一条件口算结果-----实质考查等比或等差中项1.无论是等差还是等比数列,如果只知道一个条件是取法确定具体的数列,那么可以处理为非0的常数数列,因为非0的常数数列即是等差也是等比数列。
(常数数列:每一项都是相同的){}{}n n n n 12n 12n-1n n n n 12n 12n-1n n n m n n n n-12.a n S ,b n ,(a a )(2n 1)S 2a a S An B a A(2n 1)B 2(1)=(2)(b b )(2n 1)T 2b b T Cn D b C(2m 1)D2S An B An B kn=n T Cn D Cn D knS An B kn S [A --+-+-+====+-+-+++=⇒++=+=等差数列的前项和等差数列的前项和T 则()推导:等差数列的前项和为无常数的二次函数()()n n m m a k[A(2n 1)B](n 1)B]kn a A(2n 1)Bb k[A(2m 1)B]b C(2m 1)D⎧⎪−−−→=-+⎨-+⎪⎩-+=-+∴=-+相减同理可得 三.公式法口算通项----a n =S n -S n-1(n ≥2)21122n-11n -n n n 2(1)(2)n 1⇔⇔⎧⎪≥⎨⎪⎩-≥=∴n n n 模型1:无常数项的二次函数S =An +Bn a =2An+(B-A)系数2倍,常数后前推导过程:=1时,S =A+B 即a =A+BS =An +Bn(1)时,S =A(n-1)+B(n-1)(2)得a =2An+(B-A)(n 2)令时,a =A+B a =2An+(B-A)21122n-11+ n=1n +n +n +n 2+(1)(2)n 1+ n=1⎧⎪⇔⇔⎨≥⎪⎩⎧⎪≥⎨⎪⎩-≥=∴n n n A+B C 模型2:有常数项的二次函数S =An +Bn C a =2An+(B-A) n 2推导过程:=1时,S =A+B+C 即a =A+B CS =An +Bn C(1)时,S =A(n-1)+B(n-1)C(2)得a =2An+(B-A)(n 2)令时,a =A+B A+B C a =2An+(⎧⎪⎨≥⎪⎩B-A) n 2nn n 111nn 1n-1n 11n 1n=1A B A n n A Bn 2A B(1)(2)A 1n 1 n=1A ----⎧⎪⇔+⇔⎨≥⎪⎩⎧+⎪≥⎨+⎪⎩-≥⇒=∴n n n k(A-1)模型3:指数型函数S =k a =k(A-1) n 2推导过程:=1时,S =A+B 即a =A+BS =k (1)时,S =k (2)得a =k(A-1)(n 2)指数函数的次数减令时,a =k(A-1)k(A-1)a =k(A-1) ⎧⎪⇒⎨≥⎪⎩当分段两者n=1结果相同时,合并为一式n 2{}n 1n n 111n n n-1n 1n n n 1n+1n 1n 1n 11k a B ()1k k 1n a B 1ka Bn 2a Ba k (1)(2)a a =a k+1a k 1=a kka k 1=a q 1k -----⇔+⇔⋅--+-+⎧⎪≥⎨+⎪⎩⎧⎪-⇔⎨-⎪⎩∴-∴⋅=-n n n n B 模型4:指数型函数S =k a =推导过程:B=1时,S =k 即a =S =k (1)时,S =k (2)不是固定的,右边的k 与下标同步得a =k -k 即a 是以首项,公比为的等比数列B a n 1k ()k 1-⋅-记得检验首项四.口算错位相减法的结果nn n 1n (1)a (dn t)q 2n d A 1q S Bq (An B)q A t B 1q +⎧⎪=+⇒⎨⎪⎩⎧=⎪-⎪∴=-+⇔⎨+⎪=⎪-⎩乘法模型,除的话改成乘法通项公式:()指数函数的指数为,非n 变成n五.斐波那数列---黄金分割数列---nn 1a 0.618a +≈n n-1n-2n n n n n 21. a =a +a 112.a [((]5223.:S a 1+≥≥+-=-=-特征:F(n)=F(n-1)+F(n-2) n 3或n 3通项:规律4. 数列特点:0 1 1 2 3 5 8 13 21 34...三个数据为一组,第一数据为偶数,第二、三个数据为奇数技巧1 等比数列前n 项和规律【例1】(2020·福建省厦门第六中学)已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2- B .1-C .1D .2【举一反三】1.(2020·安徽含山(理))已知等比数列{a n }的前n 项和S n =3n +2+3t ,则t =( ) A .1 B .﹣1 C .﹣3 D .﹣92.(2020·安徽屯溪一中)已知等比数列{}n a 的前n 项和为1136n n S x -=⋅-,则x 的值为( ) A .13B .13-C .12D .12-技巧2 单一条件口算结果【例2-1】(1)(2020·宁夏高三其他(文))n S 为等差数列{}n a 的前n 项和,若150S =,则8a =( ). A .-1B .0C .1D .2(2)(2020·山西省长治市第二中学校高三月考(理))已知各项为正数的等比数列{}n a 满足2589a a a =﹐则3334353637log log log log log a a a a a ++++的值为( ) A .73B .83C .3D .103【例2-2】(2020·河南)已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( ) A .67B .1211C .1825D .1621【举一反三】1.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7C .9D .112.(2020·广东云浮·)在正项等比数列{}n a 中,若63a =,则313233311log log log log a a a a ++++=( ).A .5B .6C .10D .113.(2020·浙江宁波)已知数列{}n a 是等差数列,数列{}n b 是等比数列,若26102a a a π++=,2588b b b =,则4837sina ab b +的值是( ) A .12B .12-CD.4.(2020·全国高三其他(理))已知数列{}n a ,{}n b 为等差数列,其前n 项和分别为n S ,n T ,422n n S n T n +=+,则59a b =( ) A .3811B .109C .1110D .2技巧3 公式法口算通项【例3】(2020·南京市秦淮中学高三其他)已知数列{}n a 的前n 项和223n S n n =-+,则数列{}n a 的通项公式为______.【举一反三】1.(2020·湖南湘潭·高考模拟(文))已知数列{}n a 的前n 项和公式为221n S n n =-+,则数列{}n a 的通项公式为___.2.(2020·山西大同·高三一模(文))已知n S 为数列{}n a 的前n 项和,若111,23+==+n n a a S ,则数列{}n a 的通项公式为___________.技巧4 错位相减法口算结果【例4】(2020·江西东湖·南昌二中高三其他(文))已知数列{}n a 的前n 项和为n S ,点(n ,*)()n S n N ∈在函数2y x 的图象上,数列{}n b 满足1110,363n n b b b +==+, (1)求{}n a 的通项公式;(2)若(3)n n n c a b =-,求数列{}n c 的前n 项和n T .【举一反三】1.(2020·河南高三其他(文))已知数列{}n a 的前n 项和为n S ,且(1)2n n n n S a --=. (1)求数列{}n a 的通项公式; (2)如果数列12n n b -=,求数列{}n n a b 的前n 项和n T .2.(2019·甘肃天水·高考模拟(文))在正项等比数列{n a }中,11a =且3542,,3a a a 成等差数列.(1)求数列的通项公式; (2)若数列{n b }满足n nnb a =,求数列{n b }的前n 项和n S .技巧5 斐波那数列【例5】(2020·吉林前郭尔罗斯县第五中学)“斐波那契”数列是由十三世纪意大利数学家斐波那契发现的.数列中的一系列数字常被人们称为神奇数.具体数列为:1,1,2,3,5,8,13,…,即从该数列的第三项开始,每个数字都等于前两个相邻数字之和.已知数列{}n a 为“斐波那契”数列,n S 为数列{}n a 的前n 项和,若2020a m =,则2018S =( ) A .2mB .212m - C .1m - D .1m +【举一反三】1.(2020·河北高三月考)数列1、1、2、3、5、8、13、21、34、称为斐波那契数列,是意大利著名数学家斐波那契于1202年在他撰写的《算盘全书》中提出的,该数列的特点是:从第三项起,每一项都等于它前面两项的和.在该数列的前2020项中,偶数的个数为( ) A .505 B .673C .674D .10102.(2019·福建高三(理))斐波那契螺旋线,也称“黄金螺旋线”.如图,矩形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90︒的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD 内任取一点,该点取自阴影部分的概率为( )A .8πB .4π C .14D .341.(2020·湖北黄州·黄冈中学高三其他(理))已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42 B .21 C .7D .32.(2020·甘肃高三其他(文))已知等比数列{}n a 的前n 项和为2n n S a =+,则a=( )A .0B .2-C .1-D .13.(2020·辽源市田家炳高级中学校高二期末(理))斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,画出来的螺旋曲线.如图,白色小圆内切于边长为1的正方形,黑色曲线就是斐波那契螺旋线,它是依次在以1,2,3,5为边长的正方形中画一个圆心角为90︒的扇形,将其圆弧连接起来得到的.若在矩形 ABCD 内随机取一点,则此点取自阴影部分的概率是( )A .191160π+ B .192160π+ C .19180π+ D .19280π+4.(2020·安徽高三月考(理))裴波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家列昂纳多·裴波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上裴波那契数列被以下递推方法定义:数列{}n a 满足:121a a ==,21++=+n n n a a a ,现从该数列的前40项中随机抽取一项,则能被3整除的概率是( ) A .14B .13C .12D .235.(2020·黑龙江哈尔滨市第六中学校高三(文))意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144……,这就是著名的斐波那契数列,它的递推公式是12(3,Ν)n n n a a a n n *--=+≥∈,其中11a =,21a =.若从该数列的前100项中随机地抽取一个数,则这个数是偶数的概率为( ) A .13B .33100C .12D .671008.(2020·江西高三(文))意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144……,这就是著名的斐波那契数列,它的递推公式是()*123,n n n a a a n n N--=+≥∈,其中11a =,21a =.若从该数列的前120项中随机地抽取一个数,则这个数是奇数的概率为( )A .13B .23C .12D .347.(2020·嘉祥县第一中学高三其他)设数列{}n a ,{}n b 均为等差数列,它们的前n 项和分别为n S ,n T ,若2334n n S n T n -=+,则55a b =( ) A .719 B .1531C .1734D .19378.(2020·合肥一六八中学高三其他(理))已知数列{}n a 为等差数列,且满足251115a a a ++=,则数列{}n a 的前11项和为( )A .40B .45C .50D .559.(2019·河南高二月考)两等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且12n n S n T n+=,则85(a b = ) A .45B .67C .89D .210.(多选)(2020·福建省永泰县第一中学高三月考)斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎫⎛⎫⎥=- ⎪ ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎦D .()1122n nF n ⎡⎤⎛⎛⎫⎥=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦12.(2020·福建漳州·高三其他(文))若n S 是等差数列{}n a 的前n 项和,且918S =,则5a =__________.13.(2020·陕西渭南·(理))已知数列{a n }的前n 项和S n =n (n +1)+2,其中*n N ∈,则a n =_____.14.(2020·湖北高三月考(理))设n S 为数列{}n a 的前n 项和,若257n n S a =-,则n a =____15.(2020·浙江高三其他)已知数列{}n a 的前n 项和()2*21n S n n n N=+-∈,则1a=____________;数列{}n a 的通项公式为n a =____________.16.(2020·浙江高三月考)十三世纪意大利数学家列昂纳多·斐波那契从兔子繁殖规律中发现了“斐波那契数列”,斐波那契数列{}n a 满足以下关系:11a =,21a =,()123--=+≥∈*n n n a a a n ,n N ,记其前n 项和为n S ,设2020a m =(m 为常数),则20182020S a -=______;1352019+++⋅⋅⋅+=a a a a ______.17.(2020·陕西西安中学)斐波那契数列(Fibonaccisequence),又称黄金分割数列,因数学家列昂纳多斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”.它是这样一个数列:1,1,2,3,5,8,13,21,34,55……在数学上,斐波那契数列以如下递推的方法定义:a 1=1,a 2=1,n n 1n 2a a a --=+(n ≥3,n ∈N *),记其前n 项和为S n ,设a 2019=t (t 为常数),则2017201620152014S S S S +--=________(用t 表示),20172019S a -=________(用常数表示).18.(2020·全国高三其他(理))已知数列{}n a 的前n 项和为n S ,且21nn S =+.(1)求{}n a 的通项公式;(2)若()21n n b n a =-,求数列{}n b 的前n 项和n T .19.(2020·河南高二其他(文))设等差数列{}n a 的前n 项和为n S ,且424S S =,2121a a =+.(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足()214n n na b -=, 求数列{}n b 的前n 项和n R .专题04 数 列二.等比数列前n 项和规律n n n n 11111n n a (1q )a a q a a S q S =A-Aq 1q 1q 1q 1q --===-⇔----简记:,指数次数只能为n 次方常数与指数函数的系数成相反数二.单一条件口算结果-----实质考查等比或等差中项1.无论是等差还是等比数列,如果只知道一个条件是取法确定具体的数列,那么可以处理为非0的常数数列,因为非0的常数数列即是等差也是等比数列。
人教版高中数学高考总复习抛物线习题及详解及参考答案
人教版高中数学高考总复习抛物线习题及详解及参考答案(附参考答案)一、选择题1.(2010·湖北黄冈)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A.-2 B.2C.-4 D.4[答案]D[解析]椭圆中,a2=6,b2=2,∴c==2,∴右焦点(2,0),由题意知=2,∴p=4.2.已知点M是抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,若以|MF|为直径作圆,则这个圆与y轴的关系是()A.相交B.相切C.相离D.以上三种情形都有可能[答案]B[解析]如图,由MF的中点A作准线l的垂线AE,交直线l于点E,交y轴于点B;由点M作准线l的垂线MD,垂足为D,交y轴于点C,则MD=MF,ON=OF,∴AB==ON+CM2==,∴这个圆与y轴相切.3.(2010·山东文)已知抛物线y2=2px(p>0),过焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A.x=1 B.x=-1C .x =2D .x =-2[答案]B[解析]设A(x1,y1),B(x2,y2),则线段AB 的中点(,),∴=2,∵A 、B 在抛物线y2=2px 上,∴⎩⎪⎨⎪⎧y12=2px1 ①y22=2px2 ②①-②得y12-y22=2p(x1-x2), ∴kAB ===,∵kAB =1,∴,p =2∴抛物线方程为y2=4x ,∴准线方程为:x =-1,故选B.4.双曲线-=1的渐近线上一点A 到双曲线的右焦点F 的距离等于2,抛物线y2=2px(p>0)过点A ,则该抛物线的方程为()A .y2=9xB .y2=4xC .y2=xD .y2=x[答案]C[解析]∵双曲线-=1的渐近线方程为y =±x ,F 点坐标为(,0),设A 点坐标为(x ,y),则y =±x ,由|AF|=2⇒=2⇒x =,y =±,代入y2=2px 得p =,所以抛物线方程为y2=x ,所以选C.5.已知点P 是抛物线y2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为()A.B .3C.D.92[答案]A[解析]记抛物线y2=2x 的焦点为F ,准线是l ,由抛物线的定义知点P 到焦点F 的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于=,选A.6.已知抛物线C:y2=4x的焦点为F,准线为l,过抛物线C上的点A作准线l的垂线,垂足为M,若△AMF与△AOF(其中O为坐标原点)的面积之比为31,则点A的坐标为()A.(2,2) B.(2,-2)C.(2,±) D.(2,±2)[答案]D [解析]如图,由题意可得,|OF|=1,由抛物线定义得,|AF|=|AM|,∵△AMF与△AOF(其中O为坐标原点)的面积之比为3∶1,∴==3,∴|AM|=3,设A,∴+1=3,解得y0=±2,∴=2,∴点A的坐标是(2,±2),故选D. 7.(2010·河北许昌调研)过点P(-3,1)且方向向量为a=(2,-5)的光线经直线y=-2反射后通过抛物线y2=mx,(m≠0)的焦点,则抛物线的方程为()A.y2=-2xB.y2=-xC.y2=4xD.y2=-4x[答案]D [解析]设过P(-3,1),方向向量为a=(2,-5)的直线上任一点Q(x,y),则∥a,∴=,∴5x+2y+13=0,此直线关于直线y=-2对称的直线方程为5x+2(-4-y)+13=0,即5x-2y+5=0,此直线过抛物线y2=mx的焦点F,∴m=-4,故选D. 8.已知mn≠0,则方程是mx2+ny2=1与mx+ny2=0在同一坐标系内的图形可能是()[答案]A [解析]若mn>0,则mx2+ny2=1应为椭圆,y2=-x应开口向左,故排除C、D;∴mn<0,此时抛物线y2=-x应开口向右,排除B,选A. 9.(2010·山东聊城模考)已知A、B为抛物线C:y2=4x上的不同两点,F为抛物线C的焦点,若=-4,则直线AB的斜率为()A .±B .±32 C .±D .±43[答案]D[解析]∵=-4,∴||=4||,设|BF|=t ,则|AF|=4t ,∴|BM|=|AA1|-|BB1|=|AF|-|BF|=3t ,又|AB|=|AF|+|BF|=5t ,∴|AM|=4t ,∴tan ∠ABM =,由对称性可知,这样的直线AB 有两条,其斜率为±.10.已知抛物线C 的方程为x2=y ,过点A(0,-4)和点B(t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是()A .(-∞,-1)∪(1,+∞)B.∪⎝ ⎛⎭⎪⎫22,+∞C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(,+∞)[答案]B[解析]由题意知方程组无实数解 由②得y =-4,代入①整理得, 2x2-+4=0,∴Δ=-32<0,∴t>或t<-,故选B.[点评]可用数形结合法求解,设过点A(0,-4)与抛物线x2=y 相切的直线与抛物线切点为M(x0,y0),则切线方程为y -y0=4x0(x -x0),∵过A 点,∴-4-2x02=4x0(0-x0),∴x0=±,∴y0=4,∴切线方程为y -4=±4x -8, 令y =0得x =±,即t =±,由图形易知直线与抛物线无公共点时,t<-或t>.二、填空题11.已知点A(2,0)、B(4,0),动点P在抛物线y2=-4x上运动,则·取得最小值时的点P的坐标是______.[答案](0,0)[解析]设P,则=,=,·=+y2=+y2+8≥8,当且仅当y=0时取等号,此时点P的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y2=2px(p>0)的焦点F作倾斜角为60°的直线l,交抛物线于A、B两点,且|FA|=3,则抛物线的方程是________.[答案]y2=3x[解析]设抛物线准线为l,作AA1⊥l,BB1⊥l,FQ⊥l,垂足分别为A1、B1、Q,作BM⊥AA1垂足为M,BM交FQ于N,则由条件易知∠ABM=30°,设|BF|=t,则|NF|=,|MA|=,∵|AM|=|QN|,∴3-=p-,∴p=,∴抛物线方程为y2=3x. (理)(2010·泰安质检)如图,过抛物线y2=2px(p>0)的焦点的直线l依次交抛物线及其准线于点A、B、C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程是________.[答案]y2=3x[解析]解法1:过A、B作准线垂线,垂足分别为A1,B1,则|AA1|=3,|BB1|=|BF|,∵|BC|=2|BF|,∴|BC|=2|BB1|,∴|AC|=2|AA1|=2|AF|=6,∴|CF|=3,∴p=|CF|=,∴抛物线方程为y2=3x.解法2:由抛物线定义,|BF|等于B到准线的距离,由|BC|=2|BF|得∠BCB1=30°,又|AF|=3,从而A在抛物线上,代入抛物线方程y2=2px,解得p=.点评:还可以由|BC|=2|BF|得出∠BCB1=30°,从而求得A点的横坐标为|OF|+|AF|=+或3-,∴+=3-,∴p=. 13.已知F为抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A、B两点.设|FA|>|FB|,则|FA|与|FB|的比值等于________.[答案]3+22 [解析]分别由A和B向准线作垂线,垂足分别为A1,B1,则由条件知,⎩⎪⎨⎪⎧|AA1|+|BB1|=|AB|,|AA1|-|BB1|=22|AB|,解得,∴=3+2,即=3+2.14.(文)若点(3,1)是抛物线y2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案]2[解析]设弦两端点P1(x1,y1),P2(x2,y2),则,两式相减得,==2,∵y1+y2=2,∴p =2.(理)(2010·衡水市模考)设抛物线x2=12y 的焦点为F ,经过点P(2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则|AF|+|BF|=________.[答案]8[解析]过A 、B 、P 作准线的垂线AA1、BB1与PP1,垂足A1、B1、P1,则|AF|+|BF|=|AA1|+|BB1|=2|PP1|=2[1-(-3)]=8.三、解答题15.(文)若椭圆C1:+=1(0<b<2)的离心率等于,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上.(1)求抛物线C2的方程;(2)若过M(-1,0)的直线l 与抛物线C2交于E 、F 两点,又过E 、F 作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l 的方程.[解析](1)已知椭圆的长半轴长为a =2,半焦距c =,由离心率e ===得,b2=1.∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1),∴p =2,抛物线的方程为x2=4y.(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k(x +1),E(x1,y1),F(x2,y2), ∵y =x2,∴y ′=x ,∴切线l1,l2的斜率分别为x1,x2,当l1⊥l2时,x1·x 2=-1,即x1·x 2=-4,由得:x2-4kx -4k =0,由Δ=(-4k)2-4×(-4k)>0,解得k<-1或k>0.又x1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.(理)在△ABC 中,⊥,=(0,-2),点M 在y 轴上且=(+),点C 在x 轴上移动.(1)求B 点的轨迹E 的方程;(2)过点F 的直线l 交轨迹E 于H 、E 两点,(H 在F 、G 之间),若=,求直线l的方程.[解析](1)设B(x ,y),C(x0,0),M(0,y0),x0≠0,∵⊥,∴∠ACB =,∴·=-1,于是x02=2y0①M 在y 轴上且=(+),所以M 是BC 的中点,可得⎩⎪⎨⎪⎧x0+x2=0y +02=y0,∴⎩⎪⎨⎪⎧x0=-x ②y0=y2 ③把②③代入①,得y =x2(x ≠0),所以,点B 的轨迹E 的方程为y =x2(x ≠0).(2)点F ,设满足条件的直线l 方程为:y =kx -,H(x1,y1),G(x2,y2),由消去y 得,x2-kx +=0.Δ=k2-1>0⇒k2>1,∵=,即=(x2-x1,y2-y1),∴x1=x2-x1⇒3x1=x2.∵x1+x2=k ,x1x2=,∴k =±,故满足条件的直线有两条,方程为:8x+4y+=0和8x-4y-=0. 16.(文)已知P(x,y)为平面上的动点且x≥0,若P到y轴的距离比到点(1,0)的距离小1.(1)求点P的轨迹C的方程;(2)设过点M(m,0)的直线交曲线C于A、B两点,问是否存在这样的实数m,使得以线段AB为直径的圆恒过原点.[解析](1)由题意得:-x=1,化简得:y2=4x(x≥0).∴点P的轨迹方程为y2=4x(x≥0).(2)设直线AB为y=k(x-m),A(x1,y1),B(x2,y2),由,得ky2-4y-4km=0,∴y1+y2=,y1·y2=-4m.∴x1·x2=m2,∵以线段AB为直径的圆恒过原点,∴OA⊥OB,∴x1·x2+y1·y2=0.即m2-4m=0⇒m=0或4.当k不存在时,m=0或4.∴存在m=0或4,使得以线段AB为直径的圆恒过原点.[点评](1)点P到定点F(1,0)的距离比到y轴的距离大1,即点P到定点F(1,0)的距离与到定直线l:x=-1的距离相等.∴P点轨迹是以F为焦点,l为准线的抛物线,∴p=2,∴方程为y2=4x. (理)已知抛物线y2=4x,过点(0,-2)的直线交抛物线于A、B两点,O为坐标原点.(1)若·=4,求直线AB的方程.(2)若线段AB的垂直平分线交x轴于点(n,0),求n的取值范围.[解析](1)设直线AB的方程为y=kx-2(k≠0),代入y2=4x中得,k2x2-(4k+4)x+4=0①设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.y1y2=(kx1-2)·(kx2-2)=k2x1x2-2k(x1+x2)+4=-.∵·=(x1,y1)·(x2,y2)=x1x2+y1y2=-=4,∴k2+2k-1=0,解得k=-1±.又由方程①的判别式Δ=(4k +4)2-16k2=32k +16>0得k>-,∴k =-1+,∴直线AB 的方程为(-1)x -y -2=0.(2)设线段AB 的中点的坐标为(x0,y0),则由(1)知x0==,y0=kx0-2=,∴线段AB 的垂直平分线的方程是y -=-.令y =0,得n =2+=++2=22+.又由k>-且k ≠0得<-2,或>0,∴n>22+=2.∴n 的取值范围为(2,+∞).17.(文)(2010·全国Ⅰ)已知抛物线C :y2=4x 的焦点为F ,过点K(-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D.(1)证明:点F 在直线BD 上;(2)设·=,求△BDK 的内切圆M 的方程.[解析]设A(x1,y1),B(x2,y2),D(x1,-y1),l 的方程为x =my -1(m ≠0)(1)将x =my -1(m ≠0)代入y2=4x 并整理得y2-4my +4=0,从而y1+y2=4m ,y1y2=4①直线BD 的方程为y -y2=(x -x2)即y -y2=4y2-y1⎝⎛⎭⎪⎫x -y224令y =0,得x ==1,所以点F(1,0)在直线BD 上.(2)由(1)知,x1+x2=(my1-1)+(my2-1)=4m2-2,x1x2=(my1-1)(my2-1)=1因为=(x1-1,y1),=(x2-1,y2),·=(x1-1,y1)·(x 2-1,y2)=x1x2-(x1+x2)+1+4=8-4m2, 故8-4m2=,解得m =±,直线l 的方程为3x +4y +3=0,3x -4y +3=0.从而y2-y1=±=±,故=±37因而直线BD的方程为3x+y-3=0,3x-y-3=0.因为KF为∠BKD的角平分线,故可设圆心M(t,0),(-1<t<1),M(t,0)到直线l及BD的距离分别为,,由=得t=或t=9(舍去),故圆M的半径为r==,所以圆M的方程为2+y2=. (理)(2010·揭阳市模考)已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析](1)法一:连结CP,由·=0知,AC⊥BC,∴|CP|=|AP|=|BP|=|AB|,由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9,设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9,化简得,x2-x+y2=4.法二:设A(x1,y1),B(x2,y2),P(x,y),根据题意知,x12+y12=9,x22+y22=9,2x=x1+x2,2y=y1+y2,∴4x2=x12+2x1x2+x22,4y2=y12+2y1y2+y22故4x2+4y2=(x12+y12)+(2x1x2+2y1y2)+(x22+y22)=18+2(x1x2+y1y2)①又∵·=0,∴(1-x1,-y1)·(1-x2,-y2)=0∴(1-x1)×(1-x2)+y1y2=0,故x1x2+y1y2=(x1+x2)-1=2x-1,代入①式得,4x2+4y2=18+2(2x-1),化简得,x2-x+y2=4. (2)根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中=1,∴p=2,故抛物线方程为y2=4x,由方程组得,x2+3x-4=0,解得x1=1,x2=-4,由于x≥0,故取x=1,此时y=±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高三数学专题总复习及参考答案高考数学复习专题专题一集合、逻辑与不等式集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关简易逻辑的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.不等式是高中数学的重点内容之一,是工具性很强的一部分内容,解不等式、不等式的性质等都有很重要的应用.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N* (2)0{-1,1} (3)∈{0}∉∅(4){0} (5){0}∈{0,1} (6){0}{0}∅∉⊆其中正确的关系是______.解答:(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作;N 表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.∅2.明确元素与集合的关系及符号表示:如果a 是集合A 的元素,记作:a ∈A ;如果a 不是集合A 的元素,记作:aA .∉3.明确集合与集合的关系及符号表示:如果集合A 中任意一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集.记作:AB 或BA .⊆⊇如果集合A 是集合B 的子集,且B 中至少有一个元素不属于A ,那么,集合A 叫做集合B 的真子集.AB 或BA .4.子集的性质:①任何集合都是它本身的子集:AA ;⊆②空集是任何集合的子集:A ;∅⊆提示:空集是任何非空集合的真子集.③传递性:如果AB ,BC ,则AC ;如果AB ,BC ,则AC .⊆⊆⊆例2 已知全集U ={小于10的正整数},其子集A ,B 满足条件(UA)∩(UB)={1,9},A ∩B ={2},B ∩(UA)={4,6,8}.求集合A ,B .解:根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A ={2,3,5,7},B ={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A 、B ,由既属于A 又属于B 的所有元素构成的集合叫做A 、B 的交集.记作:A ∩B .对于两个给定的集合A 、B ,把它们所有的元素并在一起构成的集合叫做A 、B 的并集.记作:A ∪B .如果集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合叫做A 在U 中的补集.记作UA .2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a}.若M ∩N =,则实数a 的取值范围是______.∅答:(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合,则b -a =______.},,0{},,1{b ab a b a =+【分析】因为,所以a +b =0或a =0(舍去,否则没有意义),},,0{},,1{b a ba b a =+a b 所以,a +b =0,=-1,所以-1∈{1,a +b ,a},a =-1,ab 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①;②Q ;③|-3|N*;④.其中正确命题的个数是( )R ∈212∉∉Q ∈-|3|(A)1 (B)2 (C)3 (D)42.下列各式中,A 与B 表示同一集合的是( )(A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C)A ={0},B = (D)A ={y |y =x2+1},B ={x |y =x2+1}∅3.已知M ={(x ,y)|x >0且y >0},N ={(x ,y)|xy >0},则M ,N 的关系是( )(A)MN (B)NM (C)M =N (D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则下式中正确的关系是( )(A)U =A ∪B (B)U =(UA)∪B (C)U =A ∪(UB) (D)U =(UA)∪(UB)二、填空题5.已知集合A ={x |x <-1或2≤x <3},B ={x |-2≤x <4},则A ∪B =______.6.设M ={1,2},N ={1,2,3},P ={c |c =a +b ,a ∈M ,b ∈N},则集合P 中元素的个数为______.7.设全集U =R ,A ={x |x ≤-3或x ≥2},B ={x |-1<x <5},则(UA)∩B =______.8.设集合S ={a0,a1,a2,a3},在S 上定义运算为:aiaj =ak ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3.则a2a3=______;满足关系式(xx)a2=a0的x(x ∈S)的个数为______.⊕⊕⊕⊕⊕三、解答题9.设集合A ={1,2},B ={1,2,3},C ={2,3,4},求(A ∩B)∪C .10.设全集U ={小于10的自然数},集合A ,B 满足A ∩B ={2},(UA)∩B ={4,6,8},(UA)∩(UB)={1,9},求集合A 和B .11.已知集合A ={x |-2≤x ≤4},B ={x |x >a},①A ∩B ≠,求实数a 的取值范围;∅②A ∩B ≠A ,求实数a 的取值范围;③A ∩B ≠,且A ∩B ≠A ,求实数a 的取值范围.∅§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p 则q .逆命题:若q 则p .否命题:若p ,则q .逆否命题:若q ,则p .注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.⌝⌝⌝⌝4.充要条件如果pq,则p叫做q的充分条件,q叫做p的必要条件.⇒如果pq且qp,即qp则p叫做q的充要条件,同时,q也叫做p的充要条件.⇒⇒⇔5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例 1 分别写出由下列命题构成的“p∨q”“p∧q”“p”形式的复合命题,并判断它们的真假.⌝(1)p:0∈N,q:1N;∉(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.解:(1)p∨q:0∈N,或1N;∉p∧q:0∈N,且1N;p:0N.∉⌝∉因为p真,q假,所以p∨q为真,p∧q为假,p为假.⌝(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,p为真.⌝【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则AB.解:(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若AB,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.评述:原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【分析】由定义知,若pq且qp,则p是q的充分不必要条件;⇒若pq且qp,则p是q的必要不充分条件;⇒若pq且qp,p与q互为充要条件.⇒⇒于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4 设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M ∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件解:条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x <3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}R,所以p是q的必要非充分条件,选B.⊆【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若AB且BA,则p是q的充分非必要条件;若AB且BA,则p是q的必要非充分条件;若A =B,则p与q互为充要条件.⊆⊆例5 命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0 (D)对任意的x∈R,x3-x2+1>0【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)x∈Z,1<4x<3 (B)x∈Z,3x-1=0∃∃(C)x∈R,x2-1=0 (D)x∈R,x2+2x+2>0∀∀2.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈Ax∈B,则称AB”.那么“A不是B的子集”可用数学语言表达为( )⇒⊆(A)若x∈A但xB,则称A不是B的子集∀∉(B)若x∈A但xB,则称A不是B的子集∃∉(C)若xA但x∈B,则称A不是B的子集∃∉(D)若xA 但x ∈B ,则称A 不是B 的子集∀∉二、填空题5.“p 是真命题”是“p ∨q 是假命题的”__________________条件.⌝6.命题“若x <-1,则|x |>1”的逆否命题为_________.7.已知集合A ,B 是全集U 的子集,则“AB ”是“UBUA ”的______条件.⊆⊆8.设A 、B 为两个集合,下列四个命题:①AB 对任意x ∈A ,有xB ②ABA ∩B =⇔∉⇔∅③ABAB ④AB 存在x ∈A ,使得xB ⇔⇔∉其中真命题的序号是______.(把符合要求的命题序号都填上)三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假:(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除;(3)x ∈{x |x ∈Z},log2x >0;∃ (4).041,2≥+-∈∀x x x R 10.已知实数a ,b ∈R .试写出命题:“a2+b2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.§1-3 不等式(含推理与证明)【知识要点】1.不等式的性质.(1)如果a >b ,那么b <a ;(2)如果a >b ,且b >c ,那么a >c ;(3)如果a >b ,那么a +c >b +c(如果a +c >b ,那么a >b -c);(4)如果a >b ,c >d ,那么a +c >b +d ;(5)如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc ;(6)如果a >b >0,c >d >0,那么ac >bd ;(7)如果a >b >0,那么an >bn(n ∈N +,n >1);(8)如果a >b >0,那么;)1,N (>∈>+n x b a n n2.进行不等式关系判断时常用到的实数的性质:若a ∈R ,则.)R (0.0||;02+∈≥≥≥a a a a3.会解一元一次不等式,一元二次不等式,简单的分式不等式、绝对值不等式.简单的含参数的不等式.4.均值定理:如果a 、b ∈R +,那么当且仅当a =b 时,式中等号成立..2ab b a ≥+ 其他常用的基本不等式:如果a 、b ∈R ,那么a2+b2≥2ab ,(a -b)2≥0. 如果a 、b 同号,那么.2≥+b a a b5.合情推理之归纳推理与类比推理;演绎推理;综合法、分析法与反证法.【复习要求】1.运用不等式的性质解决以下几类问题:(1)根据给定的条件,判断给出的不等式能否成立;(2)利用不等式的性质,实数的性质以及函数的有关性质判断实数值的大小关系;(3)利用不等式的性质等判断不等式变换中条件与结论间的充分必要关系.2.熟练掌握一元一次不等式,一元二次不等式、简单的分式不等式、绝对值不等式的解法.并会解简单的含参数的不等式.3.了解合情推理和演绎推理的含义,能利用归纳和类比等进行简单的推理.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.能较为灵活的运用综合法、分析法与反证法证明数学问题.熟练运用比较法比较数与式之间的大小关系.比较法:常有“作差比较法”和“作商比较法”;综合法:从已知推导致结果的思维方法;分析法:从结果追溯到产生这一结果的原因的思维方法;反证法:由证明pq 转向证明qr …t ,而t 与假设矛盾,或与某个真命题矛盾,从而判定q 为假,进而推出q 为真的方法,叫做反证法.⇒⌝⇒⇒⇒⌝一般来讲,由分析法得到的证明思路往往用综合法的方式来书写.【例题分析】例1 若a >b >c ,则一定成立的不等式是( )A .a |c |>b |c |B .ab >acC .a -|c |>b -|c |D .cb a 111<< 【分析】关于选项A .当c =0时,a |c |>b |c |不成立.关于选项B .当a <0时,ab >ac 不成立.关于选项C .因为a >b ,根据不等式的性质a -|c |>b -|c |,正确. 关于选项D .当a >b >0>c 时,不成立.所以,选C .c b a 111<< 例2 a ,b ∈R ,下列命题中的真命题是( )A .若a >b ,则|a |>|b |B .若a >b ,则b a 11<C .若a >b ,则a3>b3D .若a >b ,则1>b a 【分析】关于选项A .当a =-1,b =-2时,|a |>|b |不成立. 关于选项B .当a >0,b <0时,不成立.ba 11< 关于选项C .因为a >b ,根据不等式的性质a3>b3,正确. 关于选项D .当b <0时,不成立.所以,选C .1>b a【评析】判断不等关系的正误,其一要掌握判断的依据,依据相关的理论判断,切忌仅凭感觉进行判断;其二要掌握判断的方法.判断不等式的理论依据参看本节的知识要点,另外,后面专题讲到的函数的相关知识尤其是函数的单调性也是解决不等式问题的非常重要的方法.判断一个不等式是正确的,就应该给出一个合理的证明(或说明),就像例1、例2对正确的选项判断那样.判断一个不等式是不正确的,应举出反例.例3 解下列不等式:(1)x2-x -1>0;(2)x2-3x +2>0;(3)2x2-3x +1≤0;(4)(5)|2x -1|<3;(6);021>--x x .1212≤--x x 解:(1)方程x2-x -1=0的两个根是结合函数y =x2-x -1的图象,可得不等式x2-x -1>0的解集为251,21±=x x }.251251|{+>-<x x x 或 (2)不等式x2-3x +2>0等价于(x -1)(x -2)>0,易知方程(x -1)(x -2)=0的两个根为x1=1,x2=2,结合函数y =x2-3x +2的图象,可得不等式x2-3x +2>0的解集为{x |x <1或x >2}.(3)不等式2x2-3x +1≤0等价于(2x -1)(x -1)≤0,以下同(2)的解法, 可得不等式的解集为}.121|{≤≤x x(4)等价于(x -1)(x -2)>0,以下同(2)的解法,可得不等式的解集为{x |x <1或x >2}.021>--x x (5)不等式|2x -1|<3等价于-3<2x -1<3,所以-2<2x <4,即-1<x <2,所以不等式|2x -1|<3的解集为{x |-1≤x <2}.(6)不等式可以整理为1212≤--x x ,021≤-+x x ,021≤-+x x 等价于以下同(4)的解法,可得不等式的解集为{x |-1≤x <2}..021021=-+<-+x x x x 或 【评析】一元一次不等式、一元二次不等式的解法要熟练掌握.其他不等式的解法适当掌握.1.利用不等式的性质可以解一元一次不等式.2.解一元二次不等式要注意函数、方程、不等式三者之间的联系,通过研究与一元二次不等式相对应的一元二次方程的根的情况、进而结合相应的二次函数的图象就可以解决一元二次不等式解集的问题了.所以,解一元二次不等式的步骤为:计算二次不等式相应的方程的判别式;求出相应的一元二次方程的根(或根据判别式说明无根);画出相应的二次函数的简图;根据简图写出二次不等式的解集.3、不等式与(x -a)(x -b)>0同解;不等式与(x -a)(x -b)<0同解;0>--bx a x 0<--b x a x 4*、不等式|f(x)|<c 与-c <f(x)<c 同解;不等式|f(x)|>c 与“f(x)>c 或f(x)<-c ”同解.在解简单的分式不等式时要注意细节,例如(5)题关于“≤”号的处理.例4 解下列关于x 的不等式;(1)ax +3<2;(2)x2-6ax +5a2≤0.解:(1)由ax +3<2得ax <-1,当a =0时,不等式解集为;∅当a >0时,不等式解集为;}1|{ax x -<当a <0时,不等式解集为.}1|{a x x -> (2)x2-6ax +5a2≤0等价于不等式(x -a)(x -5a)≤0,当a =0时,不等式解集为{x |x =0};当a >0时,不等式解集为{x |a ≤x ≤5a};当a <0时,不等式解集为{x |5a ≤x ≤a}.【评析】含参数的不等式的解法与不含参数的不等式的解法、步骤是完全一致的.要注意的是,当进行到某一步骤具有不确定性时,需要进行分类讨论.如(2)的解决过程中,当解出方程(x -a)(x -5a)=0的两根为x1=a ,x2=5a 之后,需要画出二次函数y =x2-6ax +5a2的草图,这时两根a 与5a 的大小不定,需要讨论,当分a =0,a >0,a <0三种情况之后,就可以在各自情况下确定a 与5a 的大小,画出二次函数y =x2-6ax +5a2的草图写出解集了.例5 已知a >b >0,c <d <0,m <0.求证:⋅->-db mc a m 证明:方法一(作差比较)由已知b -a <0,c -d <0,又m <0,所以m[(b -a)+(c -d)]>0,因为a >b >0,c <d <0,所以a -c >0,b -d >0, 所以,所以0))(()]()[(>---+-d b c a d c a b m ⋅->->---db mc a md b m c a m 即,0 方法二因为c <d <0,所以c -d <0,又a >b >0,所以a -b >0,所以a -b >c -d ,所以a -c >b -d >0,所以,又因为m <0,所以d b c a -<-11⋅->-db mc a m 例6 已知a +b +c =0,a >b >c ,求证:(1)a >0;(2).2->a c证明:(1)假设a ≤0,因为a >b >c ,所以b <0,c <0.所以a +b +c <0,与a +b +c =0矛盾.(2)因为b =-a -c ,a >b ,所以,所以2a >-c ,又a >0,所以,所以a c ->2.2->a c 例7 已知a ,b ,c ∈(0,1),求证:(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 证明:假设(1-a)b ,(1-b)c ,(1-c)a 均大于,41 即,41)1(,41)1(,41)1(>->->-a c c b b a因为a ,b ,c ∈(0,1),所以1-a ,1-b ,1-c ∈(0,1),所以,同理(1-b)+c >1,(1-c)+a >1,1)1(2)1(>-≥+-b a b a所以(1-a)+b +(1-b)+c +(1-c)+a >3,即0>0,矛盾.所以(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 【评析】证明常用的方法有比较法、综合法、分析法与反证法等.证明不等式也是如此.1、例5中的方法一所用到的比较法从思维、书写的角度都较为容易,也相对易于把握,要熟练掌握.2、例5中的方法二所用到的综合法是一般证明题常用的方法,其书写方法简明、易读,但要注意的是,这样的题的思路常常是分析法.比如,例5中的方法二的思路我们可以认为是这样得到的:欲证只需证明m(b -d)>m(a -c)(因为b -d >0,a -c >0),即只需证明b -d <a -c ,即只需证明a -b >c -d ,,db mc a m ->- 而由已知a -b >0,c -d <0,所以可以循着这个思路按照相反的顺序书写.所以,在很多情况下,分析法更是思考问题的方法,而综合法更是一种书写方法.3、适合用反证法证明的常见的命题一般是非常显而易见的问题(如例6(1))、否定式的命题、存在性的命题、含至多至少等字样的命题(如例7)等等.证明的步骤一般是:(1)假设结论的反面是正确的;(2)推出矛盾的结论;(3)得出原来命题正确的结论.例8 根据图中图形及相应点的个数找规律,第8个图形相应的点数为______.【分析】第一个图有1行,每行有1+2个点;第二个图有2行,每行有2+2个点;第三个图有3行,每行有3+2个点;……第八个图有8行,每行有8+2个点,所以共有8×10=80个点.答:80.练习1-3一、选择题1.若则下列各式正确的是( )011>>b a (A)a >b (B)a <b (C)a2>b2 (D)2211ba < 2.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) (A)a2<b2 (B)a2b <ab2 (C) (D)b a ab 2211<b a a b < 3.已知A ={x ||x |<a},B ={x |x >1},且A ∩B =,则a 的取值范围是( )∅(A){a |a ≤1} (B){a |0≤a ≤1} (C){a |a <1} (D){a |0<a <1}4.设集合M ={1,2,3,4,5,6},S1,S2,…,Sk 都是M 的含有两个元素的子集,且满足:对任意的Si ={ai ,bi}、Sj ={aj ,bj}(i ≠j ,i ,j ∈{1,2,3,…,k})都有,(min{x ,y}表示两个数x ,y 中的较小者),则k 的最大值是( )},min{},min{j j j j i i i i a b b a a bb a =/ (A)10 (B)11 (C)12 (D)13二、填空题5.已知数列{an}的第一项a1=1,且,请计算出这个数列的前几项,并据此归纳出这个数列的通项公式an =______.),3,2,1(11 =+=+n a aa n n n6.不等式x2-5x +6<0的解集为____________.7.设集合A ={x ∈R ||x |<4},B ={x ∈R |x2-4x +3>0},则集合{x ∈R |x ∈A ,且xA ∩B}=____________.∉8.设a ∈R 且a ≠0,给出下面4个式子:①a3+1;②a2-2a +2;③;④a a 1+⋅+221aa 其中恒大于1的是______.(写出所有满足条件式子的序号)三、解答题9.解下列不等式:(1)2x2+x >0;(2)x2+3x +1<0;(3);(4)|2-x |<3;(5).032<-x x 21>-x x 10.已知a +b +c =0,求证:ab +bc +ca ≤0.11.解下列关于x 的不等式:(1)x2-2ax -3a2<0;(2)ax2-x >0;习题1一、选择题1.命题“若x 是正数,则x =|x |”的否命题是( )(A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x |(C)若x 是负数,则x ≠|x | (D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N)∪P (B)(M ∩N)∩P(C)(M ∩N)∪(UP) (D)(M ∩N)∩(UP)3.“”是“对任意的正数”的( )81=a 12,≥+xa x x(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a&b ∈P ”,则运算“&”可以是( )(A)加法 (B)减法 (C)乘法 (D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )(A)ab >ac (B)c(b -a)<0 (C)cb2<ab2 (D)ac(a -c)<0二、填空题6.若全集U ={0,1,2,3}且UA ={2},则集合A =______.7.命题“x ∈A ,但xA ∪B ”的否定是____________.∃∉8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A},则B =____________.9.已知集合A ={x |x2-3x +2<0},B ={x |x <a},若AB ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a2+b2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)三、解答题11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a2+b2的大小.13.设a ≠b ,解关于x 的不等式:a2x +b2(1-x)≥[ax +b(1-x)]2.14.设数集A 满足条件:①AR ;②0A 且1A ;③若a ∈A ,则⊆∉∉.11A a ∈- (1)若2∈A ,则A 中至少有多少个元素;(2)证明:A 中不可能只有一个元素.专题一 集合、逻辑与不等式参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A 表示非负偶数集,集合B 表示能被4整除的自然数集,所以{正奇数}(UB),从而U =A ∪(UB).二、填空题5.{x |x <4} 6.4个 7.{x |-1<x <2} 8.a1;2个(x 为a1或a3).三、解答题9.(A ∩B)∪C ={1,2,3,4}10.分析:画如图所示的韦恩图:得A ={0,2,3,5,7},B ={2,4,6,8}.11.答:①a <4;②a ≥-2;③-2≤a <4提示:画数轴分析,注意a 可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件 6.若|x |≤1,则x ≥-1 7.充要条件 8.④ 提示:8.因为AB ,即对任意x ∈A ,有x ∈B .根据逻辑知识知,AB ,即为④.⊆ 另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab =0,则a2+b2=0;是假命题;例如a =0,b =1否命题:若a2+b2≠0,则ab ≠0;是假命题;例如a =0,b =1逆否命题:若ab ≠0,则a2+b2≠0;是真命题;因为若a2+b2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.练习1-3一、选择题1.B 2.C 3.A 4.B二、填空题5. 6.{x |2<x <3} 7.{x ∈R |1≤x ≤3| 8.④n1 三、解答题9.答:(1);(2);}210|{-<>x x x 或}253253|{+-<<--x x (3);(4){x |-1<x <5};(5).}230|{<<x x }310|{<<x x 10.证明:ab +bc +ca =b(a +c)+ac =-(a +c)(a +c)+ac =-a2-ac -c2所以ab +bc +ca ≤0.11.解:(1)原不等式(x +a)(x -3a)<0.⇔分三种情况讨论:①当a <0时,解集为{x |3a <x <-a};②当a =0时,原不等式x2<0,解集为;⇔∅③当a >0时,解集为{x |-a <x <3a}.(2)不等式ax2-x >0x(ax -1)>0.⇔分三种情况讨论:①当a =0时,原不等式-x >0,解集为{x |x <0};⇔②当a >0时,x(ax -1)>0x(x -)>0,解集为;⇔a 1}10|{ax x x ><或 ③当a <0时,x(ax -1)>0x(x -)<0,解集为.⇔a 1}01|{<<x a x 习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③.∀ 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式即21<x ,021,021<-<-xx x 所以,此不等式等价于x(2x -1)>0,解得x <0或,012>-x x 21>x 所以,原不等式的解集为{x |x <0或}.21>x 12.解:(1)由a +b =1得a =1-b ,因为0<a <b , 所以1-b >0且1-b <b ,所以.121<<b(2)a2+b2-b =(1-b)2+b2-b =2b2-3b +1=⋅--81)43(22b 因为,所以121<<b ,081)43(22<--b即a2+b2<b .13.解:原不等式化为(a2-b2)x +b2≥(a -b)2x2+2b(a -b)x +b2,移项整理,得(a -b)2(x2-x)≤0.因为a ≠b ,故(a -b)2>0,所以x2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,,2三个元素.21 (2)假设A 中只有一个元素,设这个元素为a ,由已知,则.即a2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.A a∈-11a a -=11 专题二 函 数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函 数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A ,B 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射.记作f :A →B ,其中x 叫原象,y 叫象.2、设集合A 是一个非空的数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种映射叫做集合A 上的一个函数.记作y =f(x),x ∈A .其中x 叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y |y =f(x),x ∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A 和B 都是自然数集合N .映射f :A →B 把集合A 中的元素x 映射到集合B 中的元素2x +x ,则在映射f 作用下,2的象是______;20的原象是______.【分析】由已知,在映射f 作用下x 的象为2x +x .所以,2的象是22+2=6;设象20的原象为x ,则x 的象为20,即2x +x =20.由于x ∈N ,2x +x 随着x 的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a 的所有可能值为______.⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则. 所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a ≤0时,由a -1=-1得a =0;当a >0时,由-a2+2a +2=-1,即a2-2a -3=0得a =3或a =-1(舍). 综上,a =0或a =3.例3 下列四组函数中,表示同一函数的是( )(A) (B)22)(,t y x y ==2|,|t y x y ==(C) (D)1,112+=--=x y x x y x x y x y 2,==【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1) (2);11--=x y ;3212-+=x x y。