初三数学圆与相似的专项培优练习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学圆与相似的专项培优练习题及答案

一、相似

1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.

(1)求证:AF⊥BE;

(2)求证:AD=3DI.

【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,

∴AD=BD=CD,∠ACB=45°,

∵在△ADC中,AD=DC,DE⊥AC,

∴AE=CE,

∵△CDE沿直线BC翻折到△CDF,

∴△CDE≌△CDF,

∴CF=CE,∠DCF=∠ACB=45°,

∴CF=AE,∠ACF=∠DCF+∠ACB=90°,

在△ABE与△ACF中,,

∴△ABE≌△ACF(SAS),

∴∠ABE=∠FAC,

∵∠BAG+∠CAF=90°,

∴∠BAG+∠ABE=90°,

∴∠AGB=90°,

∴AF⊥BE

(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°

∴四边形DECF是正方形,

∴EC∥DF,EC=DF,

∴∠EAH=∠HFD,AE=DF,

在△AEH与△FDH中,

∴△AEH≌△FDH(AAS),

∴EH=DH,

∵∠BAG+∠CAF=90°,

∴∠BAG+∠ABE=90°,

∴∠AGB=90°,

∴AF⊥BE,

∵M是IC的中点,E是AC的中点,

∴EM∥AI,

∴,

∴DI=IM,

∴CD=DI+IM+MC=3DI,

∴AD=3DI

【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。

(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。

2.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.

(1)求直线AB的解析式和抛物线的解析式;

(2)如果点P是MN的中点,那么求此时点N的坐标;

(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.

【答案】(1)解:设直线AB的解析式为y=px+q,

把A(3,0),B(0,2)代入得,解得,

∴直线AB的解析式为y=﹣ x+2;

把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,

∴抛物线解析式为y=﹣ x2+ x+2

(2)解:∵M(m,0),MN⊥x轴,

∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),

∴NP=﹣ m2+4m,PM=﹣ m+2,

而NP=PM,

∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,

∴N点坐标为(,)

(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),

∴AB= = ,BP= = m,

而NP=﹣ m2+4m,

∵MN∥OB,

∴∠BPN=∠ABO,

当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,

整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,

此时M点的坐标为(,0);

当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,

整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,

此时M点的坐标为(,0);

综上所述,点M的坐标为(,0)或(,0)

【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;

(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表

示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;

(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。

3.如图,在平面直角坐标系中,O为原点,平行四边形A BCD的边BC在x轴上,D点在y 轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三

点.

(1)请直接写出点B、D的坐标:B(________),D(________);

(2)求抛物线的解析式;

(3)求证:ED是⊙P的切线;

(4)若点M为抛物线的顶点,请直接写出平面上点N的坐标,使得以点B,D,M,N为顶点的四边形为平行四边形.

【答案】(1)-4,0;0,2

(2)解:将(2,0),B(-4,0),D(0,);三点分别代入y=ax2+bx+c得,

解得

∴所求抛物线的解析式y=- x2- x+

(3)证明:在Rt△OCD中,CD=2OC=4,

∵四边形ABCD为平行四边形,

∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,

∵AE=3BE,

∴AE=3,

∴,∵∴

∵四边形ABCD是平行四边形,

∴∠DAE=∠DCB=60°,

∴△AED∽△COD,

∴∠ADE=∠CDO,

而∠ADE+∠ODE=90°

相关文档
最新文档