(完整版)分式知识点总结
分式数学知识点归纳总结
![分式数学知识点归纳总结](https://img.taocdn.com/s3/m/f623485953d380eb6294dd88d0d233d4b14e3fc5.png)
分式数学知识点归纳总结一、分式的定义和基本性质1. 分式是由分子和分母组成的数,分子和分母都是整数,并且分母不为零。
2. 分式可以表示有理数,有理数包括整数和分数。
3. 分式可以看作是代数式的特殊形式,其中分母不为零。
4. 分式的分子和分母可以约分,即分子和分母同时除以一个相同的非零数。
5. 分式可以相加、相减、相乘和相除,也可以化简和合并。
6. 分式的大小比较可以用分式的加减乘除性质进行比较。
二、分式的化简和合并1. 化简分式:化简分式是指对分式的分子和分母进行约分,使分数的值保持不变的基础上,得到最简分数。
2. 合并分式:合并分式是指将两个分式相加或者相减,得到一个最简分式。
三、分式的加减乘除性质1. 分式的加法性质:分式相加时,首先要找到它们的公分母,然后将分子相加,分母保持不变。
2. 分式的减法性质:分式相减时,首先要找到它们的公分母,然后将分子相减,分母保持不变。
3. 分式的乘法性质:分式相乘时,分子相乘,分母相乘。
4. 分式的除法性质:分式相除时,将除数分子分母互换,再将所得的分式作为乘数分式进行运算。
四、分式的大小比较1. 分式的大小比较:分式大小的比较可以用分式的加减乘除性质进行比较。
对于两个分式a/b和c/d来说,若a/b<c/d,则ad<bc;若a/b>c/d,则ad>bc。
2. 分式的大小比较练习:比较分式大小时,可以将分式通分进行比较,也可以将分式转化为小数进行比较。
五、分式方程的解法1. 分式方程的定义:分式方程是含有分式的代数方程。
2. 分式方程的解法:对于分式方程的解法,首先要通过分式的化简和合并,将分式方程化为最简分式方程,然后可以通过分式方程的乘法性质和除法性质进行求解。
六、分式在实际应用中的问题求解1. 分式在应用问题中的运用:分式在实际生活中有着广泛的应用,包括比例、百分数、利率、比率、工程问题等。
2. 分式应用问题求解:在实际应用问题中,我们可以将问题中的条件转化为分式形式,然后通过分式的运算法则进行求解。
分式整章知识点总结
![分式整章知识点总结](https://img.taocdn.com/s3/m/74f1af09a9956bec0975f46527d3240c8447a105.png)
分式整章知识点总结一、基本概念1.分式的定义分式是指两个整数或者两个多项式的比值构成的数。
通常表示为a/b,其中a和b为整数,b不等于0。
a称为分子,b称为分母。
2.分式的分类根据分子和分母的关系,分式可以分为真分式、假分式和带分式。
- 真分式:分子的绝对值小于分母的绝对值。
- 假分式:分子的绝对值大于分母的绝对值。
- 带分式:分子的绝对值大于等于分母的绝对值,可以表示为整数部分和真分式部分的和,形如a+b/c的形式。
3.分式的简化分式的简化是指将分子和分母约去它们的公因数,使得分子和分母互质的过程。
简化后的分式要比原式更加简洁,更利于运算。
二、分式的性质1.分式的相等性分式a/b和c/d相等的条件是ad=bc。
即分子的积等于分母的积。
2.分式的倒数分式a/b的倒数是b/a。
3.分式的相反数分式a/b的相反数是-a/b。
4.分式的整除性分式a/b可以整除c/d的条件是ad可以整除bc。
5.分式的乘法分式a/b和c/d的乘积是ac/bd。
6.分式的除法分式a/b除以c/d等于a/b乘以d/c。
7.分式的加法分式a/b和c/d的加法是(ad+bc)/bd。
8.分式的减法分式a/b减去c/d等于(ad-bc)/bd。
三、分式的运算规则1.分式的乘法和除法分式的乘法和除法遵循乘法交换律和结合律的原则。
在计算分式的乘法和除法时,我们需要将分子和分母分别进行运算。
2.分式的加法和减法分式的加法和减法同样满足交换律和结合律。
在计算分式的加法和减法时,需要先通分,然后对分子进行加减运算。
3.分式的混合运算分式的混合运算是指在同一个表达式中包含加、减、乘、除等多种运算符号的运算过程。
在进行分式的混合运算时,我们需要遵循运算法则,先乘除后加减,按照顺序逐步进行计算。
四、分式的应用1.分式在方程中的应用在代数方程中,分式经常会出现在方程的解中。
例如在二次方程、分式方程等中,分式的运算和化简是解题的关键。
2.分式在比例和百分数中的应用比例和百分数是数学中常见的应用题型,其中分式经常会被用到。
分式知识点总结及复习汇总
![分式知识点总结及复习汇总](https://img.taocdn.com/s3/m/495699b5f71fb7360b4c2e3f5727a5e9856a2783.png)
分式知识点总结及复习汇总一、分式的定义和性质:分式是形如$\frac{a}{b}$的数,其中$a$为分子,$b$为分母,$a$和$b$都为整数且$b \neq 0$。
分式可以表示一个数,也可以表示一个运算过程。
分式可以进行四则运算,包括加减乘除。
分式的相反数:$\frac{a}{b}$的相反数为$-\frac{a}{b}$。
分式的倒数:$\frac{a}{b}$的倒数为$\frac{b}{a}$,其中$a、b$不为零。
分式的化简:将分式化简为最简分式,即分子和分母的最大公约数为1的形式。
二、分式的运算法则:1.加法:两个分式相加,分母相同,分子相加。
2.减法:两个分式相减,分母相同,分子相减。
3.乘法:两个分式相乘,分子相乘,分母相乘。
4.除法:一个分式除以另一个分式,被除数乘以除数的倒数。
三、分式的化简方法:1.求最大公约数:分式的分子和分母同时除以它们的最大公约数。
2.因式分解:将分式的分子和分母进行因式分解,然后约去相同的因式。
四、分式与整式的相互转化:1.分式转化为整式:将分式中的分子除以分母,得到的结果为整数。
2.整式转化为分式:将一个整数写成分子,分母为1的形式。
五、分式的应用:1.比例问题:可以利用分式来表示两个比例的关系。
2.部分与整体的关系:可以用分式表示部分与整体的关系。
3.商业问题:例如打折、利润等问题,可以用分式来表示计算。
4.几何问题:例如面积、体积等问题,可以用分式来表示计算。
六、分式的简化步骤:1.因式分解。
2.分子、分母约去最大公约数。
3.整理化简结果。
七、分式的应用举例:1.甲乙两人分别在一段时间内完成一件工作,甲用时5小时完成,乙用时8小时完成,那么甲乙两人一起完成这件工作需要多少小时?解:甲和乙一起完成工作的效率是每小时$\frac{1}{5}$和$\frac{1}{8}$,所以他们一起完成工作的效率是$\frac{1}{5}+\frac{1}{8}=\frac{13}{40}$。
分式的全部知识点总结
![分式的全部知识点总结](https://img.taocdn.com/s3/m/fd7d610cbf1e650e52ea551810a6f524ccbfcb9d.png)
分式的全部知识点总结在本文中,我们将全面总结分式的相关知识点,包括分式的定义、简化、运算、化简以及分式方程的解法等内容。
一、分式的定义分式是用分数表示的数,它是分子与分母之比。
其形式通常为a/b,其中a为分子,b为分母,分子和分母都是整数。
分式通常表示为a/b,读作a分之b,a称为分子,b称为分母。
分式也可以表示为小数形式,分数形式等,但本质上还是表示两个数之间的比值关系。
二、分式的简化分式的简化是指将分式化为最简形式的过程。
通常情况下,分式的分子和分母可以约分,分子和分母的公因数可以化简,最终得到最简分式。
简化分式的步骤包括:1. 找出分子和分母的公因数;2. 用公因数约分分子和分母;3. 化简得到最简分式。
例如,分式2/4可以简化为1/2,分式6/9可以简化为2/3等。
三、分式的运算分式的运算包括加减乘除四则运算。
分式的加减法通常需要找到它们的公分母,然后进行加减,乘法和除法要分别进行分子和分母的运算,然后化简得到最终结果。
加减法运算步骤如下:1. 找到分式的公分母;2. 将分式按照公分母进行加减;3. 化简得到最终结果。
例如,分式1/3和2/5的加法运算为:1/3 + 2/5 = 5/15 + 6/15 = 11/15。
乘法和除法运算步骤如下:1. 分子相乘,分母相乘;2. 化简得到最终结果。
例如,分式1/2和2/3的乘法运算为:1/2 * 2/3 = 2/6 = 1/3。
四、分式方程的解法分式方程是含有分式的方程,通常需要通过化简分式,转化为一般方程,然后解方程得到结果。
解分式方程的步骤如下:1. 化简分式,得到一般方程;2. 解一般方程得到结果;3. 检验解是否正确。
例如,解分式方程2/x = 3的步骤如下:1. 化简得到2 = 3x;2. 解一般方程得到x = 2/3;3. 检验得到的解是否正确。
以上是关于分式的全部知识点总结,分式是数学中非常重要的概念,掌握分式的相关知识对于数学学习具有重要意义。
分式知识点总结
![分式知识点总结](https://img.taocdn.com/s3/m/0a6f24351611cc7931b765ce0508763231127494.png)
分 式一、知识总结(一)分式及其性质1、分式(1)定义:一般的,如果a ,b 表示两个整式,并且b 中含有字母,那么式子ba 叫做分式;其中a 叫做分式的分子,b 叫做分式的分母。
(2)有理式:整式和分式统称为有理式。
(3)分式=0⇔分子=0,且分母≠0 (分式有意义,则分母≠0)(4)最简分式:分子和分母没有公因式的分式。
2、分式的性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变即:mb m a m b m a b ÷÷=⋅⋅=a (a ,b ,m 都是整式,且0m ≠) 分式的性质是分式化简和运算的依据。
3、约分:把一个式子的分子分母的公因式约去叫做约分。
注:约分的结果应为最简分式或整式。
约分的方法:1)若分子、分母均为单项式:先找分子、分母系数的最大公约数, 再找相同字母最低次幂;2)若分子、分母有多项式:先把多项式因式分解,再找分子、分母的公因式。
(二)分式运算1、分式的乘除1)分式乘法法则:两分式相乘,用分子的积做分子,分母的积做分母;即:bdac d c b =⨯a 2)分式除法法则:两分式相除,将除式的分子、分母颠倒位置后,与被除式相乘;即:bcad c d b a d c b =⨯=÷a3)分式乘方法则:分式的乘方就是分子分母分别乘方。
即:n n n b a b =⎪⎭⎫ ⎝⎛a ,()n n ab b 1a -=⎪⎭⎫ ⎝⎛ 2、分式的加减1)同分母分式加减:分母不变分子相加减;即:bc a b c b ±=±a ()0b ≠ 2)异分母分式加减:先通分,变为同分母的分式相加减,即:bdbc ad bd bc bd ad d c b ±=±=±a ()0b ≠d(三)分式方程1、定义:分母中含有未知数的方程叫做分式方程。
2、解法:1)基本思路:分式方程−−→−转化整式方程 2)转化方法:方程两边都乘以各个分式最简公分母,约去分母。
认识分式知识点总结
![认识分式知识点总结](https://img.taocdn.com/s3/m/8169a1cfb8d528ea81c758f5f61fb7360b4c2b3c.png)
认识分式知识点总结一、分式的概念分式是由一个整数除另一个整数得到的数,通常是在一个分数形式中表示。
分式的基本形式为a/b,其中a称为分子,b称为分母,a和b都是整数,b不为0。
分式也可以表示成小数形式。
二、分式的运算分式的运算包括加、减、乘、除四种运算,具体如下:1. 加法和减法:当两个分式的分母相同时,直接对分子进行加法或减法运算。
当分母不同时,需要通分之后再进行加减法运算。
2. 乘法:将两个分式的分子相乘,分母相乘。
3. 除法:将除数取倒数,再进行乘法运算。
三、分式的化简化简分式是将分式约分到最简形式的过程。
化简分式的步骤如下:1. 对分子和分母同时除以它们的最大公因数。
2. 将分子和分母中的负号移到分式外部。
3. 如果分子可以被分母整除,则化为整数。
化简分式的目的是为了简化计算,减少冗余。
四、分式的乘方分式的乘方是指将分式的分子和分母分别进行乘方运算。
具体规则如下:1. 分子的乘方:对分式的分子进行乘方运算。
2. 分母的乘方:对分式的分母进行乘方运算。
五、分式方程分式方程是指含有分式的方程。
求解分式方程的步骤如下:1. 化简分式,使方程中不含有分式。
2. 消去分母,转化为整式方程。
3. 求解整式方程,得到分式方程的解。
六、分式不等式分式不等式是指含有分式的不等式。
求解分式不等式的步骤如下:1. 化简分式,使不等式中不含有分式。
2. 消去分母,转化为整式不等式。
3. 求解整式不等式,得到分式不等式的解。
七、常见的分式类型1. 真分式:分子的次数小于分母的次数。
2. 假分式:分子的次数大于分母的次数。
3. 显示分式:分子和分母都是多项式。
4. 隐式分式:分子或分母中至少有一部分是隐含的。
五、结语分式在数学中应用广泛,涉及到方程、不等式、函数等各个领域。
掌握分式的概念、运算、化简、乘方、方程和不等式求解等知识点,对于学习数学和应用数学都具有重要意义。
因此,需要认真学习和理解分式相关知识,熟练掌握分式的运算规则和求解方法,提高自己的数学能力。
分式主要知识点总结
![分式主要知识点总结](https://img.taocdn.com/s3/m/70259e1bac02de80d4d8d15abe23482fb4da02eb.png)
分式主要知识点总结一、分式的定义分式是指一个整体被分成若干个相等的部分,其中的一部分就是分式。
分式通常写成a/b的形式,其中a为分子,b 为分母,b≠0,a和b都是整数。
例如,1/2 就是一个分式,表示整体被分成两个相等的部分,其中一个部分为1。
分式中的a和b都是有一定的含义,a表示被分的份数,b表示整体被分成的份数。
二、分式的化简对于分式a/b,如果a和b有公因数,那么可以对分式进行约分。
化简分式的目的是为了使得分式变得更简单,更易于处理。
例如,对于分式6/8,可以约分得到3/4。
当然,有时候还需要对分式进行扩分。
化简分式的过程就是一个约分和扩分的过程。
三、分式的加减乘除1. 分式的加减:对于分式a/b和c/d,要将它们相加或相减,需要找到它们的公共分母,并且将它们的分子进行操作。
具体来说,如果a/b和c/d的分母不同,就需要找到它们的最小公倍数,然后将分子分别乘以对方的分母,再进行操作。
例如,对于分式1/2 + 1/3,找到它们的最小公倍数为6,然后乘上对方的分母,得到3/6 + 2/6 = 5/6。
2. 分式的乘法:对于分式a/b和c/d,它们的乘积可以直接相乘得到ac/bd。
3. 分式的除法:对于分式a/b和c/d,它们的除法可以变成乘法,即a/b ÷ c/d = a/b × d/c。
四、分式方程的求解分式方程是指方程中含有分式的方程。
它的解法与一般方程类似,但是需要更多的化简和约分操作。
对于一些特殊的分式方程,有时候需要进行分式更相等的变形,或者加减乘除操作。
例如,对于分式方程1/(x+1) = 1/(x-1),可以将等式两边同时乘以(x+1)(x-1),并观察出一元二次方程的形式,再进行解方程的操作。
五、分式在实际问题中的应用分式在实际问题中有着广泛的应用。
它可以用来表示比率关系、部分到整体的比例关系,例如表示打折时的折扣率、比赛中的获胜概率等。
分式也可以用来表示关系式、方程式,例如用来表示质量分数、比热容、密度等。
分式归纳总结
![分式归纳总结](https://img.taocdn.com/s3/m/97f2c003b207e87101f69e3143323968001cf44b.png)
分式归纳总结分式是数学中常见的一种表达方式,它由一个分子和一个分母组成,分子和分母都是数或者代数式。
在日常生活和学习中,我们经常遇到各种各样的分式,学会对分式进行归纳总结,可以帮助我们更好地理解和应用分式。
一、分式的基本概念和性质1. 分式的定义:分式是由分子和分母用横线分隔表示的数或者代数式。
2. 分式的性质:分式可以进行加、减、乘、除等运算。
分式可以化简为最简形式,即分子与分母没有公因数。
二、分式的分类和举例1. 真分式:分子的绝对值小于分母的绝对值,如1/2、3/4等。
2. 假分式:分子的绝对值大于等于分母的绝对值,如5/4、7/2等。
3. 显分式:分子为非零数,如3/1、4/1等。
4. 隐分式:分子为零,如0/5、0/9等。
三、分式的运算与应用1. 分式的加法和减法:对于相同分母的分式,可以直接对分子进行加或减。
对于不同分母的分式,需要先通分再进行运算。
例如:1/2 + 1/3 = 3/6 + 2/6 = 5/63/4 - 1/5 = 15/20 - 4/20 = 11/202. 分式的乘法和除法:将分子与分母分别相乘或相除。
例如:(2/3) * (3/4) = 6/12 = 1/2(4/5) / (2/3) = (4/5) * (3/2) = 12/10 = 6/53. 分式的应用:分式在实际生活中有很多应用,如比例、百分数、利润分成等问题。
例如:根据工资比例计算两人的收入比例:小明工资是2000元,小红工资是3000元,求两人工资的比例。
小明的工资比例为:2000 / (2000+3000) = 2000 / 5000 = 2/5小红的工资比例为:3000 / (2000+3000) = 3000 / 5000 = 3/5四、分式的化简与扩展1. 分式的化简:通过约分化简一个分式,使得分子与分母互质。
例如:8/12 = 2/3,可以将分式8/12化简为2/3。
2. 分式的扩展:将一个分式拆分为多个分式的和或差,扩展了分式的表达形式。
分式知识点总结及例题
![分式知识点总结及例题](https://img.taocdn.com/s3/m/a9731539a517866fb84ae45c3b3567ec102ddcfb.png)
分式知识点总结及例题一、分式的概念分式是指以分数的形式表示的数,通常由分子和分母两部分组成,分子表示分数的一部分,分母表示分数的总份额。
分式通常用来表示比例、部分和整体的关系。
二、分式的基本性质1. 分式的分子和分母可以分别约分。
2. 分式的值与分子和分母的乘除有关。
3. 分式的运算可以转化为通分和通分的计算问题。
三、分式的化简分式的化简是指将分式表示的数化为最简形式的操作,主要包括分子分母约分、常数和分式的转化等。
四、分式的加减法分式的加减法是指对分式的分子和分母进行通分后,进行加减运算的操作。
五、分式的乘法和除法分式的乘法是指对分式的分子和分母分别进行乘法运算后,化简为最简形式的操作。
分式的除法是指对分式进行倒数运算,然后化简为最简形式的操作。
六、分式的应用分式在实际问题中有着广泛的应用,如物体的比例尺、物体的比重、长方形的面积和周长等问题都可以用分式进行表示和计算。
七、例题1. 化简分式$\frac{6}{8}$解:分子和分母可以同时除以2,得到$\frac{6}{8}=\frac{3}{4}$,所以$\frac{6}{8}$的最简形式为$\frac{3}{4}$。
2. 计算$\frac{3}{5}+\frac{2}{3}$解:先将两个分式通分,得到$\frac{3}{5}+\frac{2}{3}=\frac{9}{15}+\frac{10}{15}=\frac{19}{15}$,再化简得$\frac{19}{15}=1 \frac{4}{15}$。
3. 计算$\frac{5}{6} \times \frac{2}{3}$解:将两个分式分别相乘得到$\frac{5}{6} \times \frac{2}{3}=\frac{10}{18}$,再将$\frac{10}{18}$化简为最简形式,得$\frac{10}{18}=\frac{5}{9}$。
4. 计算$\frac{4}{5} \div \frac{2}{3}$解:将两个分式进行倒数运算,得到$\frac{4}{5} \div \frac{2}{3}=\frac{4}{5} \times\frac{3}{2}=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}$。
分式知识点归纳总结
![分式知识点归纳总结](https://img.taocdn.com/s3/m/8445f78cab00b52acfc789eb172ded630b1c9887.png)
分式知识点归纳总结一、基本概念1. 分式的定义分式是由分子和分母组成的表达式,分子和分母都是整式。
通常写作a/b的形式,其中a为分子,b为分母,b不为0。
例如:3/4,7x/5y等都是分式。
2. 分式的分类根据分子和分母的形式,分式可以分为以下几类:a) 真分式:分子的次数小于分母的次数,例如:2/3。
b) 假分式:分子的次数大于或等于分母的次数,例如:x^2+1/x。
c) 反比例函数:分子和分母中都含有变量,例如:x/y。
3. 分式的性质a) 若分子和分母互换位置,分式的值不变,这就是分式的对称性质。
b) 分式的值只有在分母不为0时才有定义,即分式的定义域是除了分母为0的所有实数。
二、分式的化简1. 分子分母的最小公因式分式的化简首先要找出分子分母的最小公因式,然后进行约分。
例如:将分式6x^2y/9xy化简为2x/3。
2. 分式的通分当分母不同时,可以通过通分将分母变为相同的多项式,从而进行比较、运算。
例如:将1/2+2/3进行通分,得到3/6+4/6=7/6。
3. 整式转化为分式可以将整式转化为分式,只需将分子为整式,分母为1的形式即可。
例如:将5x^2+3x+1转化为分式为(5x^2+3x+1)/1。
三、分式的运算1. 分式的加减法分式的加减法需要先进行通分,然后对分子进行加减,最后合并分子。
例如:(2/3)+(3/4),首先通分为8/12+9/12=17/12。
2. 分式的乘法分式的乘法是将分子乘以分子,分母乘以分母,然后进行约分。
例如:(2/3)*(3/4)=6/12=1/2。
3. 分式的除法分式的除法需要将除号改为乘以被除数的倒数,然后进行乘法运算。
例如:(3/4)÷(2/3)=(3/4)*(3/2)=9/8。
四、分式的应用1. 分式的实际问题在实际问题中,分式常用于解决各种比例、速度、浓度等问题,可以帮助我们解决生活中的实际问题。
2. 分式与方程分式的化简与运算经常用于解决各种方程,需要将方程中的分式进行合并、化简、求值等操作。
分式知识点总结
![分式知识点总结](https://img.taocdn.com/s3/m/be9aef9577a20029bd64783e0912a21614797f32.png)
分式知识点总结分式是数学中的一个重要概念,它在实际应用中十分常见。
本文将对分式的定义、基本性质以及常见的操作进行总结和讲解。
一、分式的定义分式由分子和分母组成,通常形式为a/b,其中a和b为整数,b不等于0。
分子表示了被分割的数量,分母表示了每份的份数。
二、分式的基本性质1. 分式的值是一个有理数,可以是正数、负数或零。
2. 分式的值可以是一个整数、真分数或带分数。
3. 分式可以化简,即将分子和分母同时除以一个公因数,得到一个等价的分式。
4. 分式可以相互比较大小,分子相乘,分母相乘,得到的积的大小关系不变。
三、分式的运算1. 分式的加法和减法:- 分式加法:将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相加,分母保持不变。
- 分式减法:与分式加法类似,将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相减,分母保持不变。
2. 分式的乘法和除法:- 分式乘法:将两个分式的分子相乘,分母相乘,得到的分子作为新分数的分子,得到的分母作为新分数的分母。
- 分式除法:将第一个分式的分子与第二个分式的分母相乘,作为新分数的分子;将第一个分式的分母与第二个分式的分子相乘,作为新分数的分母。
3. 分式的化简:- 将分式的分子和分母同时除以一个公因数,直到分子和分母没有公因数为止,得到一个等价的分式。
四、分式的应用场景1. 比例和比例分配问题:比例可以用分式来表示,通过求解分式可以解决比例分配问题。
2. 股票涨跌问题:利用分式可以计算股票的涨跌幅度。
3. 质量问题:分式可以用来表示物体的质量与体积之间的关系,解决质量问题。
通过以上对分式的定义、基本性质以及常见的操作进行总结和讲解,相信读者对分式的概念及其应用有了更深入的理解。
在实际问题中,对分式的灵活运用可以帮助我们更好地解决各种计算和应用问题。
分式知识点总结
![分式知识点总结](https://img.taocdn.com/s3/m/e99713095b8102d276a20029bd64783e08127d7d.png)
分式知识点总结分式(Fraction),也称为有理数,是数学中的一个重要概念。
它由两个数,即分子和分母,构成一个比值关系。
本文将对分式的基本概念、运算规则以及相关应用进行总结和讲解。
一、基本概念1. 分式的定义分式是由一个整数分子和一个非零整数分母构成的有理数表达式,通常表示为a/b,其中a为分子,b为分母,b ≠ 0。
2. 真分数、假分数和整数当分子小于分母时,分式被称为真分数;当分子大于等于分母时,分式被称为假分数;当分子能整除分母时,分式可以化简为整数。
3. 近似数与分数的关系分数可以表示一个近似数,例如2/3 ≈ 0.6667(保留四位小数)。
二、分式的运算规则1. 分式的加减法相同分母的分式可以直接加减分子,分母保持不变,如1/3 +2/3 = 3/3 = 1。
不同分母的分式需要找到其最小公倍数作为通分的分母,再进行加减运算,如1/2 + 1/3 = 3/6 + 2/6 = 5/6。
2. 分式的乘法分式的乘法只需要将分子相乘,分母相乘,如1/2 × 3/4 = 3/8。
3. 分式的除法分式的除法可以转化为乘法,即将除法转化为多个分数的乘法,如1/2 ÷ 3/4 = 1/2 × 4/3 = 4/6 = 2/3。
4. 分式的约分可以将分子和分母同时除以一个数,使分子和分母的最大公约数为1,从而得到分式的最简形式。
5. 分式的化简可以将一个分式化简为它的最简分式,即分子和分母没有公因数的约分形式。
三、分式的应用1. 比例比例是分式在实际应用中的一种常见形式,常用于表示两个量之间的关系。
例如,某商品打折,原价100元,现价为80元,则折扣为80/100 = 4/5。
2. 面积和体积在计算面积或体积时,分式常常被用来表示不完整的单位。
例如,一个矩形的长为2/3米,宽为1/2米,那么它的面积为(2/3)×(1/2)= 1/3平方米。
3. 比率比率是两个具有相同单位的量之间的分数,通常以冒号或分数形式表示。
分式知识点总结
![分式知识点总结](https://img.taocdn.com/s3/m/1fa6a14e53d380eb6294dd88d0d233d4b04e3f78.png)
分式知识点总结一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分母 B 的值不能为 0,如果 B=0,那么分式就没有意义了。
例如,分式 1/x,当 x=0 时,这个分式就没有意义。
二、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:A/B = A×C/B×C,A/B = A÷C/B÷C(C 为不等于 0 的整式)。
这就像分蛋糕,如果把蛋糕(分式的值)平均分成的份数(分母)和每份的大小(分子)同时扩大或缩小相同的倍数,蛋糕的大小(分式的值)不变。
例如,对于分式 2/3,分子分母同时乘以 2,得到 4/6,分式的值不变。
三、分式的约分把一个分式的分子和分母的公因式约去,叫做分式的约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公因数。
2、字母:取相同字母的最低次幂。
例如,对于分式 6x/8x²,分子分母的公因式是 2x,约分后得到 3/4x。
四、分式的通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
通分的关键是确定几个分式的最简公分母。
确定最简公分母的方法:1、取各分母系数的最小公倍数。
2、凡单独出现的字母连同它的指数作为最简公分母的一个因式。
3、同底数幂取次数最高的。
例如,对于分式 1/2x 和 1/3y,最简公分母是 6xy,通分后分别为3y/6xy 和 2x/6xy。
五、分式的运算1、分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
用式子表示为:(A/B)×(C/D) = AC/BD。
例如,(2/3)×(4/5) = 8/15。
2、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式概念知识点总结
![分式概念知识点总结](https://img.taocdn.com/s3/m/f3bdb84deef9aef8941ea76e58fafab069dc4484.png)
分式概念知识点总结一、分式的概念分式是指一个整体被分成若干个相等的部分,其中每个部分被称为分子,整体被称为分母。
分式通常以 a/b 的形式表示,其中 a 和 b 都为整数,b 不为0。
分数的分母表示被分成的份数,分子表示取了多少份。
例如,2/3 表示整体被分成了3份,取了其中的2份。
二、分式的基本形式1. 真分式:分数的分子小于分母,即 |a| < b。
2. 假分式:分数的分子大于或等于分母,即|a| ≥ b。
3. 显分式:分式中的分子和分母都是已知的数。
4. 隐分式:未知数出现在分子或分母中。
三、分式的性质1. 两个分式相乘:a/b * c/d = ac/bd2. 两个分式相除:a/b ÷ c/d = ad/bc3. 两个分式相加:a/b + c/d = (ad + bc)/bd4. 两个分式相减:a/b - c/d = (ad - bc)/bd四、分式的化简1. 将分子和分母约分到最简形式。
2. 若分数中含有开平方,可将分子或分母的平方根提出来。
3. 若分数中含有负号,可将负号移到分子或分母。
五、分式的运算1. 分式的四则运算:包括加、减、乘、除。
2. 分式的化简:将分数化成最简形式。
3. 分式的混合运算:结合整数和分数进行运算。
六、分式方程1. 单分式方程:方程中只有一个分式。
2. 复分式方程:方程中含有多个分式。
七、分式的应用1. 比例问题:利用分式来描述两个量的比值,解决比例问题。
2. 百分比问题:将百分数化成分式,进行计算和比较。
3. 复利问题:利用复利的计算公式,将利率和时间表示成分式,求解复利问题。
八、分式的图形表示1. 分式在直角坐标系中的图形表示:分数可以表示成长度或面积的比值,可以在直角坐标系中用直线或曲线表示。
2. 分式在统计图中的表示:在统计图中,分数可以表示成比例的形式,用图形表示出来。
九、分式的应用领域1. 数学:在代数、几何、概率等方面,分式的概念和运算都有广泛的应用,是数学中重要的基础知识。
分式知识点总结归纳
![分式知识点总结归纳](https://img.taocdn.com/s3/m/b0996047bb1aa8114431b90d6c85ec3a87c28bc9.png)
分式知识点总结归纳一、分式的定义和表示1. 分式的定义分式是指两个整数的比值,通常表示为a/b,其中a称为分子,b称为分母,b不等于0。
例如:2/3、7/5等都是分式。
2. 分式的表示分式在数学中通常以a/b的形式表示,其中a和b都是整数。
分式也可以表示为小数形式或百分数形式。
例如2/3可以表示为0.666...或者66.6%。
二、分式的性质1. 分式的大小比较分式a/b和c/d的大小比较可以通过交叉相乘的方法来确定。
如果ad=bc,则a/b=c/d;如果ad<bc,则a/b<c/d;如果ad>bc,则a/b>c/d。
2. 分式的约分和通分分式的约分是指将分子和分母的公约数约去,使得分子和分母互质。
分式的通分是指将两个分式的分母变为相同的数,以便进行加减运算。
3. 分式的乘法和除法分式的乘法是指将两个分式的分子相乘得到新的分子,分母相乘得到新的分母;分式的除法是指将一个分式乘以另一个分式的倒数。
例如:(a/b)×(c/d)=(ac)/(bd);(a/b)÷(c/d)=(ad)/(bc)。
4. 分式的加法和减法分式的加法是指将两个分式的分母通分后,将分子相加得到新的分子;分式的减法是指将两个分式的分母通分后,将分子相减得到新的分子。
例如:a/b+c/d=(ad+bc)/(bd);a/b-c/d=(ad-bc)/(bd)。
5. 分式的乘方分式的乘方是指将分式的分子和分母分别进行幂运算。
例如:(a/b)²=a²/b²。
三、分式的应用1. 分式的应用范围分式在数学中有着广泛的应用,涉及到比例关系、面积和体积的计算等等。
在现实生活中,分式也经常出现在日常计算中,例如物品打折、时间的分配等都涉及到分式的运算。
2. 分式的比较分式的大小比较常常用于比例关系的计算中。
例如,当我们需要比较两个物品的价格或者比较两种方案的优劣时,可以利用分式的大小关系进行判断。
分式知识归纳总结
![分式知识归纳总结](https://img.taocdn.com/s3/m/8fc62b9e3086bceb19e8b8f67c1cfad6195fe91d.png)
分式知识归纳总结分式,在数学中被广泛应用于各种计算和问题解决中。
它是由分子和分母组成的数值表达式,分母不能为0。
在这篇文章中,我们将对分式的基本概念、运算规则和应用进行归纳总结。
一、基本概念1. 分子与分母:分式由分子和分母两部分组成。
分子表示分式的上部,分母表示分式的下部。
2. 真分数与假分数:当分子小于分母时,分式称为真分数;当分子大于等于分母时,分式称为假分数。
3. 约分与通分:约分是指将分式的分子与分母同时除以它们的公因数,使分式的值保持不变且分子与分母互质;通分是指将两个分数的分母改为相同的数,使它们的分子能够进行运算。
4. 分式化简与恢复:将一个分式化简是指将分子与分母分别除以它们的最大公约数,使分式的值保持不变但分子与分母互质;恢复分式是指将分子与分母乘以一个数,使分式的分母恢复成原来的数。
二、运算规则1. 加减法:分母相同的分数可以直接相加(减),只需将分子相加(减)得到新的分子,并保持分母不变。
2. 乘法:将两个分数的分子相乘得到新的分子,分母相乘得到新的分母。
3. 除法:将一个分数的分子和另一个分数的分母相乘得到新的分子,分母与另一个分数的分子相乘得到新的分母。
4. 混合运算:先进行乘法和除法,再进行加法和减法。
注意运算顺序和应用括号来改变运算顺序。
三、应用1. 分数在日常生活中的运用:分数常被用来表示比例、份额、时间等概念。
例如,一小时等于60分钟,可以用分数形式表示为1/1,即1/1小时=60/1分钟。
2. 分数在商业中的应用:分数常被用来表示商品的折扣、利润率、市场份额等。
例如,商品打6折可以表示为6/10或3/5。
3. 分数在几何中的应用:分数常被用来表示线段的比例、圆的弧长与周长的比例等。
例如,如果一个线段分为4等分,我们可以说每一部分为1/4。
4. 分数在代数中的应用:分数常被用来表示未知数与系数之间的关系。
例如,2/x=8,可以通过解方程得到x=1/4。
四、注意事项1. 分母不能为0:由于分数的分母表示除数,所以分母不能为0。
分式知识点总结
![分式知识点总结](https://img.taocdn.com/s3/m/f45871c5760bf78a6529647d27284b73f24236eb.png)
分式知识点总结分式是小学数学中一个重要的知识点,也是高中数学的基础。
分式的概念和应用广泛,是解决实际问题中常用的方法之一。
本文将从分式的定义、基本性质、运算法则以及应用等方面进行总结。
一、分式的定义分式是两个整数的比,由分子和分母两部分构成。
分子表示被除数,分母表示除数。
通常用a/b的形式表示,其中a为分子,b为分母。
二、分式的基本性质1. 分式的值可以是整数、小数、真分数或假分数,分式可以化简为最简形式。
2. 分式的值与分子和分母的关系密切相关,当分子增大而分母不变时,分式的值增大;当分子减小而分母不变时,分式的值减小。
3. 分式的值可以用图形来表示,例如在数轴上表示为一个点。
三、分式的运算法则1. 分式的加法和减法:分式的加法和减法归结为求他们的公共分母,将分子相加或相减即可。
例如:a/b + c/d = (ad+bc)/bda/b - c/d = (ad-bc)/bd2. 分式的乘法和除法:分式的乘法和除法的规则较为简单,直接将分子相乘或相除,分母相乘或相除即可。
例如:(a/b) × (c/d) = ac/bd(a/b) ÷ (c/d) = ad/bc3. 分式的混合运算:分式的混合运算可以结合加减乘除的运算法则来进行。
在计算过程中,首先进行括号内的运算,然后进行乘除运算,最后进行加减运算。
四、分式的应用分式可以应用于实际问题中,例如在计算比例、百分比、利润和折扣等方面。
1. 比例问题:比例可以表示为分式的形式,通过求解分式可以得到两个量的比值。
例如:甲乙两个人的身高比为3/5,已知甲的身高为150cm,求乙的身高。
2. 百分比问题:百分比可以表示为分式的形式,通过分式可以求解出百分比的具体数值。
例如:某商店举办打折促销活动,原价为120元的商品现在打8折,求折后的价格。
3. 利润和折扣问题:利润和折扣可以表示为分式的形式,通过求解分式可以得到具体的数值。
例如:某商品的进价为180元,利润率为20%,求售价;或者某商店举办折扣促销活动,折扣率为30%,求折后价格。
分式考点归纳总结
![分式考点归纳总结](https://img.taocdn.com/s3/m/55001802e55c3b3567ec102de2bd960590c6d9e9.png)
分式考点归纳总结分式是数学中一种重要的数书形式,广泛应用于各个领域,如代数、几何、物理等。
在解题过程中,掌握了分式的性质和运算法则,能够更加灵活地处理各种数学问题。
本文将对常见的分式考点进行归纳总结,以帮助读者更好地理解和掌握分式的相关知识。
一、分式的基本概念和性质在学习分式之前,我们首先需要了解分式的基本概念和性质。
分式的基本形式为a/b,其中a是分子,b是分母,a和b都是整数。
需要注意的是,分母b不能为零,否则分式无意义。
分式可以表示两个整数之间的比值,也可以表示一个数在另一个数中的比例关系。
分式的性质包括:1. 分式的大小比较:当分母相同时,分子越大,分式越大;当分母相同时,分母越大,分式越小。
2. 分式的约分与通分:可以将分子和分母的公约数约去,得到分式的最简形式;将分式的分母约分为相同的数,得到通分分式。
3. 分式的倒数:将分式的分子和分母交换位置,得到分式的倒数。
4. 分式的加减乘除:分式的加减可以通过通分转化为同一分母的分式进行运算;分式的乘除可以通过分子相乘、分母相乘的方式进行运算。
二、分式的运算法则在运算分式的过程中,需要严格遵守一定的运算法则,才能得到正确的结果。
下面我们将对分式的加减乘除四种运算法则进行详细介绍:1. 分式的加法对于两个分式a/b和c/d的加法运算,可以按照以下步骤进行:(1)将两个分式的分母进行通分,得到通分分母。
(2)将两个分式的分子相加,得到通分后的分子。
(3)将得到的通分分子和通分分母组合起来,得到最终的结果。
2. 分式的减法对于两个分式a/b和c/d的减法运算,可以按照以下步骤进行:(1)将两个分式的分母进行通分,得到通分分母。
(2)将两个分式的分子相减,得到通分后的分子。
(3)将得到的通分分子和通分分母组合起来,得到最终的结果。
3. 分式的乘法对于两个分式a/b和c/d的乘法运算,可以按照以下步骤进行:(1)将两个分式的分子相乘,得到乘积的分子。
分式知识点总结
![分式知识点总结](https://img.taocdn.com/s3/m/a142c37da22d7375a417866fb84ae45c3b35c2ff.png)
分式知识点总结一、分式的定义分式是一种用分数形式表示的数,它由分子和分母两部分组成,分式一般形式为a/b,式中a为分子,b为分母,b≠0。
分子和分母可以是整数,也可以是含有未知数的代数式,如x、y等。
例如:3/4、1/x、2x/3等都是分式。
二、分式的性质1. 分式的值:分式的值是由分子除以分母所得到的数值,例如3/4的值为0.75,1/2的值为0.5。
2. 分式的大小比较:当两个分式的分母相同,分子大小比较;当分母不同,可以通过通分后比较分子大小来比较分式的大小。
三、分式的运算1. 分式的加减法分式的加减法:通分后将分子相加(或相减),分母不变,再化简得到最简分式。
2. 分式的乘法分式的乘法:将两个分式的分子相乘,分母相乘,化简得到最简分式。
3. 分式的除法分式的除法:将一个分式除以另一个分式相当于将第一个分式乘以第二个分式的倒数,化简得到最简分数。
四、分式的化简化简分式:将分子与分母的公因式约去得到最简分式,例如6/9可化简为2/3。
五、分式的应用分式在数学中有很多应用,在实际生活中也有很多应用。
例如:比例问题、分数运算、容积、质量等问题都可以用分式来表示和计算。
另外,在代数方程式的解题过程中,也会用到分式。
在教学中,我们应该注重培养学生的分式意识和分式运算能力,让学生掌握分式的定义、性质、运算规律、化简方法和应用技巧,提高学生的数学运算能力和解决问题的能力。
我们可以通过具体的问题来引导学生学习,通过让学生参与讨论、举一些实际例子来让学生理解分式的应用,激发学生的学习兴趣。
总之,分式是数学中一个重要的内容,它在数学学习中有着广泛的应用。
通过系统的总结分式的相关知识点,希望可以帮助学生更好地理解和掌握分式,提高数学学习的效果和兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式知识点总结
1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:
分式有意义的条件:分式的分母不等于0;
分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:
当分式的分子等于0且分母不等于0时,分式的值为0。
(分式的值是在分式有意义的前提下才可以考虑的,所以使分式为0的条件是A=0,且B≠0.)
(分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。
首先求出使分子为0的字母的值,再检
验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)
4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不
变。
用式子表示为(),其中A、B、C是整式
注意:(1)“C是一个不等于0的整式”是分式基本性质的一个制约条件;
(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;
(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一
整式C;
(4)分式的基本性质是分式进行约分、通分和符号变化的依据。
5.分式的通分:
和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成
相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分
母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:
(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;
(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;
(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:
和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫
做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母
分解因式,然后再约分;
(2)找公因式的方法:
①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就
是公因式;
②当分子、分母都是多项式时,先把多项式因式分解。
易错点:(1)当分子或分母是一个式子时,要看做一个整体,易出现漏乘(或漏除以);
(2)在式子变形中要注意分子与分母的符号变化,一般情况下要把分子或分母前的“—”放在分数线前;
(3)确定几个分式的最简公分母时,要防止遗漏只在一个分母中出现的字母;
7.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示是:
提示:(1)分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,
然后约去公因式,化为最简
分式;若分子、分母是多项式,先把分子、分母分解公因式,看能否约分,
然后再相乘;
(2)当分式与整式相乘时,要把整式与分式的分子相乘作为积的分子,分母不变
(3)分式的除法可以转化为分式的乘法运算;
(4)分式的乘除混合运算统一为乘法运算。
①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺
序,有括号先算括号
里面的;
②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符
号;
③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公
因式)或整式的形式。
分式乘方法则:分式乘方要把分子、分母各自乘方。
用式子表示是:(其中n是正整数)
注意:(1)乘方时,一定要把分式加上括号;
(2)分式乘方时确定乘方结果的符号与有理数乘方相同,即正分式的任何次幂都为正;负分式的偶次幂
为正,奇次幂为负;
(3)分式乘方时,应把分子、分母分别看做一个整体;
(4)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解
因式,再约分。
分式的加减法则:
法则:同分母的分式相加减,分母不变,把分子相加减。
用式子表示为:±=
法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
用式子表示为:±=±=
注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括
号可以省略;
(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,
特别是分子相减,要注意分子的整体性;
(3)运算时顺序合理、步骤清晰;
(4)运算结果必须化成最简分式或整式。
分式的混合运算:
分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算
乘除,最后算加减,有括号要先算括号里面的,计算结果要化为整式或最简分式。
8.任何一个不等于零的数的零次幂等于1,即;当n为正整数时,
(
注意:当幂指数为负整数时,最后的计算结果要把幂指数化为正整数。
9. 整数指数幂:
若m、n为正整数,a≠0,a m ÷a m+n==
又因为a m ÷a m+n=a m-﹙m+n﹚=a-n,所以a-n=
一般地,当n是正整数时,a-n=(a≠0),即a-n(a≠0)是a n的倒数,这样指数的取值范围就推广到全体
整数。
整数指数幂可具有下列运算性质:(m,n是整数)
(1)同底数的幂的乘法:;
(2)幂的乘方:;
(3)积的乘方:;
(4)同底数的幂的除法:( a≠0);
(5)商的乘方:;(b≠0)
规定:a0=1(a≠0),即任何不等于0的零次幂都等于1.
10. 分式方程:含分式,并且分母中含未知数的方程叫做分式方程。
去分母
分式方程的解法:
转化
(1)解分式方程的基本思想方法是:分式方程-----→整式方程.
(2)解分式方程的一般方法和步骤:
①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;
②解这个整式方程;
③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0
的解不是原方程的解,即说明原分式方程无解。
注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;
②解分式方程必须要验根,千万不要忘了!
解分式方程的步骤:
(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;
(4)验根.
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
11.含有字母的分式方程的解法:
在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,
解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的
限制条件。
计算结果是用已知数表示未知数,不要混淆。
12.列分式方程解应用题的步骤是:
(1)审:审清题意;(2)找:找出相等关系;(3)设:设未知数;(4)列:列出分式方程;
(5)解:解这个分式方程;(6)验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;(7)答:写出答案。
应用题有几种类型;基本公式是什么?
基本上有五种:(1)行程问题基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.
(2)数字问题:在数字问题中要掌握十进制数的表示法.
(3)工程问题基本公式:工作量=工时×工效.
(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.
11.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法.
用科学记数法表示绝对值大于1的数时,应当表示为a×10n的形式,其中1≤︱a︱<10,n 为原整数部分的位数减1;
用科学记数法表示绝对值小于1的数时,则可表示为a×10-n的形式,其中n为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a︱<10.。