flexsim物流仿真软件实训与报告
物流仿真实训报告
FLEXSIM软件在生产物流系统仿真实验报告专业:物流管理学号:201554188 姓名:王二狗实验平台ﻫFlexsim系统仿真软件。
3ﻫ、9、1配送中心仿真实验实验目得1ﻫ。
让学生体验物流配送中心得基本功能与作业流程.2ﻫ.通过对仿真软件Flexsim得运用与学习,体会物流仿真得建模与仿真方法。
3ﻫ。
让学生学会从系统得思想分析权衡物流系统各要素目标之间得关系。
4ﻫ.让学生熟悉Flexsim软件得功能。
ﻫ实验工具1。
一个配送中心得设计方案,设计方案要对配送中心得保管、倒装、拣选、包装与辅助加工与分拣等多个功能合理设计。
2.系统仿真软件:F1exsim软件。
3.每人一台计算机.实验内容1.系统仿真软件Flexsim得使用:设备得表示、选择、属性设置、修改、设备得连接、模拟得开始与停止等基本操作。
2.熟悉物流配送中心仿真得基本要素:设备选型与特征参数、设备布局与关联、货物入库、客户订单、货位分配原则、概率性得事件、随机变量得分布、操作人员得行为等。
3.自动化仓储模型、内部运输调度模型、拣选模型、分拣模型、人力调配模型、外部发运模型等模型在系统仿真中得运用。
实验步骤学生根据个人情况选择一个仿真物流配送中心得仿真对象。
ﻫ老师指导学生对所选择得仿真对象进行模型设计与优化。
老师从物流系统角度对仿真模型得设计进行一些扩展分析.在老师得指导下,学生分小组通过使用Flexsim软件完成所选仿真模型得仿真设计。
组织学生利用所学得知识从系统得角度分析模型中得优化同现实中具体方案优化得不同与相同之处。
1。
系统数据设定物品到达:平均每2分钟到达一个产品,到达间隔时间服从指数分布.物品分类:3类(分别以红、黄、蓝标示).2。
进入系统仿真主界面。
打开Flexsim软件,进入Flexsim系统仿真主界面。
3.生成Source实体。
按照各小组得设计方案,在模型中生成一个实体(发生器Sour ce)。
从左边得实体库中拖出一个source(发生器),放到模型视窗中。
flexsim实验报告
flexsim实验报告FlexSim实验报告引言:FlexSim是一款强大的仿真软件,被广泛应用于工业、物流、医疗等领域。
本实验报告将介绍我们在使用FlexSim进行仿真实验的过程和结果,并探讨其在实际应用中的潜力。
一、实验目的我们的实验目的是通过使用FlexSim来模拟和优化一个工厂的生产流程,以提高生产效率和减少资源浪费。
通过这个实验,我们希望了解FlexSim的功能和应用,以及如何将其应用于实际生产环境中。
二、实验过程1. 建模和参数设定我们首先使用FlexSim进行建模,根据实际工厂的生产流程和设备情况,将其转化为一个三维模型。
然后,我们设置了各个设备的参数,包括生产速度、故障率、维修时间等,以便更真实地模拟生产环境。
2. 数据采集和分析在模拟运行过程中,我们收集了大量的数据,包括设备利用率、生产周期、等待时间等。
通过对这些数据的分析,我们可以评估当前生产流程的效率,并找出潜在的瓶颈和改进点。
3. 优化策略设计基于数据分析的结果,我们设计了一系列的优化策略,包括设备调度、工艺改进、资源配置等。
通过在FlexSim中实施这些策略,并进行多次仿真实验,我们可以评估其效果,并选择最佳的方案。
三、实验结果通过多次实验和优化,我们成功地提高了工厂的生产效率和资源利用率。
具体来说,我们减少了设备的闲置时间,提高了生产速度,降低了生产周期。
同时,我们还通过合理配置资源,减少了生产过程中的等待时间和浪费。
四、讨论与展望FlexSim作为一款强大的仿真软件,为我们提供了一个优化生产流程的有力工具。
通过灵活的建模和参数设定,我们可以准确地模拟和分析现实生产环境中的各种情况。
通过多次实验和优化,我们可以找到最佳的生产方案,并提高生产效率。
然而,值得注意的是,FlexSim只是一个工具,其应用结果还需要结合实际情况进行综合评估。
在实际应用中,我们还需要考虑人力资源、成本、市场需求等因素。
因此,将FlexSim与其他管理工具和方法相结合,才能更好地实现生产优化的目标。
物流仿真设计实验报告
一、实验背景随着经济全球化的发展,物流行业在企业经营中的重要性日益凸显。
为了提高物流系统的运行效率,降低成本,优化资源配置,物流仿真设计成为了物流管理的重要工具。
本实验旨在通过Flexsim仿真软件,对某一物流系统进行建模、仿真和分析,从而为物流系统的优化提供参考依据。
二、实验目的1. 熟练掌握Flexsim仿真软件的操作方法。
2. 建立合理的物流系统模型,并进行仿真分析。
3. 分析物流系统存在的问题,提出优化方案。
三、实验内容1. 系统描述本实验以某企业物流系统为研究对象。
该系统包括原材料采购、生产加工、仓储、配送和客户服务等环节。
实验的主要任务是优化物流系统的运行效率,降低物流成本。
2. 模型建立(1)数据收集:通过查阅相关资料和实地调研,收集了原材料采购、生产加工、仓储、配送和客户服务等方面的数据。
(2)模型构建:根据收集到的数据,在Flexsim软件中建立了物流系统模型。
模型包括以下主要模块:- 原材料采购模块:模拟原材料供应商的供货过程,包括原材料到达、检验和入库等环节。
- 生产加工模块:模拟生产线的生产过程,包括生产节拍、产品检验和入库等环节。
- 仓储模块:模拟仓库的存储和管理过程,包括原材料和成品的入库、出库和库存管理等环节。
- 配送模块:模拟配送中心的配送过程,包括订单处理、货物装载、运输和配送等环节。
- 客户服务模块:模拟客户服务过程,包括订单处理、产品交付和售后服务等环节。
3. 仿真分析(1)运行仿真:在Flexsim软件中运行仿真模型,观察系统运行情况,包括生产节拍、库存水平、配送时间等指标。
(2)数据分析:对仿真结果进行分析,找出系统存在的问题,如库存积压、配送延迟等。
四、实验结果与分析1. 库存积压问题仿真结果显示,原材料和成品的库存积压现象较为严重。
通过分析,发现主要原因如下:- 生产计划不合理,导致原材料采购过多。
- 生产节拍与市场需求不匹配,导致成品库存积压。
2. 配送延迟问题仿真结果显示,配送延迟现象较为明显。
Flexsim仿真实验-报告
Flexsim仿真实验-报告Introduction本次报告主要通过Flexsim仿真实验来模拟一个物流仓库的运营情况。
在实验中,我们将会探究在不同情况下,物流仓库的运营效率会如何受到影响,并通过结果来提出一些改进建议,以进一步提高物流仓库的运营效率。
实验场景描述在我们的物流仓库,我们需要处理两个不同来源的货物:进口和国产。
这两种货物有不同的来源和运输方式。
进口货物需要通过集装箱船从港口运输到我们的仓库,而国产货物则可以由卡车或火车运输。
物流仓库内有3个主要区域:进口货物区、国产货物区以及出口货物区。
我们需要将进口货物和国产货物分别存储在对应的区域内,并在后续的运输过程中将它们分别转移到出口货物区。
实验目的通过对实验场景中不同方案的模拟,探究如何优化物流仓库运营效率。
实验目的包括以下几个方面:1. 比较卡车运输模式和火车运输模式之间的效率差异2. 探究不同储存、运输设施数量对物流效率的影响3. 探究两种货物进出库数量对物流效率的影响4. 给出改进方案并提高仓库运营效率实验流程1. 构建实验模型首先,我们需要在Flexsim中构建仓库的模型。
我们需要创建进口货物区、国产货物区和出口货物区,并添加合适数量的储存货架以存储货物。
我们需要在储存节点上添加一个储存规则来确保货物被正确存入。
我们还需要添加合适数量的卸货站、存货站、装货站,以及使用不同方式运输货物的工具(卡车或火车)。
2. 进行实验我们将运行多个不同的实验,以探究不同方案对运营效率的影响。
在每个实验中,我们将记录以下数据:货物进出库数量、货物运输时间、工作人员和工具空闲时间。
3. 分析和提取结果我们将比较实验结果并从中提取结论。
我们将分析不同方案的效果,并提出改进建议以进一步提升运营效率。
实验结果分析我们进行了以下三个实验,并分别分析了它们的结果。
1. 比较卡车运输模式和火车运输模式之间的效率差异在这个实验中,我们比较了使用卡车与火车运输货物的效率。
物流仿真软件实训报告
一.对仿真与实训的认知Flexsim是一套集计算机三维图像处理技术、仿真技术、人工技能技术、数据处理技术为一体,为制造、物流等领域服务的软件。
运用Flexsim系列仿真软件,可在计算机内建立研究对象的系统三维模型,然后对模型进行各种系统分析,最终获得优化设计和改造方案,以降低实际运营成本。
Flexsim是新一代离散事件系统仿真的有效工具。
面向对象的建模方式使得建模过程更为快捷,只需通过图形的拖动和必要的附加程序就可以快速的建立起系统模型。
软件提供了丰富的物理单元,如发生器、处理器、暂存区、吸收器等,大大方便了用户的建模。
所建的物理仿真模型可以用三维动画方式表现出来,形象、生动、逼真的表现出整个物流系统,为物流中心的规划设计或改造提供了有效的可视化手段,使得分析者可以在较短的时间内对各种方案的优劣进行比较,对各种预选方案进行评估。
使用flaxsim可以达到以下效果:(1)提高资源(设备资源/人力资源/资金资源)的利用率;(2)减小等待时间和排队长度;(3)有效分配资源;(4)消除缺货问题;(5)把故障减小至最低;(6)把废弃物的故障减小至最底;(7)研究可替换的投资概念;(8)决定零件经过的时间;(9)研究降低成本的计划;(10)建立最优批量和工序安排;(11)解决物料发送问题;(12)研究设备预置时间和改换工具的影响;(13)优化货物和服务的优先次序与分派逻辑;(14)在系统全部行为和相关作业中训练操作人员;(15)展示新的工具设计和性能;(16)管理日常运作决策;(17)从历史运行中得到经验和教训。
二.具体案例建模仿真1.案例选取模型6.多产品单阶段制造系统仿真与分析1.1系统描述现在,我们来看看某工厂加工三种类型产品的过程。
这三类产品分别从工厂其它车间到达该车间。
这个车间有三台机床,每台机床可以加工一种特定的产品类型。
一旦产品在相应的机床上完成加工,所有产品都必须送到一个公用的检验台进行质量检测。
仿真实验室实训报告
一、实训背景随着科技的不断发展,仿真技术在各个领域的应用越来越广泛。
为了提高学生的实践能力和创新能力,我校设立了仿真实验室,旨在为学生提供真实的实验环境和实践操作机会。
本次实训,我选择了“物流仿真模拟实习”作为实训项目,通过学习仿真软件Flexsim的操作和应用,掌握物流仿真建模的基本方法。
二、实训目的1. 掌握仿真软件Flexsim的操作和应用,熟悉通过软件进行物流仿真建模。
2. 记录Flexsim软件仿真模拟的过程,得出仿真的结果。
3. 总结Flexsim仿真软件学习过程中的感受和收获。
三、实训设备PC机,Windows XP,Flexsim教学版四、实训步骤1. 实验一(1)从库里拖出一个发生器放到正投影视图中,如图1所示:图1(2)把其余的实体拖到正投影视图视窗中,如图2所示:图2(3)连接端口连接过程是:按住“A”键,然后用鼠标左键点击发生器并拖曳到暂存区,再释放鼠标键。
拖曳时你将看到一条黄线,释放时变为黑线。
图3(4)根据对实体行为特性的要求改变不同实体的参数。
我们首先从发生器开始设置,最后到吸收器结束。
指定到达速率、设定临时实体类型和颜色、设定暂存区容量、为暂存区指定临时实体流选项、为处理器指定操作时间(5)重置,编译,运行得到如下图所示:(6)保存模型。
2. 实验二(1)装载模型1并编译(2)向模型中添加一个分配器和两个操作员五、实训结果与分析通过本次实训,我掌握了Flexsim软件的基本操作,并成功完成了物流仿真模拟实习。
以下是对实训结果的分析:1. 仿真模型能够较好地反映实际物流系统,为物流优化提供了有力支持。
2. 通过调整模型参数,可以分析不同物流方案对系统性能的影响,为决策提供依据。
3. 实训过程中,我学会了如何利用Flexsim软件进行物流仿真建模,为今后从事相关领域工作奠定了基础。
六、实训感受与收获1. 通过本次实训,我深刻体会到仿真技术在物流领域的应用价值,为今后的学习和工作提供了新的思路。
仿真物流实训报告
一、实训背景随着我国经济的快速发展,物流行业在国民经济中的地位日益重要。
为了提高我国物流行业的整体水平,培养具备实际操作能力的物流专业人才,我校经济管理学院特开设了仿真物流实训课程。
通过仿真物流实训,学生可以了解物流行业的运作流程,掌握物流系统的基本原理,提高解决实际问题的能力。
二、实训目的1. 帮助学生了解物流行业的基本运作流程,掌握物流系统的基本原理。
2. 培养学生运用仿真软件进行物流系统分析、设计和优化的能力。
3. 提高学生团队协作、沟通和创新能力。
三、实训内容本次仿真物流实训主要采用FlexSim仿真软件进行,以某大型超市配送中心为案例,进行以下内容的学习和实践:1. 配送中心概况:了解配送中心的规模、功能、作业流程等。
2. 仿真建模:根据配送中心实际情况,运用FlexSim软件建立仿真模型。
3. 模型验证:对仿真模型进行验证,确保模型准确反映实际配送中心作业流程。
4. 参数优化:对仿真模型进行参数优化,提高配送中心作业效率。
5. 模型分析:分析仿真结果,为实际物流系统改进提供依据。
四、实训过程1. 配送中心概况学习:通过查阅资料、实地考察等方式,了解配送中心的规模、功能、作业流程等。
2. 仿真建模:运用FlexSim软件,根据配送中心实际情况,建立仿真模型。
主要包括以下步骤:a. 建立模型框架:定义模型范围、系统边界等。
b. 添加模型元素:根据配送中心作业流程,添加相关元素,如仓库、货架、输送带、分拣设备等。
c. 设置模型参数:根据实际情况,设置各元素参数,如输送速度、货架容量等。
d. 添加物流信息流:设置订单生成、订单处理、货物搬运等物流信息流。
3. 模型验证:对仿真模型进行验证,确保模型准确反映实际配送中心作业流程。
主要方法包括:a. 与实际数据进行对比:将仿真结果与实际数据进行对比,验证模型准确性。
b. 专家评审:邀请物流行业专家对仿真模型进行评审,提出改进意见。
4. 参数优化:对仿真模型进行参数优化,提高配送中心作业效率。
FLEXSIM软件在生产物流系统仿真实验报告
FLEXSIM软件在生产物流系统仿真实验报告专业:学号:姓名:1.FLEXSIM软件简介Flexsim是一个强有力的分析工具,可帮助工程师和设计人员在系统设计和运作中做出智能决策。
采用Flexsim,可以建立一个真实系统的3D计算机模型,然后用比在真实系统上更短的时间或者更低的成本来研究系统。
Flexsim是一个通用工具,已被用来对若干不同行业中的不同系统进行建模。
Flexsim已被大小不同的企业成功地运用。
使用Flexsim可解决的3个基本问题1)服务问题 - 要求以最高满意度和最低可能成本来处理用户及其需求。
2)制造问题- 要求以最低可能成本在适当的时间制造适当产品。
3)物流问题- 要求以最低可能成本在适当的时间,适当的地点,获得适当的产品。
2.实验内容及目的在这一个实验中,我们将研究三种产品离开一个生产线进行检验的过程。
有三种不同类型的临时实体将按照正态分布间隔到达。
临时实体的类型在类型1、2、3三个类型之间均匀分布。
当临时实体到达时,它们将进入暂存区并等待检验。
有三个检验台用来检验。
一个用于检验类型1,另一个检验类型2,第三个检验类型3。
检验后的临时实体放到输送机上。
在输送机终端再被送到吸收器中,从而退出模型。
图1-1是流程的框图。
本实验的目的是学习以下内容:•如何建立一个简单布局•如何连接端口来安排临时实体的路径•如何在Flexsim实体中输入数据和细节•如何编译模型•如何操纵动画演示•如何查看每个Flexsim实体的简单统计数据3.实验过程为了检验Flexsim软件安装是否正确,在计算机桌面上双击Flexsim3.0图标打开应用程序。
软件装载后,将看到Flexsim菜单和工具按钮、库、以及正投影视图的视窗。
步骤1:从库里拖出所有实体拖到正投影视图视窗中,如图1-3所示:图1-3 完成后,将看到这样的一个模型。
模型中有1个发生器、1个暂存区、3个处理器、3个输送机和1个吸收器。
步骤2:连接端口下一步是根据临时实体的路径连接端口。
《物流仿真软件实训与应用》报告
物流仿真软件实训与应用报告题目:基于Flexsim的配送中心系统仿真与分析报告系别:经济管理学院专业:工商管理(物流方向)班级:T953-1学生姓名:王飞学号:指导教师:湖北汽车工业学院经济管理学院物流管理教研室基于Flexsim的配送中心系统仿真与分析报告一、物流仿真软件及其应用概述本次物流仿真实习使用的是Flexsim仿真软件,下面简单的介绍一下Flexsim 软件。
Flexsim是一个强有力的“what-if”分析工具,就其多个备选方案提供大量反馈信息,可帮助工程师和设计人员在系统设计和运作中就做出正确地决策。
同时Flexsim也是一款离散事件仿真软件程序,在其建模运行后所提供的逼真图形动画显示和完整的运作绩效报告支持下,用户可以在短时间内识别问题并对可选方案做出评估。
因此在真正的系统建立之前,使用它来建立系统的模型,或在系统真正实施前试验其运作策略,可以避免在启动新系统时经常会遇到的很多问题。
以前需要花费几个月甚至几年时间来进行查错试验以对系统进行改进,现在使用Flexsim可以在几天甚至几小时内取得相同的成绩。
总的来讲,使用Flexsim可解决的3个基本问题:1、服务问题-要求以最高满意度和最低可能成本来处理用户及其需求。
2、制造问题-要求以最低可能成本在适当的时间制造适当产品。
3、物流问题-要求以最低可能成本在适当的时间,适当的地点,获得适当的产品。
二、配送中心系统仿真与分析报告Ⅰ、案例系统简介配送中心是从事货物配送并组织对用户的送货,以实现销售和供应服务的现代流通设施。
它不同于传统的仓储设施,在现代商业社会中,配送中心已经成为连锁企业的商流中心、物流中心、信息流中心,是连锁经营得以正常运转的关键设施。
在本配送中心仿真实习中,该配送中心从三个供应商进货,向三个生产商发货,仿真的目的是研究该配送中心的即时库存成本和利润,并试图加以改善。
其中供应商、配送中心、生产商的参数介绍如下:供应商:当三个供应商各自供应的产品在配送中心的库存小于10件时开始生产,库存大于20件时停止生产。
物流仿真软件实训与应用报告
物流仿真软件实训与应用报告题目:物流仿真软件实训与应用报告之基于Flexsim的多产品单阶段制造系统仿真与分析报告系别:经济管理学院专业:物流管理班级:T1053-12学生姓名:程龙学号:20100531202指导教师:陶金发付雅琴湖北汽车工业学院经济管理学院物流管理教研室一仿真理论与建模仿真与建模是指构造现实世界实际系统的模型和在计算机上进行仿真的有关复杂活动,它主要包括实际系统、模型和计算机等三个基本部分,同时考虑三个基本部分之间的关系,即建模关系和仿真关系。
仿真系统的应用于航空、航天、各种武器系统的研制部门、电力、交通运输、通信、化工、核能各个领域、系统概念研究、系统的可行性研究、系统的分析与设计、系统开发、系统测试与评估、系统操纵人员的培训、系统预测、系统的使用与维护等各个方面。
随着仿真技术的发展,仿真技术应用的目的趋于多样化、全面化。
近20年来,随着系统工程与科学的迅速发展,仿真技术已从传统的工程领域扩展到非工程领域,因而在社会经济系统、环境生态系统、能源系统、生物医学系统、教育训练系统中也得到了广泛的应用。
二Flexsim软件这次物流仿真实训使用的是Flexsim仿真软件,Flexsim是一个强有力的分析工具,可帮助工程师和设计人员在系统设计和运作中做出正确地决策。
使用Flexsim可以建立一个真实系统的3D计算机模型,然后用更短的时间或者更低的成本来研究该系统。
作为一个“what-if”分析工具,Flexsim就多个备选方案提供大量反馈信息,来帮助用户迅速从多个方案中找到最优方案。
在Flexsim的逼真图形动画显示和完整的运作绩效报告支持下,用户可以在短时间内识别问题并对可选方案做出评估。
在系统建立之前,使用Flexsim来建立系统的模型,或在系统真正实施前试验其运作策略,可以避免在启动新系统时经常会遇到的很多问题。
以前需要花费几个月甚至几年时间来进行查错试验以对系统进行改进,现在使用Flexsim 可以在几天甚至几小时内取得相同的成绩。
物流仿真实验报告结论(3篇)
第1篇一、实验背景物流仿真实验实训报告通常用于评估学生在《物流规划与设计》课程中对于物流仿真软件操作和物流系统建模的理解与掌握程度。
通过实验,学生能够了解物流系统的运作,掌握物流仿真软件的应用,并能够运用所学知识解决实际问题。
二、实验目的1. 掌握仿真软件操作:通过使用Flexsim等仿真软件,学生能够熟悉软件的基本操作,包括建模、运行和结果分析。
2. 进行物流仿真建模:学生通过软件进行物流系统的仿真建模,了解不同物流环节的运作方式。
3. 记录仿真过程与结果:详细记录仿真过程中的每一步,包括设置参数、运行仿真、分析结果等。
4. 总结学习感受与收获:通过实验,学生可以总结自己的学习感受,反思实验过程中的收获和不足。
三、实验设备实验设备通常包括PC机、操作系统(如Windows XP)、仿真软件(如Flexsim教学版)等。
四、实验步骤1. 搭建模型:从软件库中拖出发生器、暂存区、处理器等组件,放置在正投影视图中。
2. 连接端口:通过拖拽的方式连接各个组件,确保物流流程的顺畅。
3. 设置参数:根据实体行为特性,设置不同实体的参数,如到达速率、容量、操作时间等。
4. 运行仿真:编译并运行仿真,观察物流系统的运作情况。
5. 分析结果:对仿真结果进行分析,评估物流系统的性能。
五、实验内容1. 物流系统要素辨析:通过观察快递公司和超市的包装处理方式,理解物流流动要素中流体和载体的概念。
2. 载体运费承担方案:探讨关于载体运费承担的解决方案。
3. 系统思维应用:运用系统思维分析和解决物流问题。
4. 团队合作与PPT制作:通过团队合作和PPT制作,提高学生的团队协作能力和演示能力。
六、实验总结通过物流仿真实验实训,学生能够:1. 掌握物流仿真软件的基本操作。
2. 了解物流系统的运作机制。
3. 提高物流系统建模和优化能力。
4. 培养团队合作和沟通能力。
总之,物流仿真实验实训是一种有效的教学手段,有助于学生将理论知识应用于实践,提高学生的综合素质。
物流系统仿真实验报告
一、实验目的1. 熟悉和掌握物流系统仿真的基本原理和方法。
2. 利用仿真软件Flexsim建立物流系统模型,分析系统的运行状态和性能。
3. 通过仿真实验,优化物流系统的布局和流程,提高物流效率。
二、实验内容本次实验采用Flexsim软件,对某企业物流系统进行仿真分析。
主要内容包括:1. 系统建模:根据实际企业物流系统,建立Flexsim模型,包括仓库、货架、输送线、设备、人员等元素。
2. 参数设置:对模型中的各个参数进行设置,如货架容量、输送线速度、设备故障率等。
3. 仿真运行:启动仿真实验,观察系统运行状态,记录关键指标数据。
4. 结果分析:对仿真结果进行分析,评估系统性能,找出系统瓶颈。
三、实验过程1. 系统建模:- 根据企业物流系统实际情况,绘制系统布局图。
- 在Flexsim软件中,创建相应元素,如仓库、货架、输送线、设备、人员等。
- 设置元素属性,如货架容量、输送线速度、设备故障率等。
2. 参数设置:- 根据实际企业数据,设置模型参数,如货架容量、输送线速度、设备故障率等。
- 考虑系统运行过程中的随机性,设置随机数生成器。
3. 仿真运行:- 设置仿真时间、运行次数等参数。
- 启动仿真实验,观察系统运行状态,记录关键指标数据。
4. 结果分析:- 分析系统关键指标,如系统吞吐量、平均等待时间、设备利用率等。
- 找出系统瓶颈,如货架容量不足、输送线速度慢等。
- 针对系统瓶颈,提出优化方案,如增加货架、提高输送线速度等。
四、实验结果与分析1. 系统关键指标:- 系统吞吐量:每小时处理订单数。
- 平均等待时间:订单在系统中等待的平均时间。
- 设备利用率:设备实际工作时间与理论工作时间的比值。
2. 系统瓶颈:- 通过仿真实验,发现系统瓶颈为货架容量不足,导致订单在系统中等待时间较长。
3. 优化方案:- 增加货架数量,提高货架容量。
- 调整输送线速度,提高系统吞吐量。
五、结论1. 通过本次实验,掌握了物流系统仿真的基本原理和方法。
Flexsim物流仿真实验报告
物流实验报告1实验目的本实验围绕生产物流实验系统展开,进行制造系统的建模、仿真分析与设计优化研究实践。
重点研究运用仿真软件Flexsim,对生产物流实验系统的生产过程进行建模、仿真和分析,并进行系统改造的方案论证。
2实验内容及要求对照实验系统,参考有关系统资料及参考案例,在对系统的基础布局、工作特点、工作流程及实验生产设备等进行详细研究的基础上,运用Flexsim工具进行建模,并对其生产过程进行仿真。
通过仿真分析了解有关生产实验系统方案是否满足预期运行目标的需求,并且针对仿真生产过程中所表现出来的缺陷与瓶颈问题,提出改进方案。
最终完成对于该生产系统的整体产能及物流运作分析,为系统改造决策提供参考依据。
3实验内容与步骤3.1生产制造系统建模与仿真基础知识研究结合有关实验系统的生产运作原型,深入研究制造系统的运作控制,及其系统建模与仿真相关知识;熟悉掌握Flexsim建模仿真工具及其安装运行环境,为具体的实验与分析应用做好前期的理论与技术知识准备。
3.2系统总体了解结合所给的实验系统资料及建模仿真设计型实验参考案例,了解本实验系统的物流过程、实验加工与物流处理过程运行控制规则,及具体实验流程等相关方面。
在此基础上拟定自己的不同于所给参考案例的实验方案,为进一步的建模与仿真分析做准备。
3.3系统建模及初步的仿真运行调试对系统的各个部分进行Flexsim建模,对各个相应的系统仿真模块进行设计,完成细节上的充分考虑,通过初步调试,验证并确定最终的系统仿真模型。
3.4系统仿真与分析针对实验所期望解决的问题,分析仿真数据结果;根据结果对模型进行必要的参数设置与调整;比较不同参数设置下的仿真数据结果,得到分析结论或理想的系统设计方案。
4实验记录与数据处理4.1系统模型介绍本实验所涉及的是一个柔性制造系统的生产线(如图1-1所示),它主要有四条流水线组成,同时加工两种不同原材料(以下称原材料a和原材料b),最后把加工后的两种半成品和另一种原材料(以下称原材料c)装配起来,成为成品d。
物流系统仿真_实验报告(3篇)
第1篇一、实验目的本次实验旨在通过使用Flexsim仿真软件,对物流系统进行建模、仿真和分析,以评估系统性能,找出潜在瓶颈,并提出优化方案。
通过本实验,我们希望达到以下目标:1. 熟悉Flexsim软件的基本操作和功能。
2. 学会根据实际需求设计物流系统模型。
3. 利用仿真技术分析物流系统性能,找出系统瓶颈。
4. 提出优化方案,提高物流系统效率。
二、实验内容本次实验选取了一个典型的物流系统——某电商企业的仓库配送系统,进行仿真分析。
以下是实验内容的具体描述:1. 模型建立:- 设计物流系统模型,包括收货区、存储区、拣选区、打包区、发货区等模块。
- 定义各个模块的实体类型、数量、处理时间等参数。
- 设置仿真时间、运行时间等仿真参数。
2. 仿真运行:- 使用Flexsim软件运行仿真模型,收集系统运行数据。
- 分析系统运行过程中的关键指标,如订单处理时间、系统吞吐量、库存水平等。
3. 性能分析:- 分析仿真结果,找出系统瓶颈,如拣选区拥堵、打包区等待时间过长等。
- 分析系统性能与仿真参数之间的关系,如订单处理时间与订单量、存储容量等。
4. 优化方案:- 针对系统瓶颈,提出优化方案,如调整拣选路径、增加拣选人员、优化存储策略等。
- 重新运行仿真模型,评估优化方案的效果。
三、实验结果与分析1. 系统性能指标:- 订单处理时间:平均订单处理时间为45分钟。
- 系统吞吐量:平均每小时处理订单量为10单。
- 库存水平:平均库存量为150件。
2. 系统瓶颈分析:- 拣选区拥堵:由于拣选路径不合理,导致拣选人员频繁往返,导致拥堵。
- 打包区等待时间过长:打包区设备数量不足,导致订单积压。
3. 优化方案:- 调整拣选路径:优化拣选路径,减少拣选人员往返次数,提高拣选效率。
- 增加打包区设备:增加打包区设备数量,缩短订单打包时间。
- 优化存储策略:采用先进先出(FIFO)存储策略,减少库存积压。
4. 优化效果评估:- 优化后的订单处理时间缩短至30分钟。
flexsim物流仿真软件实训与报告
②操作员
经过多次试验得到操作员在不同仿真长度时的 idle 平均值:
Idle 百分比(%) 操作员 90 操作员 92 操作员 93 操作员 94
8 小时 83.9 85.1 85.2 84.7
图 22
24 小时 84.0 83.4 83.5 83.7
一个月(240 小时) 83.3 83.2 83.2 83.1
经过多少次模拟运行取其吞吐量和容量均值的平均值,得到图 21 的表格, 其中记录了处理器在不同仿真时间下的吞吐量和容量均值。从表中可以看出,吞 吐量随时递增,而容量均值在某一固定区间上下波动。对比各处理器,可以发现: 虽然数据的改变大体上相同,但是 8 小时内的数据与 24 小时和一个月的数据相 比还是误差偏大。(上述图中 idle 的数据也说明这个问题)。因此,模型运行时, 仿真长度对系统分析存在一定影响。在今后的模型运行操作中要保证模型运行足 够的时间,以确保得到更为准确的数据,而后才能进行接下来的工作。
建模步骤 ①发生器
为生成四种到达频率不同的货物,故设定四类发生器(发生器 1、2、3、4)。
其参数设置见下图 3、图 4、图 5、图 6 。
图3
图4
图5
图6
为区分四种不同的货物,故设定四种货物颜色不同,分别为 red、blue、 green 、orange。
对其对应生成器的参数设置(例)如图 7:
物流装备仿真实验报告(3篇)
第1篇一、实验背景随着现代物流业的快速发展,物流装备在物流系统中扮演着至关重要的角色。
为了提高物流装备的效率,降低成本,实现物流系统的优化,物流装备仿真实验应运而生。
本实验旨在通过仿真软件对物流装备进行模拟,分析其性能,并提出改进措施。
二、实验目的1. 熟悉物流仿真软件的基本操作。
2. 建立物流装备仿真模型,分析其性能。
3. 通过仿真结果,找出物流装备的瓶颈和不足。
4. 提出优化方案,提高物流装备的效率。
三、实验内容1. 仿真软件选择本实验采用Flexsim仿真软件进行物流装备仿真。
Flexsim是一款功能强大的物流仿真软件,具有直观的图形界面和丰富的仿真功能。
2. 物流装备仿真模型建立以某物流中心为例,建立物流装备仿真模型。
模型包括以下部分:(1)入库区:包括进货口、验收台、暂存区等。
(2)加工区:包括加工设备、操作员等。
(3)出库区:包括拣选区、打包区、发货口等。
(4)物流装备:包括输送带、货架、叉车等。
3. 仿真参数设置根据实际物流中心的情况,设置仿真参数,如:(1)物流装备数量:根据实际需求设置输送带、货架、叉车等物流装备的数量。
(2)作业时间:设置操作员、加工设备等作业时间。
(3)货物种类:设置不同种类货物的数量和尺寸。
4. 仿真运行与分析运行仿真模型,观察物流装备的运行情况,分析以下指标:(1)物流装备利用率:衡量物流装备的运行效率。
(2)货物在途时间:衡量货物在物流系统中的停留时间。
(3)系统瓶颈:找出影响物流系统效率的关键因素。
四、实验结果与分析1. 物流装备利用率仿真结果显示,物流装备的利用率较高,达到了80%以上。
这表明物流装备的配置较为合理,能够满足物流中心的需求。
2. 货物在途时间仿真结果显示,货物在途时间为2小时。
与实际物流中心相比,货物在途时间有所缩短,说明物流装备的运行效率较高。
3. 系统瓶颈通过分析仿真结果,发现以下系统瓶颈:(1)入库区验收台数量不足,导致货物在验收环节出现拥堵。
Flexsim仿真软件实验报告
实验报告实验目的和要求1.开展实验的目的在于加深对物流系统仿真基础理论和基本知识的理解,掌握系统仿真的基本过程和方法,提高利用仿真工具和手段解决实际工程、管理问题的实践能力。
同时仿真实训充分体现“教师指导下的以学生为中心”的教学模式,以学生为认知主体,充分调动学生的积极性和能动性,重视学生自学能力的培养。
2.由指导教师根据学生完成实验任务的情况,综合打分。
成绩评定实行优秀、良好、中等、及格和不及格五个等级。
3.实验报告要严格按照指导教师的要求撰写,需在封面注明课程名称、学院、专业班级、姓名、学号等信息。
4.实验报告正文以模型为单位,每个模型至少包括如下五个方面的内容:模型描述、模型布局、建立连接、参数设定和代码编写以及仿真模型运行结果。
正文字体为宋体小四、行间距为固定值20磅。
5.实验报告做好后,用A4纸张打印出来,左侧两颗钉装订,及时上交给指导老师。
值:getitemtype(item)Case:case 1: colorwhite(item);break;case 2: colorblue(item);break;case 3: colorblack(item);break;default: colorarray(item, value);break点击应用贰..鼠标双击发生器,点击临时实体流在输出—发送至端口处选择:根据临时实体类型值执行不同的Case值勾选使用运输工具后选择—按下列条件请求运输工具选择:根据临时实体类型值执行不同的Case值getitemtype(item)Cases:case 1: portnum = 1; break;case 2: portnum = 2; break;case 3: portnum = 2; break;default: portnum = 1; break;点击应用点击重置——运行三、实验结果(结论)操作员1将发生器产生的蓝色临时实体2和黑色临时实体3,分别搬运到暂存区2和暂存区3;操作员2将发生器产生的白色临时实体1搬运到暂存区1。
仿真物流实验报告
一、实验背景与目的随着全球经济的快速发展,物流行业在国民经济中的地位日益重要。
为了提高物流系统的运行效率,降低成本,减少资源浪费,仿真技术在物流领域得到了广泛应用。
本实验旨在通过仿真软件对物流系统进行建模和分析,验证物流系统的性能,并提出优化方案。
二、实验内容与方法1. 实验内容本实验以某大型仓储物流中心为研究对象,采用仿真软件Flexsim进行建模和分析。
实验内容包括:(1)仓储物流中心内部设施布局设计:包括仓库、货架、输送线、自动化设备等。
(2)物流作业流程设计:包括入库、存储、拣选、包装、发货等环节。
(3)物流系统性能分析:包括吞吐量、库存水平、作业效率等指标。
2. 实验方法(1)使用Flexsim软件进行物流系统建模。
(2)根据实际需求设置参数,包括设备数量、作业速度、库存水平等。
(3)运行仿真模型,收集实验数据。
(4)分析实验数据,验证物流系统性能,并提出优化方案。
三、实验结果与分析1. 仿真模型通过Flexsim软件,建立了某大型仓储物流中心的仿真模型。
模型包括以下部分:(1)仓库:模拟实际仓库的布局,包括货架、通道等。
(2)输送线:模拟仓库内部的输送设备,包括入库输送线、拣选输送线、发货输送线等。
(3)自动化设备:模拟仓库内部的自动化设备,如自动货架、自动拣选机器人等。
(4)物流作业流程:模拟入库、存储、拣选、包装、发货等环节。
2. 实验数据运行仿真模型,收集实验数据如下:(1)吞吐量:在实验时间内,系统处理的货物数量。
(2)库存水平:系统在实验过程中的平均库存量。
(3)作业效率:系统完成作业的平均时间。
3. 实验结果分析(1)吞吐量:仿真实验结果显示,系统的吞吐量与实际需求基本相符,说明系统设计合理。
(2)库存水平:仿真实验结果显示,系统的库存水平适中,既能满足生产需求,又能降低库存成本。
(3)作业效率:仿真实验结果显示,系统的作业效率较高,说明系统设计合理,能够提高物流作业效率。
物流仿真技术实验报告(3篇)
第1篇一、实验背景与目的随着社会经济的快速发展,物流行业在我国国民经济中的地位日益重要。
物流系统的优化和效率提升对于降低成本、提高服务质量具有重要意义。
物流仿真技术作为一种有效的物流系统分析和优化工具,在物流领域得到了广泛应用。
本实验旨在通过物流仿真软件,模拟和分析物流系统的运行情况,探讨物流系统优化方案,为实际物流系统的改进提供理论依据。
二、实验内容与步骤1. 实验内容本次实验采用Flexsim仿真软件,对某一物流系统进行仿真模拟和分析。
主要内容包括:(1)建立物流系统模型:根据实际物流系统情况,利用Flexsim软件建立物流系统模型,包括物流节点、设备、运输线路等。
(2)设置系统参数:根据实际物流系统参数,如设备数量、运输能力、作业时间等,设置仿真模型参数。
(3)运行仿真实验:运行仿真实验,收集系统运行数据,如系统运行时间、作业效率、资源利用率等。
(4)分析仿真结果:对仿真结果进行分析,找出系统存在的问题,提出优化方案。
2. 实验步骤(1)安装Flexsim软件:在计算机上安装Flexsim软件,并进行初始化设置。
(2)建立物流系统模型:根据实际物流系统情况,利用Flexsim软件建立物流系统模型,包括物流节点、设备、运输线路等。
(3)设置系统参数:根据实际物流系统参数,如设备数量、运输能力、作业时间等,设置仿真模型参数。
(4)运行仿真实验:运行仿真实验,观察系统运行情况,收集系统运行数据。
(5)分析仿真结果:对仿真结果进行分析,找出系统存在的问题,提出优化方案。
三、实验结果与分析1. 仿真结果(1)系统运行时间:通过仿真实验,得到物流系统运行时间约为X小时。
(2)作业效率:系统作业效率达到Y%。
(3)资源利用率:系统资源利用率达到Z%。
2. 分析与讨论(1)系统运行时间较长:分析系统运行时间较长的原因,可能是由于运输线路不合理、设备配置不合理等因素导致。
(2)作业效率较低:分析作业效率较低的原因,可能是由于物流节点作业时间过长、设备利用率不高等因素导致。
基于Flexsim的物流仿真实验报告
商学院《物流系统建模与仿真》结课报告实验名称:基于Flexsim的仿真实验报告专业名称:物流管理实验报告 (3)一、实验名称 (3)二、实验要求 (3)三、实验目的 (3)四、实验设备 (3)六、实验步骤 (3)1 概念模型 (4)2 建立Flexsim模型 (4)3 优化实验: (16)七、实验体会 (16)实验报告一、实验名称物流仿真实验二、实验要求⑴根据模型描述和模型数据对配送中心进行建模;⑵分析仿真实验结果,进行利润分析,找出利润最大化的策略。
三、实验目的1、掌握仿真软件Flexsim的操作和应用,熟悉通过软件进行物流仿真建模。
2、记录Flexsim软件仿真模拟的过程,得出仿真的结果。
3、总结Flexsim仿真软件学习过程中的感受和收获。
四、实验设备(1)硬件及其网络环境笔记本电脑、局域网或广域网。
(2)软件及其运行环境Flexsim,Windows 7。
五、实验对象本次实验基于对某生产供应链的实际情况,为解决其中一些不好的运营状况,对厂商的产品生产、供应、配送过程的一些数据进行思考讨论,得出一些更合理的运营数据,为验证我们所设想的运营数据在实际的运营中是否合理,我们创建了这些厂商的运营仿真模型,并为模型设置我们小组思考讨论所得的参数。
六、实验步骤1 概念模型2 建立Flexsim 模型第一步:在模型中加入实体从模型中拖入3个发生器、6个处理器、3个货架、3个暂存区和1个接收器到操作区,如图:第二步:连接端口根据配送流程,对模型进行适宜的连接,所有端口连接均用A连接,如图:第三步:发生器的参数设置为使发生器产生实体不影响后面处理器的生产,尽可能的将时间间隔设置尽可能的小,并对三个发生器做出同样的设定。
打开发生器参数设置窗口,将时间到达间隔设置为常数1,同时为对三个实体进行区别,进行设置产品颜色,点击触发器,打开离开触发的下拉菜单,点击设置临时实体类型,设置不同实体类型,颜色自然发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 13 处理器 9 状态图
图 14 处理器 10 状态图
图 15 处理器 11 状态图
图 16 处理器 12 状态图
处理器 9、10、11、12 对应的货物到达频率分别为: normal(150,30),normal(200,40),uniform(500,100),uniform(400,50)。以上 状态图表中 idle 与 processing 比例符合所要求的正态分布。从四个图表中可 以看出四个加工器的 idle 时间普遍过长,平均占到总时长的 74.875%。此外, 等待时间(waiting for transporter)较长也是不容忽视的一个问题。
图1
图2
模型参数
①货物 A、B、C、D 各自独立到达传送带入口端的频率如下: A: normal(400,50) B: normal(200,40) C: uniform(500,100) D: uniform(150,30) ②每检验一件货物所用时间为 uniform(60,20) ③每一个检验包装操作台需操作员一名 ④每种货物都可能有不合格产品。A、B、C、D 四种产品的合格率分别为 95%、 96%、97%、98% ⑤传送带的传送速度为默认
Flexsim 能利用包括最新的虚拟现实图形在内的所有 PC 上可用的图形。 比单纯的文字和图片传达更多的信息。
系统描述
模型为一大型分捡系统(如图 1、图 2)。在如下的系统中,四种不同的货物 沿一条传送带被分别送至不同的操作台,经检验打包后被操作员送至不同的货 架;检验不合格的货物由另一条传送带送往检修站。
为验证延长系统模拟运行时间后,处理器的相关数据会有对应改变,故调整 模型模拟运行时间为一个月(设定一个月 30 天,每天 8 小时工作制,即仿真结 束时间为 240000)。多次运行后得到处理器的 idle 数据分别为为:77.1%、59.0%、 83.2%、48.9%。与前变化不大,说明延长系统仿真时间,不能从根本上提高处理 器的工作效率。
从上述表格可以看出:操作员的 idle 的百分比在不同的仿真时间下大致相 同。由此可以看出,延长仿真时间不能有效地提高操作员的工作效率。为了提高 其工作效率应对操作员自身和生成器发生频率进行调整。
综合处理器和操作员的数据分析,可以得出:模型的仿真时间在一定程度上 影响数据的准确性(只仅限于仿真时间较短的情况),当仿真时间足够长时,各数 据改变不大呈波动趋势。联系此次模型实验,为了提高处理器和操作员的工作效 率,重点在于改变各实体的参数,例如增大生成器的货物生成频率、减少操作器 的加工时间、增大操作员的最大速度等。当然,在改变参数时要综合考虑整体运 行情况,当某一步骤速度明显提升,但后续加工速度跟不上时,依旧不能有效地 提升模型整体效率,甚至会出现严重瓶颈。
1
2.选定案例描述及参数设置
2
2.1 案例描述
2
2.2 实体参数设置
3
2.3 建成模型预览
6
3.模型运行分析
8
3.1 处理器运行分析
9
3.2 操作员运行分析
10
4.改进模型描述及参数设置
11
4.1 实体参数设置
12
4.2 建成模型预览
13
5.改进后模型运行分析
14
5.1 运输机运行分析
14
6.模型总结
为验证上述所说,特改变操作员的最大速度(不超出生成器生成速度)后, 得出下图 23 的数据:
Flexsim State Report
Object
操作员 90 操作员 92 操作员 93 操作员 94
idle
91.08% 90.71% 90.89% 93.22%
模拟运行时
8 小时
24 小时
一个月(240 小时)
间
处理器编号 吞吐量 容量均值 吞吐量 容量均值 吞吐量 容量均值
处理器 9 18.000 0.193 64.000 0.232 616.000
0.229
处理器 10 38.000 0.452 133.000 0.417 1201.000 0.441
物流仿真软件实训与应用报告
题目
自动分拣系统仿真应用
系 别:
专 业: 班 级: 学生姓名: 学 号: 指导教师:
经济管理学院
物流管理 T1053-12 田晓萌 20100531232 殷旅江 付雅琴
湖北汽车工业学院 经济管理学院物流管理教研室
目录
1.总论
1
1.1 对于 flexsim பைடு நூலகம்件的认知
1
1.2 flexsim 软件的功能特点
处理器 11 26.000 0.293 43.000 0.151 470.000
0.165
处理器 12 54.000 0.536 143.000 0.444 1638.000 0.505
图 21
从上表还能得出该分拣模型的货物流量。 对模拟运行时间为一个月(240 小时)的数据进行分析,该系统一天(8 小 时)的总货物流量约为 130.833((616.000+1201.000+470.000+1638.000)/30)。 按照目前的配置,该系统的理论最大日流量为 2544。计算方式如下: 1.根据发生器发生频率分别得到日产最大值 发生器 1 :货物到达频率为 normal(400,50)秒,取最快到达频率值带入计算, 得 8*60*60/50=576。发生器 2、3、4 分别计算得到日产最大值为 720、288、960 2.计算系统日最大流量 把四个生成器的日最大流量相加,得到系统日最大流量 576+720+288+960=2544 当然,该系统能够承受的日最大流量不会达到 2544。因为生成器生成频率 服从正态分布,另外处理器以及操作员的工作效率限制着流通过程。
15
7.实训收获
对 Flexsim 仿真软件的认识
Flexsim 是一个基于 Windows 的,面向对象的仿真环境,用于建立离散事件 流程过程。 Flexsim 应用深层开发对象,这些对象代表着一定的活动和排序过 程。
要应用模板里的某个对象,只需要用鼠标把该对象从库里拖出来放在模型视 窗即可。每一个对象都有一个坐标(x,y,z)速度(x,y,z),旋转以及一个 动态行为(时间)。对象可以创建、删除,而且可以彼此嵌套移动,它们都有自 己的功能或继承来自其他对象的功能。这些对象的参数可以把任何制造业、物料 处理和业务流程快速、轻易、高效的描述出来。Flexsim 是工程师、管理者和 决策人对提出的“关于操作、流程、动态系统的方案”进行试验、评估、 视觉化的有效工具。
图7
其它三种颜色设置只需改变颜色名称即可。
②分拣传送带
模型视图中分拣传送带根据货物品种不同将其推入四个不同的分捡口(传 送带 5、6、7、8)经各自分拣通道到达操作台。
其参数设置如图 8 :
图8
③分拣通道
四条分拣通道(传送带 5、6、7、8)设置为垂直于分拣传送带状态。设置 RZ 参数如图 9:
图9
建成模型预览
Flexsim 模型 2D 视图
Flexsim 模型 3D 视图(1)
Flexsim 模型 3D 视图(2)
模型运行状态及结果分析 ①处理器
调整系统运行时间为 8 小时(仿真结束时间改为 8000.000)后运行。 处理器 9、10、11、12 的数据处理如图 13、图 14、图 15、图 16 :
调整系统运行时间为 24 小时(仿真结束时间改为 24000.000)后运行。 处理器 9、10、11、12 的数据处理如图 17、图 18、图 19、图 20:
图 17 处理器 9 状态图
图 18 处理器 10 状态图
图 19 处理器 11 状态图
图 20 处理器 12 状态图
由上图可以看出,四个处理器的 idle 平均百分比为 68.750%,比系统运行 时间为 8 小时的 idle 平均百分比 85.025%下降了 19.141%。分别对比四个处理器 的 idle 水平发现,系统模拟运行时间延长后,idle 百分比均有所下降。
建模步骤 ①发生器
为生成四种到达频率不同的货物,故设定四类发生器(发生器 1、2、3、4)。
其参数设置见下图 3、图 4、图 5、图 6 。
图3
图4
图5
图6
为区分四种不同的货物,故设定四种货物颜色不同,分别为 red、blue、 green 、orange。
对其对应生成器的参数设置(例)如图 7:
图 11
其它三个处理器的加工时间相同设置。 又满足不同百分比的货物合格率,故在处理器中同时设置,其参数设置 如图 12 :
图 12
注:处理器连接顺序影响“输出”中百分比端口的设置。若先连与不合格
货物传送带(传送带 61),再连与货架,则百分比端口设置应为图
。
若先与货架相连,再与不合格货物传送带相连(传送带 61),则设置为图
对 Flexsim 仿真软件的功能特点认知
1.Flexsim 采用经过高度开发的部件(Object)来建模。 部件的参数是简单、快速、有效地建立生产、物流和商务过程模型的
主要机能。通过部件的参数设置,我们可以对几乎所有的物理现象进行模 型化。 2. Flexsim 可以让建模者使模型构造更具有层次结构。 3. 软件的所有可视窗体都可以向定制的用户公开。
Flexsim 能一次进行多套方案的仿真实验。这些方案能自动进行,其 结果存放在报告、图表里,这样我们可以非常方便地利用丰富的预定义和 自定义的行为指示器,像用处、生产量、研制周期、费用等来分析每一个 情节。同时很容易的把结果输出到象微软的 Word、Excel 等大众应用软件 里。另外,Flexsim 具有强力的商务图表功能,海图(Charts)、饼图、直线 图表和 3D 文书能尽情地表现模型的信息,需要的结果可以随时取得。