超高效液相色谱
超高效液相色谱(Ultra Performance LC )
主讲人:芮雯
ACQUITY UPLC™
超高效液相色谱(Ultra Performance LC™) 是分离科学中的一个全新类别,它借助于 HPLC的理论及原理,涵盖了小颗粒填料、非 常低系统体积及快速检测手段等全新技术,增 加了分析的通量、灵敏度及色谱峰容量。
今天的HPLC
Minutes
恒定柱长时;UPLC™的灵敏度提高1.7倍(170%)! 恒定L/dp时;UPLC™的灵敏度提高三倍(300%)!
0.050 0.040 0.030 AU
0.020 0.010
0.000 0.050 0.040 0.030
5.0 µm
0.020 0.010 0.000 0.00 0.024 0.020
2 d p
填料颗粒尺寸的演变 70年代早期
40µm薄壳非多孔基质上涂布 100~500 psi 1000塔板数/米 1m长色谱柱
10 min
70年代末期 10µm不规则微多孔填料 1000~2500 psi 25,000塔板数/米 3.9×300mm
10 min
从80年代到现在 3.5~5µm球形微多孔填料 1500~4000 psi 50,000~80,000塔板数/米 3.9×300mm
%
5.22 5.43
15.40 22.61 20.51 2.60 0.62 9.39 11.13 13.75
23.86 33.22 32.78 18.21
44.46 45.79 48.06 43.88 34.96 35.89 42.52 36.99 39.51 52.14
56.48 59.42 61.06 61.54 65.85 53.99
HPLC 3.5µm
超高效液相色谱法
• 理论情况下,配备1.7 μm颗粒的UPLC系 统能产生半峰宽小于1秒的检测峰。这给 UPLC检测带来了挑战。首先,检测器必须 具有较高的采样速率,以在检测峰通过时 捕捉足够的数据点,从而对分析物的检测 峰进行准确而可重现的识别(和积分)
• 检测器必须有最小的扩散体积,以确保分 离效率不降低。检测器的光学部件也必须 具有能体现UPLC灵敏度优势的性能指标。 从概念上讲,对于不同的检测技术,UPLC 检测的灵敏度应是HPLC分离灵敏度的2-3 倍(图5)。例如,质谱检测会极大得益于 UPLC的性能特征,使与UPLC相连的质谱仪 的灵敏度至少提高3倍
• 源于更小颗粒的额外效率可带来更多的明 显益处。更短的色谱柱或更高的流速加快 了速度,同时小颗粒也提高了分辨率。对 于任何给定的分离,都可通过调节这些变 量而达到速度和分辨率的最佳组合
该头发的直径约等于12个5 μm的颗粒,33个1.7 μm的颗粒。
• 图4显示出了目前实验室常用的5 μm颗粒与建议 用于UPLC柱的更小的1.7 μm颗粒的明显差异。 目前,非多孔型1.5 μm颗粒已经上市。虽然这类 颗粒效率较高,但它们的缺点是表面积较小。表 面积小会导致载样量小和保留时间短。为了与 HPLC保持相近的保留时间和载样量,UPLC必须 使用多孔型颗粒。
• 在提到“蛋白组学”或“代谢组学”时,与没有“组” 的差别从分析的角度说就是样品量极大,需要在 短时间分析成千上万的样品。UPLC不损失分离 度的高速度优点在里就能充分体现。多生化样品 及天然产物都十分复杂,
Waters UPLC 超高效液相色谱
超高效液相色谱仪 Nexera UHPLC LC-30A
• UPLC需要一种新颖的耐高压多孔型颗粒。填充 床的均匀性也是至关重要的;特别是当较短的色 谱柱用以保持分辨率的稳定,而同时又要达到加 快分离速度的目标时。另一项要求是色谱柱的内 表面必须足够光滑,以便于填充较小颗粒。应重 新设计色谱柱两端的筛板,使之既能留住小颗粒 又能避免堵塞。
超高效液相色谱仪原理
超高效液相色谱仪原理超高效液相色谱仪(Ultra Performance Liquid Chromatography, UPLC)是一种用于物质分离和分析的先进仪器。
其原理基于液相色谱技术,通过快速高效的液相流动和较小的颗粒尺寸,实现了更高的分离效率和分离速度。
超高效液相色谱仪的关键组成部分包括色谱柱、泵、进样器、检测器和数据处理系统。
色谱柱中填充有具有特定亲和性的固定相,溶液在固定相表面上发生吸附和解吸过程,从而实现了不同组分之间的分离。
泵负责将流动相从溶液瓶中吸取并提供足够的压力,使其通过色谱柱。
进样器负责准确地将待测样品注入色谱柱中,以确保分析的准确性和精确性。
检测器是超高效液相色谱仪的关键部分,常用的检测器包括紫外-可见吸收检测器(UV-Vis)、荧光检测器和质谱检测器等。
检测器根据样品的物化性质,对样品进行监测和检测。
数据处理系统通过采集和处理检测器输出的信号,对样品进行定量和定性分析,并生成相应的色谱图和数据报告。
超高效液相色谱仪相比传统的液相色谱仪具有更高的分离能力和灵敏度。
其原理在于使用非常小的色谱柱和颗粒尺寸,以使样品在色谱柱内的交互作用时间更短,从而实现更高的峰分离度和较低的噪声信号。
此外,超高效液相色谱仪还具有分析速度快、分析精度高、样品量要求低等优点。
总之,超高效液相色谱仪是一种基于液相色谱技术的先进仪器,通过利用快速高效的分离和分析过程,实现了对复杂样品的分离和定量分析。
其原理主要基于色谱柱、泵、进样器、检测器和数据处理系统等关键组成部分。
通过提高色谱柱和颗粒尺寸,超高效液相色谱仪能够实现更高的分离效率和精确度,广泛应用于化学、生物、医药等领域的科学研究和实践中。
超高效液相色谱原理
超高效液相色谱原理
超高效液相色谱(Ultra-High Performance Liquid Chromatography, UHPLC)是一种高效的液相色谱分析技术。
超高效液相色谱的原理是利用特殊的色谱柱和高压泵进行分离,使得液相流动速度更快,分离效率更高。
具体原理如下:
1. 色谱柱选择:UHPLC常用的色谱柱粒径一般为1.8-
2.6 μm,相比传统液相色谱的
3.5-5 μm,更小的粒径可以提高色谱分离效率。
2. 高压泵:UHPLC使用高压泵提供高压力驱动液相流动,一
般工作压力可达到6000 psi或更高。
高压使得液相在色谱柱中
流动更快,加快分离过程。
3. 短柱长:UHPLC一般采用较短的色谱柱(通常为1-5 cm),与传统液相色谱相比,短柱可以减少柱内扩散,使得分离效率更高。
4. 快速检测器:UHPLC通常配备高灵敏度的快速检测器,如
紫外-可见光检测器(UV-VIS),质谱检测器等。
快速检测器
可以实时监测样品的测定信号,加快分析速度。
总的来说,UHPLC通过使用特殊的色谱柱、高压泵和快速检
测器等设备,提高了液相流动速度和分离效果,从而实现超高效的液相色谱分析。
超高效液相色谱仪参数
超高效液相色谱仪参数1、工作环境:1.1环境温度摄氏4-40度.1.2环境湿度20-80%.1.3电压230V(-10%,+8%)2、性能指标2.1四元梯度系统2.1.1流速范围:涵盖所列范围0.000l-5.0000ml∕min,步进以0.000lml∕min为增量2.1.2流量精度:≤0.075%2.1.3溶剂数量:>42.1.4最高操作压力:>60MPa2.1.5泵体类型:微体积(柱塞体积≤10μL)双柱塞往复并联泵2.1.6安全机制:高压、低压报警、漏液报警等2.1.7流速准确度:+1.0%2.1.8梯度混合精度:≤0.1%RSD2.1.9溶剂压缩性补偿:可自动,连续进行2.1.10梯度组成范围:0.0-100.0%,0.1%步进2.1.11真空脱气机:N5通道2.1.12物理双泵头:便于维护,独立控制面板:可脱离工作站独立操作2.2样品管理系统2.2.1样品数量:NIoO位L5∕2ml样品瓶2.2.2进样量设定范围:O.lgL~100μL(标准值),可以增加至≥2000uL2.2.3进样方式:全量进样,环路进样2.2.4进样次数:样品1—99次进样2.2.5进样精度:<0.3%RSD2.2.6进样线性:>0.9992.2.7样品污染度:≤0.004%2.2.8控温范围:4-40℃2.2.9控温准确度:±ΓC2.3柱温箱2.3.1温度控制类型:强制空气循环,具有液体及气体传感器2.3.2温度控制范围:室温∙10C~85C2.3.3温度准确度:+ΓC2.3.4可放置色谱柱尺寸及数量:≥100mmx6根;30OmmX3根2.3.5色谱柱最小可用1.7μ粒径2.4二极管阵列检测器2.4.1波长范围:190~800nm2.4.2光源:笊灯和鸨灯2.4.3波长准确度:±1nm2.4.4波长精密度:≤0.1nm2.4.5狭缝宽度1.2nm、8nm2.4.6标准池:光程:10mm,池体积:12pL、耐压:12MPa2.4.7web控制:可进行参数设置,日志管理,消耗品管理2.4.8具有智能峰解卷积、智能动态范围扩展功能2.4.9流通池可温控:25~40℃、步进2.4.10UV截止功能:内置UV截止滤光片(开/关可选)2.4.11IPH值范围1~142.5荧光检测器2.5.1波长范围:200~650nm2.5.2光源:岚灯2.5.3光谱带宽:<20nm2.5.4波长准确度:±2nm2.5.5波长精度:<0.2nm256灵敏度:水拉曼峰S/N8000或以上(暗背景)2.5.7标准池:体积12μL,最大耐压2Mpa,选配半微量池:体积3μL,最大压力2MPa3、色谱软件3.1软件和仪器主机为同一品牌产品3.2可以双向连接(仪器控制和数据采集)本厂的各种泵和检测器(例如:紫外、示差、二极管阵列、蒸发光散射、荧光、质谱)3.3原厂源代码级全中文版3.4标配数据库3.5多级操作界面:操作者可根据需要,选择不同操作界面,适合初学使用、常规实验分析和专家级分析。
高效液相色谱和超高效液相色谱
高效液相色谱和超高效液相色谱高效液相色谱(HighPerformanceLiquidChromatography,HPLC)和超高效液相色谱(Ultra High Performance Liquid Chromatography,UHPLC),是现代分析化学中常用的分离技术。
它们可以对复杂的混合物进行分离和定量分析,广泛应用于药物分析、食品分析、环境分析、生物分析等领域。
本文将从原理、仪器、方法和应用等方面,介绍高效液相色谱和超高效液相色谱的基本知识。
一、原理高效液相色谱和超高效液相色谱的原理基本相同,都是利用样品在流动相中的分配系数差异,通过固定相和流动相的作用,将混合物中的化合物分离出来。
不同的是,超高效液相色谱采用了更小的颗粒固定相,使得流动相可以更快地通过固定相,从而提高了分离效率和分离速度。
在高效液相色谱和超高效液相色谱中,样品首先被注入流动相中,然后通过固定相的柱子。
固定相通常是一种多孔的固体材料,如硅胶、C18等。
样品中的化合物在流动相中的分配系数不同,因此在通过固定相时,会被分离出来。
分离出来的化合物,会在检测器中被检测到,从而实现分离和定量分析。
二、仪器高效液相色谱和超高效液相色谱的仪器基本相同,主要由注射器、流动相泵、柱子、检测器和计算机控制系统等组成。
(一)注射器注射器是将样品引入流动相中的关键部分。
常用的注射器有手动注射器和自动进样器。
手动注射器通常用于小样品量的分析,而自动进样器可以实现高精度、高效率的样品进样。
(二)流动相泵流动相泵是将流动相送入柱子中的装置。
其主要功能是控制流动相的流速和流量,并确保流动相的稳定性。
常用的流动相泵有恒压流量泵和梯度流量泵。
恒压流量泵可以保持恒定的流量,适用于等浓度的流动相。
梯度流量泵可以实现不同浓度的流动相混合,从而实现更好的分离效果。
(三)柱子柱子是高效液相色谱和超高效液相色谱的核心部分,用于固定相的分离。
常用的柱子材料有硅胶、C18、C8等。
waters超高效液相色谱仪操作步骤
第一部分:仪器准备1. 确保waters超高效液相色谱仪处于正常工作状态,检查仪器是否连接电源,是否有故障指示灯显示。
2. 打开色谱仪软件,检查仪器参数设置是否符合实验要求,包括流速、温度、检测波长等。
3. 准备所需的色谱柱、色谱柱连接器、进样器以及其他实验所需的耗材。
第二部分:样品准备1. 准备实验所需的样品,确保样品已经滤过或者处理过以去除杂质。
2. 根据实验要求,将样品溶解在适当的溶剂中,并进行稀释或者稀释。
第三部分:超高效液相色谱仪操作步骤1. 开始操作前,先进行系统平衡。
具体操作步骤为:将色谱柱连接至色谱柱连接器上,然后连接至色谱仪,用洗脱液平衡色谱柱。
2. 设置色谱仪的操作参数,包括流速、温度、检测波长等。
3. 进行样品进样,具体操作步骤为:将进样器连接至色谱仪,将稀释好的样品注入进样器中,设置好进样量。
4. 开始进行实验,监控色谱图谱的变化,记录实验数据。
5. 实验结束后,对色谱柱和色谱仪进行清洗和维护,确保仪器干净、整洁。
第四部分:数据处理和分析1. 对实验获得的数据进行处理和分析,比对标准曲线,计算样品中所含物质的浓度或者纯度。
2. 对实验结果进行统计分析,进行数据呈现,如绘制色谱图谱、制作数据统计图表等。
3. 通过数据处理和分析,得出实验结论,对实验结果进行解释和讨论。
第五部分:实验安全及注意事项1. 在操作过程中,注意个人安全,避免发生化学品溅泼或者接触有害物质。
2. 操作过程中需严格按照实验要求和操作规程进行,如有疑问请及时向实验指导老师或专业人士请教。
3. 实验结束后,及时清理实验台面和仪器设备,妥善存放试剂和耗材。
通过以上步骤的操作,可以保证在使用waters超高效液相色谱仪进行实验时,能够得到准确、可靠的实验结果,为科研工作和学术研究提供有力支持。
第六部分:精密控制与调试1. 在进行实验操作前,要确保色谱仪的各项参数已经精确调试完毕。
这包括流速、温度、压力、检测波长等参数的精准控制。
液相色谱仪、高效液相色谱仪、超高效液相色谱仪的关系
液相色谱仪、高效液相色谱仪、超高效液相色谱仪的关系液相色谱仪、高效液相色谱仪和超高效液相色谱仪之间的关系如下:
1. 高效液相色谱仪(HPLC)是一种将固相和液相结合运用的液相色谱技术。
其基本原理是将试样通过一根固定相注射器注入高压泵,再通过一定的流路进入色谱柱中,由于流动相对固相有较大的亲和力,所以运行过程中,固相和液相间的交换反应将会发生在色谱柱内,这对分离有很大帮助。
高效液相色谱技术主要应用在生化、制药、食品质量检测和环境检测等领域。
2. 超高效液相色谱仪(UPLC)则是在HPLC技术基础上发展而来的一种新型的液相色谱技术。
它在分离效率、分离速度、峰形对称性、响应灵敏度等方面较HPLC 有很大的提升,能够更快地完成复杂样品的分离和检测。
UPLC在制药、食品质量检测和环境检测等领域也有着广泛的应用。
综上所述,超高效液相色谱仪是液相色谱仪的一种,而高效液相色谱仪又是超高效液相色谱仪的一种特殊形式。
色谱分析(中国药科大学)超高效液相色谱(UPLC)
超高效液相色谱(UPLC)超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC)是一种综合了小颗粒填料、非常低系统体积(死体积)及快速检测手段等全新的检测技术。
在全面提升HPLC的速度、灵敏度及分离度的同时,保留其原有的实用性及原理。
基于小颗粒技术的UPLC,并非普通HPLC系统改进而成。
它不但需要耐压、稳定的小颗粒填料(可达1.7µm),而且需要耐压的色谱系统(>15,000psi)、最低交叉污染的快速进样器、快速检测器及优化的系统体积等诸多方面的保障,以充分发挥小颗粒技术优势。
这就需要对系统所有硬件和软件的进行全面创新。
世界第一个商品化UPLC产品是Waters ACQUITY UPLC TM超高效液相色谱系统,它于2004年3月投入市场。
图1:填料技术的沿革1.小颗粒填料改善分离的理论与科学基础液相色谱30年的发展史是颗粒技术的发展史。
颗粒大小的改变直接影响到柱效,从而对分离结果产生直接影响。
由上图可知:随着颗粒度的不断降低,色谱分离度不断提高。
事实上,上述规律的理论基础是著名的Van Deemeter方程。
Van Deemeter方程是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。
Van Deemeter曲线(见图2)预测最佳柱效与相应的流动相流速。
由Van Deemeter方程得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。
还应该注意到1.7 µm颗粒的HETP最小值区域扩大了(见图2),这表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来适当提高流动相的流速(分析速度)。
小颗粒填料为色谱分离带来如此的高柱效和速度优势,使得利用小颗粒技术成为色谱科学家梦寐以求的目标。
然而HPLC系统的设计,一直难于发挥出最小颗粒的优点。
小颗粒技术的运用,不但要求仪器在超出目前限度(6000 psi/ 400 bar)的压力下工作,同时要求仪器系统的死体积要更小,以便不影响梯度性能,而且还要检测器能高速检测出峰宽只有几秒的色谱峰。
超高效液相色谱
重现性不
相上下
UPLC 34次进样分析烷基芳酮混合物保留时间的重现性
UPLC的耐受性
稳定性试验的条件:
从10到90%甲醇的1分钟梯度1000次进样 C 温度:55º 最大压力:8500psi 流速:1.3ml/min.
0.35 0.30 0.25 AU 0.20 0.15 0.10 0.05 0.00 0.00 0.25 0.50 0.75 Minutes 1.00 1.25 1.50 1.75
60% 更快 30% 更灵敏 70% 更高分离度
5.0 µm
15.00
1.7 µm
7.00
在改进获得信息质量的前提下提高分析速度
Ultra Performance LC™
速度、灵敏度与分离度的结合
生产力:每次实验得到更多信息
0.012 0.010 0.008 0.006
0.004 0.002 0.000 -0.002 0.00
如化妆品中违禁品的检测
高分辨串联质谱QTOF micro
灵敏度高(pg-fg级)
和选择性强得到的
质谱谱图数据完整、 品质高。因而,在
天然产物,新药开
发,药代研究和蛋 白质组学领域的定
性、定量分析研究
方面占有重要地位。
从HPLC-MS到UPLC-MS 灵敏度明显提高
4.2 超高效液相色谱的展望
配备了针内进样探头和压力辅助进样技术;
(5)仪器整体系统优化设计:色谱工作站配 备了多种软件平台,实现超高效液相分析方法与 高效液相分析方法的自动转换。
分析速度快
超高 效液 相色 谱的 优点
灵敏度高
分离度好
UPLC的速度提高了!
0.24 1. Thiourea2. 0.046 - 0.088 - toluene 3. propylbenzene - 0.137 4. butylbenzene - 0.182 5. hexylbenzene - 0.360
超高效液相色谱.pptx
4 超高效液相色谱的应用
药物分析 如天然产物中复杂组分的分析
生化分析 如蛋白质、多肽、代谢组学等生化样品
食品分析 如食品中农药残留的检测
环境分析 如水中微囊藻毒素的检测
其他
如化妆品中违禁品的检测
第34页/共37页
高分辨串联质谱QTOF micro
灵敏度高(pg-fg级) 和选择性强得到的 质谱谱图数据完整、 品质高。因而,在 天然产物,新药开 发,药代研究和蛋 白质组学领域的定 性、定量分析研究 方面占有重要地位。
2.2 超高速度
高通量实验室始终要求在单位时 间内提供更多的信息和处理更多 的样品并保证提供高质量的数据。
较小的颗粒能超乎寻常地提高分析速度而不降低分离度。
L N ∝ dp
颗粒度减小后,柱长可以按 比例缩短而保持柱效不变
1
最佳流速∝ ——
dp
颗粒度越小,最佳流速也越 大,进而可以通过提高流速
来进一步加快分离速度
两元溶剂管理:
• 高压混合 • 两元梯度 • 四溶剂选择 • 在线脱气 • 低扩散设计 • UPLC的耐压能力
3.1 超高效液相色谱的C18色谱柱
固定相粒度
直径可达
dp
1.7µm
色谱柱长可
达3-5cm
第21页/共37页
色谱柱颗粒化学
第22页/共37页
色谱柱硬件
第23页/共37页
筛板、柱管和连 接件,可在超过 140MPa压力下 装填,保证色谱 柱高柱效和长寿 命。
第5页/共37页
2.理论基础
在高效液相色谱速率理论中, Van Deemter方程式的简 化表达式:
如果仅考虑固定相的粒度 对 的影响,其简化方程式可表 达为:
超高效液相色谱原理
超高效液相色谱原理:分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。
在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数,凝胶色谱法为渗透参数。
但一般情况可用分配系数来表示。
在条件一定,样品浓度很低时时,K只取决于组分的性质,而与浓度无关。
这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。
因此,只有尽可能减少进样量,使组分在柱内浓度降低,K恒定时,才能获得正常峰。
超高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。
超高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待测物所含有的物质。
高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。
由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。
超高效液相色谱主要类型:1.液液分配色谱分离原理:分配色谱法的原理与液液萃取相同,都是分配定律。
2.液固吸附色谱分离原理:液固色谱是基于各组分吸附能力的差异进行混合物分离的,其固定相是固体吸附剂。
3.键合相色谱分离原理:正键合相色谱分离远离:使用的是极性键和固定性,溶质在此类固定相上的分离机理属于分配色谱。
畜禽中瘦肉精分析瘦肉精是盐酸克伦特罗的俗称,将其添加到饲料中可使动物生长速率、饲料转化率和胴体的瘦肉率提高10%以上,并降低其脂肪含量。
UPLC超高效液相色谱入门指南沃特世
首先,导入采集到的色谱数据;其次,进行基线校正以消除背景干扰;接着,进行峰识 别与积分以确定各色谱峰的保留时间和峰面积;最后,根据标准曲线进行定量分析,得
到各组分的浓度信息。
结果解读与报告生成
结果解读
根据处理后的色谱数据和定量分析结果, 可以解读出样品中各组分的含量和相关信 息。需注意检查数据的合理性和准确性。
妥善处理。
核实实验室是否遵守环保法规 和相关标准,如废水、废气、 噪声等排放是否符合环保要求。
个人防护措施和应急处理能力培训
对实验人员进行个人防护知识培训,包括如何正确佩戴和使用个人防护装备,如防护服、护目镜、手 套等。
提供应急处理能力培训,包括如何应对实验过程中可能出现的突发情况,如化学品泄漏、火灾等。
避免污染和交叉污染措施
使用高质量的试剂和溶剂, 减少杂质和污染物的引入。
对于不同性质的样品,要 采用不同的进样器和色谱 柱,避免交叉污染的发生。
ABCD
定期清洗进样器、色谱柱 和检测器等部件,避免残 留物对后续分析的影响。
在更换样品或溶剂时,要 彻底清洗相关部件,确保 无残留物对后续分析造成 干扰。
生物分析
要点二
食品分析
UPLC可用于生物样品(如血液、尿液等)中生物标志物的检 测和分析。
UPLC可用于食品添加剂、营养成分等的检测和分析。
沃特世UPLC技术特点
高品质色谱柱
先进的仪器设计
沃特世提供多种类型的高品质色谱柱,满足 不同分离需求,确保分析结果的准确性和可 靠性。
沃特世UPLC仪器设计先进,操作简便,具有 高度的稳定性和可靠性,确保长时间运行的 稳定性和准确性。
分离系统
即色谱柱,是实现样品中各组分分离的关 键部分。
超高效液相色谱-质谱联用法
超高效液相色谱-质谱联用法(UHPLC-MS)是一种高分辨率、高灵敏度的分析技术,常用于生物化学、药物研发、环境分析等领域。
UHPLC-MS技术的基本原理是利用超高效液相色谱(UHPLC)分离化合物,然后将分离后的化合物送入质谱仪进行分析。
UHPLC-MS技术具有以下优点:
1. 分离效率高:UHPLC技术采用高效的分离机制,能够在较短时间内分离出复杂混合物中的化合物。
2. 分析灵敏度高:UHPLC-MS技术具有高灵敏度和高选择性,可以检测出低浓度的化合物。
3. 分析速度快:UHPLC-MS技术可以实现快速分析,一般只需要几分钟到几十分钟。
4. 分析范围广:UHPLC-MS技术可以用于分析各种化合物,包括天然产物、药物、环境污染物等。
UHPLC-MS技术的应用范围非常广泛,可以用于药物研发、生物化学、环境分析、食品安全等领域。
在药物研发领域,UHPLC-MS技术可以用于药物代谢产物的鉴定、定量分析、药物相互作用的研究等;在生物化学领域,UHPLC-MS技术可以用于蛋白质组学、代谢组学的研究;在环境分析领域,UHPLC-MS技术可以用于环境污染物的分析、生物标志物的鉴定等。
超高效液相色谱(uplc)
超高效液相色谱(UPLC TM):重新定义液相色谱分离科学的能力随着首次成功地使用小颗粒得到惊人的分离能力而进入了一个新的时空。
这个新的色谱领域,所谓超高效液相色谱(UPLC TM),与传统的HPLC技术相比提供了更高的效率,因而具有更强的分离能力。
作为世界第一个商品化UPLC TM产品的Waters ACQUITY UPLC TM超高效液相色谱系统,利用创新技术进行整体设计,大幅度地改善了液相色谱的分离度、样品通量和灵敏度。
UPLC TM的商品化,是分离科学和技术的巨大进步,液相色谱亦由此进入了全新的时代。
基于1.7 μm小颗粒技术的UPLC TM,与人们熟知的HPLC技术具有相同的分离原理。
不同的是:UPLC TM不仅比传统HPLC具有更高的分离能力,而且结束了人们多年不得不在速度和分离度之间取舍的历史。
使用UPLC TM可以在很宽的线速度、流速和反压下进行高效的分离工作,并获得优异的结果。
小颗粒分离的理论与科学基础图1:填料技术的沿革液相色谱30年的发展史是颗粒技术的发展史。
颗粒度的改变直接影响到柱效,从而对分离结果产品直接影响。
由上图可知:随着颗粒度的不断降低,色谱分离度不断提高。
事实上,上述规律的理论基础是著名的范德米特(van Deemeter)方程――这是全世界所有从事色谱研究的科学家熟知的理论。
由此得到的范德米特(van Deemeter)曲线,亦是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。
该曲线预测最佳柱效与相应的流动相流速。
由曲线得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。
还应该注意到1.7 μm颗粒的HETP最小值区域扩大了,这表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来优化流速(分析速度)。
小颗粒为色谱分离带来如此的高柱效和速度优势,使利用小颗粒技术成为色谱科学家梦寐以求的目标。
然而HPLC系统的设计,一直苦于难于发挥出最小颗粒的优点。
超高效液相色谱仪使用方法说明书
超高效液相色谱仪使用方法说明书1. 引言超高效液相色谱仪(Ultra-high-performance liquid chromatography, UHPLC)是一种高效、快速、高分辨率的分离分析技术。
其在生物医药、环境监测、食品安全等领域具有广泛应用。
本说明书将详细介绍UHPLC的使用方法,以帮助用户正确操作仪器并获得准确可靠的分析结果。
2. 仪器准备在开始使用UHPLC之前,需要进行以下准备工作:2.1 清洁保证仪器干净整洁是使用UHPLC的重要基础。
首先,仔细清洁采样室、进样器以及管道等部件。
其次,使用纯净溶剂清洗流道,确保系统无杂质污染。
最后,检查溶剂瓶和毛细管是否清洁,避免对样品的污染。
2.2 校准校准液和参比物的准备是校准仪器的重要步骤。
根据实验要求选择合适的校准标准品,并按照制定的方法进行准备。
确保校准标准品质量可靠、浓度准确。
3. 仪器操作在进行实验前,请确保已经熟悉了仪器的组成和功能,以便更好地进行操作。
以下将介绍UHPLC的基本操作步骤:3.1 开机与系统稳定将电源插头接入电源插座,并按下开机按钮。
仪器将进行自检,完成后进入待机状态。
待仪器稳定后,方可进行后续操作,开始样品分析。
3.2 样品准备与进样根据实验要求,准备好待分析的样品。
将样品注入进样器,并使用合适的注射装置注入UHPLC系统。
设置进样参数,包括进样体积、进样模式等。
3.3 方法设定根据实验要求,在UHPLC软件中设定分析方法。
设置流速、温度、检测波长等参数,并选择合适的色谱柱。
制定良好的分析方法对结果准确性至关重要。
3.4 开始分析点击软件界面上的“运行”按钮,开始分析过程。
确保实验室条件稳定,以及仪器和软件正常工作。
观察监控仪器的进样、分离、检测过程,及时记录可能影响结果的异常情况。
3.5 数据处理与结果分析实验结束后,通过UHPLC软件进行数据处理。
选择合适的方法进行峰检测、峰识别和数据积分,获取分析结果。
什么是UPLC?和HPLC有什么区别?
什么是UPLC?和HPLC有什么区别?UPLC是一个新兴的领域,今日就跟大家共享一些干货。
UPLC:超高效液相色谱(Ultra Performance Liquid Chromatography)色谱理论认为提高色谱柱的效能(efficiency)就能增加仪器的解析度(resolution),而运用粒径低于2m的小颗粒无疑是增加效能的好方法。
但减小固定相的粒度以增加色谱柱效能始终的色谱仪器科学的瓶颈,由于小颗粒不仅要求系统能承受高于目前极限压力(比如9000psi),需要更小的系统体积(死体积),并且需要能适应可能只有几秒峰宽的高速检测器。
UHPLC:超高效液相色谱(Ultra-High Performance Liquid Chromatography)特点是工作压力超过6000 psi或工作温度超过环境温度的应用。
由于 UHPLC 应用中使用的硬件通常可以承受 9000 psi或更高的系统压力,因此色谱工作人员可以使用由更高级固相(其颗粒远远小于传统的5 m直径硅胶)填充的色谱柱。
采纳颗粒更小的固相不仅可以实现更高的辨别率,同时还能缩短整体分析时间。
HPLC:高效液相色谱(High Performance Liquid Chromatography)又称"高压液相色谱'、"高速液相色谱'等。
高效液相色谱是色谱法的一个重要分支,以液体为流淌相,采纳高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流淌相泵入装有固定相的色谱柱,在柱内各成分被分别后,进入检测器进行检测,从而实现对试样的分析。
该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分别分析技术。
UPLC和HPLC的区分与传统的高效液相色谱(HPLC)相比,UPLC具有高分别度(ultra resolution)、高速度(ultra speed)、高灵敏度(sensitivity)等优势。
色谱分析(中国药科大学) 超高效液相色谱(UPLC)
色谱分析(中国药科大学)超高效液相色谱(UPLC)超高效液相色谱(UPLC)超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC)是一种综合了小颗粒填料、非常低系统体积(死体积)及快速检测手段等全新的检测技术。
在全面提升HPLC的速度、灵敏度及分离度的同时,保留其原有的实用性及原理。
基于小颗粒技术的UPLC,并非普通HPLC系统改进而成。
它不但需要耐压、稳定的小颗粒填料(可达 1.7µm),而且需要耐压的色谱系统(>15,000psi)、最低交叉污染的快速进样器、快速检测器及优化的系统体积等诸多方面的保障,以充分发挥小颗粒技术优势。
这就需要对系统所有硬件和软件的进行全面创新。
世界第一个商品化UPLC产品是Waters ACQUITY UPLC TM超高效液相色谱系统,它于2004年3月投入市场。
图1:填料技术的沿革1.小颗粒填料改善分离的理论与科学基础液相色谱30年的发展史是颗粒技术的发展史。
颗粒大小的改变直接影响到柱效,从而对分离结果产生直接影响。
由上图可知:随着颗粒度的不断降低,色谱分离度不断提高。
事实上,上述规律的理论基础是著名的Van Deemeter方程。
Van Deemeter方程是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。
Van Deemeter曲线(见图2)预测最佳柱效与相应的流动相流速。
由Van Deemeter 方程得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。
还应该注意到1.7 µm颗粒的HETP最小值区域扩大了(见图2),这2表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来适当提高流动相的流速(分析速度)。
小颗粒填料为色谱分离带来如此的高柱效和速度优势,使得利用小颗粒技术成为色谱科学家梦寐以求的目标。
然而HPLC系统的设计,一直难于发挥出最小颗粒的优点。
超高效液相飞行时间质谱原理
超高效液相飞行时间质谱原理
超高效液相飞行时间质谱结合了超高效液相色谱(UHPLC)和飞行时间质谱(TOFMS)两种技术,具有高灵敏度、高分辨率和高分析速度的特点。
其原理如下:
1.超高效液相色谱(UHPLC):UHPLC是一种色谱技术,其利用高压系统和细小粒径的填充物,使得样品在极短的时间内得到分离。
这种高效的分离能力使得待测物质迅速通过色谱柱,并且可以更好地分辨和定量目标分子。
2.飞行时间质谱(TOFMS):TOFMS是一种质谱技术,它利用飞行时间原理测定样品分子离子在电场作用下飞行所需的时间。
由于具有高灵敏度和高分辨率,TOFMS可以精确地确定待测物质的分子质量。
3.联合应用:UHPLC-TOFMS将UHPLC与TOFMS结合,前者提供高效的分离,后者提供高灵敏度的质谱分析。
当样品通过UHPLC分离后,进入TOFMS进行离子化和质谱分析,可以获得高分辨率、高灵敏度的分析结果。
同时,由于其分析速度快,因此适用于高通量的分析需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
色谱泵及控制器
数据处理及控制
色谱柱 检测器
Waters 486
进样器
概念
超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC )是一种综合了小颗粒填料、 非常低系统体积(死体积)及快 速检测手段等全新的检测技术 。在全面提升HPLC的速度、 灵敏度及分离度的同时,保留 其原有的实用性及原理。
2.2中药药品分析
Waters公司合成了1.7 p.m颗粒度的Acquity UPLC填料, 减少了固定相表面残余硅羟基,因而在分析生物碱类样品时, 流动相中只加入酸抑制剂,不需添加有机胺即可使其获得良 好的分离。由于在流动相中避免了有机胺及盐的加入,可以 在一定程度上降低质谱噪音、减少对质谱的污染,且使用的 流速适合与质谱直接联用,无需分流,可以进一步提高检测 灵敏度,为中药分析提供良好的平台。
1.2食品添加剂分析检测中的应用
随着食品品种和添加剂种类的增加、多种添加剂的复配使用, 迫切需要建立多种添加剂同时快速检测的方法。目前,HPLC 技术是食品添加剂检测的最常用方法;而较这一传统方法而言 ,在技术性能上拥有优势的UPLC 得到了更突出的应用。药物Biblioteka 发领域2.1化学药品分析
在针对药物合成的分析方面,UPLC可实现随时快速准确检 测合成过程中的中间体、副产物或降解产物等。
超高效液
相色谱及 其应用
演讲人:孙硕 ppt制作:宋云龙
材料收集:
任苏瑜 石君
环境科学 班第五组
前言
随着科学技术的进步,对液相色谱技术的要求也不断 提高,单从技术角度的改进已经不行。这就需要同时 从科学与技术的角度出发,或者说从理论高度对液相 色谱重新认识。因此,UPLC(超高效液相色谱)概 念得以提出,将HPLC的极限作为自己的起点。
优点
超高分 离度
基于1.7 m小颗粒技术的UPLC 与人们熟知的高效液相色谱技 术,具有相同的分离原理。不 同的是,UPLC不仅比HPLC具 有更高的分离能力,而且结束 了人们多年不得不在速度和分 度之间取舍的历史。使用UPLC 可以在很宽的线速度、流速和 反压下进行高效的分离工作,
并获得优异的结果。
度保持不变。
图4: UPLC与HPLC:速度比较
图5: UPLC美国药典有关物质分析实例
原有HPLC分析需要4个不同的方法、 三根不同的色谱柱,至少需要65分 钟才能完成;UPLC使用了一根色谱 柱、一种简单方法,在1分钟内即可 完成。
超高灵 敏度
由于待测有机物的浓度越来越低 ,使得灵敏度成为很多分析对象 的关键。
其他 领域
农药残 留检测
水质和 环境监
测
......
化妆品 质量控
制
谢谢 观看
UPLC使用小颗粒技术可以得到 更高的柱效从而改善了分离度、 更窄的色谱宽度,即更高的灵敏 度。
图6: HPLC到UPLCTM:灵敏度的改善无需折衷
方法转 换简便
易与质 谱串联
......
应用
食品安 全领域
1.1农药残留物检测领域
农药残留分析属于微量至超微量分析范畴,要求检测仪器有非 常高的灵敏度;同时,由于其具有种类繁多、结构复杂等特点 ,对检测方法的通量和速度也提出了更高的要求。在农残分析 检测中,UPLC与传统的HPLC 相比较,不仅在分离度、灵敏 度和分析速度上得到较大提高,而且很大程度上减少了样品和 试剂的消耗量,具有很好的应用前景。
构造
原理
范德米特(Van Deemeter)方程
HETP=AdP+B/v+CdP2
HETP:理论塔板高度 A:涡流扩散系数
dP:填料粒径 B:分子径向扩散系数 C:传质因子为流动相线 速度
由该方程可得出结论: 颗粒度越小柱效越高;每个颗粒度尺寸有自己的最
佳柱效的流速;更小的颗粒度使最高柱效点向更高流速 (线速度)方向移动,而且有更宽的线速度范围所以降低颗 粒度不但提高柱效,同时也提高速度。
由右图可见: UPLCTM可以大大 提高分离度,同 时色谱峰强度也 得到了提高。
超高速度
较小的颗粒能提高分 析速度而不降低分离 度;且Van Deemter理 论表明柱长缩短会加 快分离速度,而颗粒 度越小,最佳流速也 越大,进而可以通过 提高流速来进一步加
快分离速度。
新一代UPLC系统用1.7 µm颗粒,柱长可以比 用5 µm颗粒时缩短3倍 而保持柱效不变,而 且使分离在高3倍的流 速下进行,结果使分 离过程快了9倍而分离