趣味数学幻方 ppt课件
合集下载
(完整版)趣味数学-幻方
13 14 15 16 第四行和=58 多了24
第 第第 第 一 二三 四 对角线和=34 列 列 列 列 和 和和 和
对角线和=34
=40 =36 =32 =28
少6 少2 多2 多6
根据刚才的情况我们发现对角线上的 4个数和就是幻和,那么就让它们位置都不变。
1 2 34 56 78 9 10 11 12 13 14 15 16
数4个的请让数4它个的们分数4别个的交数换4个的吧!
和 和 和和
=
=
==
34 34 34 34
4个数和= 34
4个数和= 34 1.我先我变是个魔中师心, 点 4个我数可和是= 3有4 魔法的
现在我们来指引 24.个数每数字中你列和2心们的和=点去数334与相字把谁对每和关行相于等
3.数字5和9谁关于 中心点相对
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1 42 7 53 86
9
换位
9 42
三阶幻方有技巧,
3 5 7 3数斜着先排好,
86 1
上下左右要交换, 然后各自归位了!
归位
5:如何填幻方(幻方的构成) 2)三阶幻方构成方法之二 画格辅助 九子斜排 送子回家 清除辅助
1
4
2
7
5
3
8
6
三、四阶幻方
五阶幻方
六阶幻方
3、探究幻方的规律(1):
49 2 35 7 8 16
1、所有行、列、对角线上的数 之和均为15;
2、偶数位于角上,奇数在中间;
3、5位于中心点,相对的两个端 点数和为10。因为9个数之和是45, 所以中间的数的5。
3、探究幻方的规律(2):
优秀课件北师大版七年级数学上册 综合实践奇妙的幻方 课件 (共16张PPT)
四阶幻方 …………
五阶幻方
n阶幻方
29 23 13 12 26
35 28 3 4 5
8
36
六阶幻方
通过人们的研究, 发现幻方种类有许许多多…….
平方幻方
不仅具有一般幻方 的性质,而且它们 (每一行、每一列及 两条对角线上)的平 方和也等于另外的定 值。
不仅具有一般幻方 的性质,而且它们的连 乘积也等于另一个定值。 双重幻方
课前研究成果交流 资料来源:查阅文献、互联网 整理:超越梦想、书山墨海组
传说两千多年前,夏禹治水时, 陕西的洛水河中浮出一只神龟, 龟背上有一张象征吉祥的图案, 人称「洛书」。
他们发现, 这些图案每一列,每一行及对角线, 加起来的数字和都是一样的,
这就是我们现在所称的
。
1 4 9 2 12 8 13
这就是完美幻方。
十诉别情八回怨, 十三云月三重天。 五作别诗十一首,两地相望十六年。
①具有一般幻方的性质。
②每一正方形,每一等腰梯形、每一平行四边 形上的四个角,所含四数之和均为34。 ③每一交叉十字点上,画一个“X”向四边沿伸 使其各有两个数字,那么每组两数之差均相等。
古往今来,对幻方的研究
不仅仅局限在数学或科学领域 在艺术领域也有涉及
• 收集的兴奋感! • 整理的成就感! • 分享的幸福感!
•研究的体验做过才知道奥!!
15 14 6 3 7 2 10 11
4 9 5 16
17
23 4 10 11
24
5 6 12 18
1
7 13 9 25
8
14 20 21 2
15
16 22 3 9
3 8
5 1
7 6
趣味数学幻方PPT课件
49 2 35 7 8 16
4、如何改变幻方:
改变数的位置还有可能满足上述规律吗?
4 92 357 816
8 16 357 492
2 94 753 618
6 18 753 294
上下换 左右换 上下左右换
4、探究改变幻方的规律: 共有8种:
4 92 357 816
83
59 2
618 7 53 2 94
276+951+438= 1665 672+159+834= 1665
2762+9512+438=2 1172421 6722+1592+8342= 1172421
4)每列看成的三位数和 =它逆转之后的三位数。
5)每列看成的三位数的平方和 =它逆转之后的三位数平方和
行也成立
3、探究幻方的规律(3):
百子回归碑是一部 百年澳门简史,可 查阅四百年来澳门 沧桑巨变的重大历 史事件以及有关史 地、人文资料等。
中间两列上部(系十九
世纪):“ 1887 ” 年《中葡条约》正式 签署,从此成为葡人 上百年(距今 100 余 13 年)“永久管理澳 门”的法律依据。又 如中间两列下部(系 二十世纪):“ 49 ” 年中华人民公和国成 立,从此中国人民站 起来了;“ 97 ”年香 港回归祖国。
3接跟5+下a2有3来+3关你=1的们9+有看b+哪看25些幻行和b=, 17
35 5
能哪幻求些和出列=5来或+2吗哪3+?些15对+2角9=线74?
11 23
17
幻a=和74-不(35能+2求3+出3)=来13 ….
19 1b7 a 25 3 但可以表示出来:
4、如何改变幻方:
改变数的位置还有可能满足上述规律吗?
4 92 357 816
8 16 357 492
2 94 753 618
6 18 753 294
上下换 左右换 上下左右换
4、探究改变幻方的规律: 共有8种:
4 92 357 816
83
59 2
618 7 53 2 94
276+951+438= 1665 672+159+834= 1665
2762+9512+438=2 1172421 6722+1592+8342= 1172421
4)每列看成的三位数和 =它逆转之后的三位数。
5)每列看成的三位数的平方和 =它逆转之后的三位数平方和
行也成立
3、探究幻方的规律(3):
百子回归碑是一部 百年澳门简史,可 查阅四百年来澳门 沧桑巨变的重大历 史事件以及有关史 地、人文资料等。
中间两列上部(系十九
世纪):“ 1887 ” 年《中葡条约》正式 签署,从此成为葡人 上百年(距今 100 余 13 年)“永久管理澳 门”的法律依据。又 如中间两列下部(系 二十世纪):“ 49 ” 年中华人民公和国成 立,从此中国人民站 起来了;“ 97 ”年香 港回归祖国。
3接跟5+下a2有3来+3关你=1的们9+有看b+哪看25些幻行和b=, 17
35 5
能哪幻求些和出列=5来或+2吗哪3+?些15对+2角9=线74?
11 23
17
幻a=和74-不(35能+2求3+出3)=来13 ….
19 1b7 a 25 3 但可以表示出来:
小学奥数三阶幻方解归纳PPT课件
492 3 57 816
.
4
提高:
?
a
?
1
2
2a-1 2
a
2a-2 1
.
5
练一练:
完成下列三阶幻方:
3 4 -1
① -2 2 6
5 01
10
②4 8
③
7
12 11 18
.
6
大数学家杨辉的构造方法:
早在公元1275年,宋朝的杨辉就对幻方 进行了系统的研究。他称这种图为“纵 横图”,他提出了一个构造三阶幻方的 秘诀:
( 3,7位
为“一对”,4,6 位为“一对”,)
123456789
返回
.
3
三阶幻方中的规律:
规律3:与中间数对应的上下、左 右、对角两个数字的和=中间 数×2
4 92
三
阶 3 57
幻
方 81 6
规律4:角上的数字=对角相邻 的两数字和的一半
九子斜排,上下对易,
左右相更,四维挺出
.
7
杨辉构造法
.
8
试一试
• 把2、3、4、5、6、7、8、9、10 分别填入三阶方格中,每个数只用一 次,使每一横行、竖列、对角线上三 个数的和都相等.
.
9
生活中的幻方
.
10
小结:
完成三阶幻方的步骤: ①把9个数从小到大排列,找出中位数a,填 在幻方中心 ②求出幻和3a ③先选取“两对”数分别填写在对角线上 ④根据幻和填其它数 ⑤根据定义验证,如不符合,返回步骤③。
.
11
§探索神奇的幻方
三阶幻方初探
.
1
三阶幻方
492 357 816
将1-9九个数学不重复的填入方格中,满足幻 方的定义是如何做到的??
.
4
提高:
?
a
?
1
2
2a-1 2
a
2a-2 1
.
5
练一练:
完成下列三阶幻方:
3 4 -1
① -2 2 6
5 01
10
②4 8
③
7
12 11 18
.
6
大数学家杨辉的构造方法:
早在公元1275年,宋朝的杨辉就对幻方 进行了系统的研究。他称这种图为“纵 横图”,他提出了一个构造三阶幻方的 秘诀:
( 3,7位
为“一对”,4,6 位为“一对”,)
123456789
返回
.
3
三阶幻方中的规律:
规律3:与中间数对应的上下、左 右、对角两个数字的和=中间 数×2
4 92
三
阶 3 57
幻
方 81 6
规律4:角上的数字=对角相邻 的两数字和的一半
九子斜排,上下对易,
左右相更,四维挺出
.
7
杨辉构造法
.
8
试一试
• 把2、3、4、5、6、7、8、9、10 分别填入三阶方格中,每个数只用一 次,使每一横行、竖列、对角线上三 个数的和都相等.
.
9
生活中的幻方
.
10
小结:
完成三阶幻方的步骤: ①把9个数从小到大排列,找出中位数a,填 在幻方中心 ②求出幻和3a ③先选取“两对”数分别填写在对角线上 ④根据幻和填其它数 ⑤根据定义验证,如不符合,返回步骤③。
.
11
§探索神奇的幻方
三阶幻方初探
.
1
三阶幻方
492 357 816
将1-9九个数学不重复的填入方格中,满足幻 方的定义是如何做到的??
北师大版初中数学七年级上册综合与实践探索神奇的幻方PPT优秀课件
不仅具有一般幻方的 性质,而且它们的连乘 积也等于另一个定值。
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
双重幻方
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
六角幻方
任一条直线上的数字之和都等于同一个数。
当德时国的画占家星阿家尔认布为莱四希阶特魔.杜方勒阵可的以著驱作除《忧梅郁伦, 可利所亚以》他(就Me将le这nc个ol魔ia方)(阵意放为入“作忧品郁之”中)。,
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
①以1-16依次作四行排列; ②打两条对角线,被对角线穿过的数字不动; ③其他数字,按对角线的交点为对称中心, 对称对调.
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
古往今来, 很多人在研究幻方,
北 师 大 版 初 中数学 七年级 上册综 合与实 践探索 神奇的 幻方PP T优秀课 件
北 师 大 版 初 中数学 七年级 上册综 合与实 践探索 神奇的 幻方PP T优秀课 件
南宋数学家杨辉,在他著的《续古摘 奇算法》里介绍了这种方法:
① ④② ⑦⑤ ③ ⑧⑥
⑨
①将九个自然数按照从小到大的递增次序斜排; ②把上、下两数对调,左、右两数也对调; ③把中部四数各向外面挺出,幻方就出现了。
趣味数学课件-幻方
神龟背洛书
神龟背洛书
在公元前23世纪,大 禹治水的时侯,在黄 河支流洛水中,有一 天忽然浮现出一个大 乌龟,当时,大禹与 治水士兵正在河 边观
察洛河水情,商议治理黄河大计,遇 到乌龟在河里上下翻腾十分奇怪。只 见此龟行走水面,游来游去,身形庞 大,甲背平圆。近处仔细观看,
甲背上有9种花点的图案, 大禹让士兵们将图案中的 花点记了下来,带回去作 了认真的研究,他惊奇地 发现9种花点数正巧是, 1—9这9个数,各数的位置排列也相 当奇巧,各线上三数之和皆为15, 既均衡又对称,奇偶交替变化之中似 有一种周转运动之妙,大禹受到启发 ,用此原理治理黄河,获得成功。
而在国外,公元130年,希腊人塞翁 才第一次提起幻方。我国不仅拥用 幻方的发明权,而且是对幻方进行 深入研究的国家。公元13世纪的数 学家杨辉已经编制出3-10阶幻方, 记载在他1275年写的《续古摘厅算 法》一书中。在欧洲,直到574年, 德国著名画家丢功才绘制出了完整 的4阶幻方。
一般地, 将1,2,3...n 2填入到一个n n的表格中 使得 , 每行, 列以及两对角线上的 个数字之和相等 称这 n , 样数表为n阶幻方.
26 21 22 7 12 13 111
19 23 27 10 14 18 111
24 25 20 15 16 11 111
84 84 84 138 138 138
六阶幻方填法
35 3 31 8 30 4 111 35 4 1 32 9 28 5 36 111 32 5 6 7 2 33 34 29 111 2 33 26 21 22 17 12 13 111 17 22 19 23 27 10 14 18 111 14 23 24 25 20 15 16 11 111 11 24 111 111 111 111 111 111 111 111
组合数学课件--神奇的幻方
其余的数写成对 1、 2、 3、 4、 5、 6、 7、 8、 9、 10 36、35、34、33、32、31、30、29、28、27
1 9 34 33 32 2 31 6 27 10 30 7 29 8 35 28 3 4 5 36
六阶幻方
1 9 34 33 32 2 6 26 12 13 23 31 10 15 21 20 18 27 30 19 17 16 22 7 29 14 24 25 11 8 35 28 3 4 5 36
偶阶幻方 都可以照这样的方法去填
如;八阶幻方
十阶幻方 十二阶幻方
Strachey法(单偶):
将n阶单偶幻方表示为4m+2阶幻方。将其等分为四分, 成为如下图所示A、B、C、D四个2m+1阶奇数幻方。
AC DB
A用1至2m+1填写成(2m+1)2阶幻方; B用(2m+1)2+1至2*(2m+1)2填写成2m+1阶幻方; C用2*(2m+1)2+1至3*(2m+1)2填写成2m+1阶幻方; D用3*(2m+1)2+1至4*(2m+1)2填写成2m+1阶幻方;
12 25
8 16
9
17 5
13 21
10 18 1 23 6 24 25 19
14 22 2 20
15
四阶幻方构成方法
一字排开 对角不动 上下交换 左右更替
15 14
12 9
8
3 2
5
六阶幻方构成
把1-36中,中间的16个数 (11-26)填到四阶幻方中
26 12 13 23 15 21 20 18 19 17 16 22 14 24 25 11
趣味数学之幻方探秘.ppt
• 15世纪,西方数学家摩索普拉把我国的纵横 图介绍到欧洲,并取名为“魔幻正方形”简 称“幻方”。“幻”含有梦幻、神奇、美妙、 理想的意思。由于幻方有着变幻莫测的性质, 所以幻方一词逐渐为大众所接受。占星家还 将其作为护身符,至今仍有许多印度少女把 “洛书”佩在胸前。
• 下面这个幻方被称为“魔鬼幻方”,因为它 除了每行、每列、每条对角线上四个数的和 相等以外,四个角上,以及任意由四个方格 或九个方格组成的正方形四个角上四个数的 和竟然也都相等, 真是妙不可言!
15 10 3 6
4 5 16 9
14 11 2 7
1 8 13 12
关于幻方
• 幻方,又称纵横图、奇方或方阵、魔阵等。 • 是把1至n2的自然数排列成正方形,使它的
纵横均有n个数,而把每行、每列、还包括 两条对角线的数加起来,它们的和都是相 等的,这个和叫做幻和. • 幻方的幻和等于 n(n2 1)
1
4
2
7
5
3
8
6
9
9
3
7
1
这种方法(阶梯法) 适用于所有的奇阶幻方
16 21
22
1
6
2
11 24 7 20 3
4 12 25 8 16
17 5 13 21 9
10 18 1 14 22
23 6 19 2 15
24
20
25
4 5
10
五阶幻方不止1个
1 23 16 4 21 15 14 7 18 11 24 17 13 9 2 20 8 19 12 6 5 3 10 22 25
4 19 25 15 2 20 10 5 18 12 3 17 13 9 23 14 8 21 16 6 24 11 1 7 22
• 下面这个幻方被称为“魔鬼幻方”,因为它 除了每行、每列、每条对角线上四个数的和 相等以外,四个角上,以及任意由四个方格 或九个方格组成的正方形四个角上四个数的 和竟然也都相等, 真是妙不可言!
15 10 3 6
4 5 16 9
14 11 2 7
1 8 13 12
关于幻方
• 幻方,又称纵横图、奇方或方阵、魔阵等。 • 是把1至n2的自然数排列成正方形,使它的
纵横均有n个数,而把每行、每列、还包括 两条对角线的数加起来,它们的和都是相 等的,这个和叫做幻和. • 幻方的幻和等于 n(n2 1)
1
4
2
7
5
3
8
6
9
9
3
7
1
这种方法(阶梯法) 适用于所有的奇阶幻方
16 21
22
1
6
2
11 24 7 20 3
4 12 25 8 16
17 5 13 21 9
10 18 1 14 22
23 6 19 2 15
24
20
25
4 5
10
五阶幻方不止1个
1 23 16 4 21 15 14 7 18 11 24 17 13 9 2 20 8 19 12 6 5 3 10 22 25
4 19 25 15 2 20 10 5 18 12 3 17 13 9 23 14 8 21 16 6 24 11 1 7 22
探寻神奇的幻方 PPT课件 1 北师大版
9
可以用九宫之义来说明这九个 数字的填法 10 6
3
它与幻和 的关系
第
1
关 4 9 2 3 5 7 8 1 6
8 7
2
理由:幻方中每一个数字都加同一个数,所得 方格仍是幻方.
中级
2
1
7它与幻和 0
的关系
第
2
关 4 9 2 3 5 7 8 1 6
3
-1
5
6
4
理由:幻方中每一个数字都减同一个数,所得 方格仍是幻方.
探究二: 刚才的这个方格就是一个三阶幻方,又叫九宫格。
观察数字之间的关系,你发现了什么?
4 3 8 9 5 1
九宫之义 法以灵龟 二四为肩 六八为足 左三右七 戴九履一 五居中央
2
7 6
数字游戏
规则:
在空格处填上合适的数, 使各行、各列、各对角线上 的所有数字的和相等。
初级
中级
数字游戏
规则:
在空格处填上合适的数, 使各行、各列、各对角线上 的所有数字的和相等。
综合与实践一
数学北师大版七年级上册
探寻神奇的幻方
洛书故事
洛书古称龟书,是阴阳五行术数之源。 公元前三千多年, 有条洛河经常发大水,皇帝夏禹带领百姓去治理洛河,这 时,从水中浮起一只大乌龟,背上有奇特的图案,献给大禹。 大禹依此治水成功,遂划天下为九州。
你们知道龟背上的数字各是多少吗? 你能把它们填到空格里吗?
(4)幻方中每一个数先扩大相同的倍数, 再同时加、减同一个数所得方格仍是幻方.
练习
1、 请你用1,4,7,10, 13,16,19,22,25这九个 数设计一个三阶幻方。
二四为肩 六八为足 左三右七 戴九履一 五居中央
可以用九宫之义来说明这九个 数字的填法 10 6
3
它与幻和 的关系
第
1
关 4 9 2 3 5 7 8 1 6
8 7
2
理由:幻方中每一个数字都加同一个数,所得 方格仍是幻方.
中级
2
1
7它与幻和 0
的关系
第
2
关 4 9 2 3 5 7 8 1 6
3
-1
5
6
4
理由:幻方中每一个数字都减同一个数,所得 方格仍是幻方.
探究二: 刚才的这个方格就是一个三阶幻方,又叫九宫格。
观察数字之间的关系,你发现了什么?
4 3 8 9 5 1
九宫之义 法以灵龟 二四为肩 六八为足 左三右七 戴九履一 五居中央
2
7 6
数字游戏
规则:
在空格处填上合适的数, 使各行、各列、各对角线上 的所有数字的和相等。
初级
中级
数字游戏
规则:
在空格处填上合适的数, 使各行、各列、各对角线上 的所有数字的和相等。
综合与实践一
数学北师大版七年级上册
探寻神奇的幻方
洛书故事
洛书古称龟书,是阴阳五行术数之源。 公元前三千多年, 有条洛河经常发大水,皇帝夏禹带领百姓去治理洛河,这 时,从水中浮起一只大乌龟,背上有奇特的图案,献给大禹。 大禹依此治水成功,遂划天下为九州。
你们知道龟背上的数字各是多少吗? 你能把它们填到空格里吗?
(4)幻方中每一个数先扩大相同的倍数, 再同时加、减同一个数所得方格仍是幻方.
练习
1、 请你用1,4,7,10, 13,16,19,22,25这九个 数设计一个三阶幻方。
二四为肩 六八为足 左三右七 戴九履一 五居中央
《趣味数学幻方》课件
游戏设计中的应用
数字游戏
以幻方为基础设计的数字游戏,如“数独”、“魔方”等, 具有挑战性和趣味性,能够吸引玩家进行思考和探索。
解谜游戏
幻方也可以作为解谜游戏的关卡设计元素,通过设置不同难 度级别的幻方谜题,让玩家在游戏中挑战自己的思维极限。
PART 05
幻方的未来发展
幻方与人工智能的结合
人工智能在幻方领域的应用
利用人工智能算法,可以高效地解决幻方问题,进一步推动幻方的发展。
人工智能在幻方设计中的应用
通过机器学习技术,可以自动生成各种不同类型和规模的幻方,为研究者提供 更多选择。
幻方在数学研究中的价值
幻方在数学理论中的应用
幻方作为一种数学模型,可以用于解决各种数学问题,如矩阵理论、图论等。
幻方在数学教育中的应用
数学公式法
通过数学公式计算出每个 格子的数字,确保每一行 、每一列和对角线的数字 之和相等。
四阶幻方的制作
十六宫格
数学公式法
将1-16的数字填入4x4的十六宫格中 ,使每一行、每一列、两条对角线以 及两条主对角线的数字之和都相等。
通过数学公式计算出每个格子的数字 ,确保每一行、每一列、两条对角线 以及两条主对角线的数字之和相等。
幻方作为一种有趣的数学问题,可以激发学生学习数学的兴趣,提高数学思维能 力。
幻方在科学探索中的应用
幻方在物理学中的应用
在物理学中,幻方可以用于描述量子 力学、统计力学的现象和规律。
幻方在化学中的应用
在化学中,幻方可以用于描述分子结 构和化学反应的过程。
2023-2026
END
THANKS
感谢观看
幻方的种类繁多,其中最经典的幻方是3x3的奇数阶幻方,其原理是利用数字的奇偶 性和对称性来构建。
趣味数学-幻方
泛对角线幻方
将数字按照一定的规律填 充到格子中,使得每条泛 对角线上的数字之和相等。
正交幻方
将数字按照一定的规律填 充到格子中,使得每条正 交线上的数字之和相等。
03 幻方的数学原理
数学基础
代数基础
幻方是在一定规则下,将数字填 入一个正方形网格中,每个数字 代表一个坐标,通过代数运算找
出对应的数字。
04 幻方的应用与拓展
幻方在游戏中的应用
数独
这是一种基于幻方原理的数字游戏,玩家需要将数字1-9填入一个3x3的格子中, 使得每行、每列以及每个3x3的子格中都包含这9个数字。
棋盘游戏
一些棋盘游戏如井字游戏(Tic Tac Toe)和连珠(Gomoku)也可以视为幻方 在游戏中的应用,玩家需要在棋盘上放置棋子,使得满足特定的排列规则。
趣味数学-幻方
目录
• 幻方简介 • 制作幻方的方法 • 幻方的数学原理 • 幻方的应用与拓展 • 趣味数学与幻方
01 幻方简介
幻方的定义
01
幻方是一种将数字、图形或符号 按照特定规则排列在正方形网格 中的数学游戏。
02
幻方要求每一行、每一列以及对 角线上的数字或符号之和都相等 ,或者遵循特定的数学关系。
偶数阶幻方的构造公式
将n阶幻方看作是一个n×n的矩阵,矩 阵中的元素可以用坐标表示,通过代数 运算和矩阵变换,可以得出偶数阶幻方 的构造公式。
幻方的数学证明
奇数阶幻方的。
偶数阶幻方的证明
通过数学归纳法和代数运算,可 以证明偶数阶幻方的构造方法是 正确的。
幻方的历史与起源
幻方最早可以追溯到中国的洛书, 据传为黄帝时期的大臣洛所创。
在中世纪,幻方逐渐传播到欧洲, 成为数学家和哲学家们研究的对
幻方ppt课件
另一种构造奇数阶幻方的方法是利用杨辉三角。将1放在第一 行中间,然后利用杨辉三角的规律,将其它数字填入,同样 保证每个数字都不重复。
偶数阶幻方的构造方法
偶数阶幻方中最常用的是四阶和八阶幻方。四阶幻方的构 造方法是将1放在第一行中间,然后按顺序将其它数字填入 ,每行从左到右填入数字,每列也从左到右填入数字,保 证每个数字都不重复。
单人幻方游戏
九宫格幻方
将1至9的数字填入3x3的九宫格中,使得每行、每 列以及对角线的数字之和都相等。
16格幻方
将数字1至16填入4x4的方格中,使得每行、每列 、两条对角线以及四个角落的数字之和都相等。
25格幻方
将数字1至25填入5x5的方格中,使得每行、每列 、两条对角线以及四个角落的数字之和都相等。
奇数阶幻方
由奇数个数字组成的幻方,通常为3×3、5×5等。这类幻 方构造相对简单,但也有一定的难度。
偶数阶幻方
由偶数个数字组成的幻方,如4×4、6×6等。这类幻方构 造较为复杂,需要遵循一定的规律和技巧。
广义幻方
不仅限于数字,还可以用字母、符号等代替数字,甚至可 以是非线性的矩阵。这类幻方更加灵活多变,具有更广泛 的用途。数学中的规律美 Nhomakorabea规律之美
幻方中的数字按照一定的规律排 列,这种规律美是数学中非常重
要的美学特征之一。
逻辑之美
幻方的构造过程需要遵循一定的 逻辑,这种逻辑美也是数学中非
常重要的美学特征之一。
统一之美
幻方中的数字虽然千变万化,但 都遵循着统一的规律和逻辑,这 种统一美也是数学中非常重要的
美学特征之一。
数学中的逻辑美
多人幻方挑战赛
团队赛
01
多个团队同时进行幻方挑战,以最快完成且符合规则的团队为
偶数阶幻方的构造方法
偶数阶幻方中最常用的是四阶和八阶幻方。四阶幻方的构 造方法是将1放在第一行中间,然后按顺序将其它数字填入 ,每行从左到右填入数字,每列也从左到右填入数字,保 证每个数字都不重复。
单人幻方游戏
九宫格幻方
将1至9的数字填入3x3的九宫格中,使得每行、每 列以及对角线的数字之和都相等。
16格幻方
将数字1至16填入4x4的方格中,使得每行、每列 、两条对角线以及四个角落的数字之和都相等。
25格幻方
将数字1至25填入5x5的方格中,使得每行、每列 、两条对角线以及四个角落的数字之和都相等。
奇数阶幻方
由奇数个数字组成的幻方,通常为3×3、5×5等。这类幻 方构造相对简单,但也有一定的难度。
偶数阶幻方
由偶数个数字组成的幻方,如4×4、6×6等。这类幻方构 造较为复杂,需要遵循一定的规律和技巧。
广义幻方
不仅限于数字,还可以用字母、符号等代替数字,甚至可 以是非线性的矩阵。这类幻方更加灵活多变,具有更广泛 的用途。数学中的规律美 Nhomakorabea规律之美
幻方中的数字按照一定的规律排 列,这种规律美是数学中非常重
要的美学特征之一。
逻辑之美
幻方的构造过程需要遵循一定的 逻辑,这种逻辑美也是数学中非
常重要的美学特征之一。
统一之美
幻方中的数字虽然千变万化,但 都遵循着统一的规律和逻辑,这 种统一美也是数学中非常重要的
美学特征之一。
数学中的逻辑美
多人幻方挑战赛
团队赛
01
多个团队同时进行幻方挑战,以最快完成且符合规则的团队为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原理与步骤:(1 )幻和=34 (2)分析列表
1 2 3 4 第一行和=10 少了24
5 6 7 8 第二行和=26 少了8
9 10 11 12 第三行和=42 多了8
13 14 15 16 第四行和=58 多了24
第 第第 第 一 二三 四 对角线和=34 列 列 列 列 和 和和 和
对角线和=34
21
17 5 13 21 9
22 10 18 1 14 22
23 6 19 2 15
24
20
25
4 5
10
1997年美国佬发射 了两个宇宙飞船, 在飞船上为了向外 星人展示人类的文 明,科学家就选择 了一张四阶幻图--
耆那幻方。
耆那幻方:
是在印度耆那教寺庙门前一块石牌上刻的,是12 -13世纪的产物。它的任何2×2的方块内的4个数 字和也是34。
三阶幻方有技巧,
3 5 7 3数斜着先排好,
86 1
上下左右要交换, 然后各自归位了!
归位
5:如何填幻方(幻方的构成) 2)三阶幻方构成方法之二 画格辅助 九子斜排 送子回家 清除辅助
1
4
2
7
5
3
8
6
9
9
3
7
1
这种方法适用于所有的 奇阶幻方
1
6
2
11 24 7 20 3
16 4 12 25 8 16
1 83
1、利用每一行,每一列,每一条对角线上的 三个数的和相等的特点。
3,如果幻方的和全是15,看谁填得又对又快:
81 6 57 2
83 5
67 2
2、幻方的分类
• 按照纵横各有数字的个数,可以分为: 三阶幻方、 四阶幻方、 五阶幻方、 六阶幻方… …
按照纵横数字数量奇偶的不同,可以分为: 奇阶幻方 偶阶幻方
276+951+438= 1665 672+159+834= 1665
2762+9512+4382= 6722+1592+8342=
4)每列看成的三位数和 =它逆转之后的三位数。
5)每列看成的三位数的平方和 =它逆转之后的三位数平方和
行也成立
3、探究幻方的规律(3):
49 2 35 7 8 16
357+753= 1100 951+159= 1100
每行每列斜着的三个数的和是否都相等,来判断是不是幻方。
2、填幻方:
1)这只龟姐姐背上的有些图案看不清了,你能帮它 找出来吗?
92
4 3
5
7
81 6
1、利用每一行,每一列,每一条对角线上的 三个数的和相等的特点。
4、填幻方: 2)看!又来了一只龟爷爷,背上的图案缺得 更多了,请你帮帮它好吗?
72 9
4 92 357 816
8 16 357 492
2 94 753 618
6 18 753 294
上下换 左右换 上下左右换
4、探究改变幻方的规律: 共有8种:
4 92 357 816
83
59 72
618 7 53 2 94
27 6 951 438
8 16 357 492
6 72 159 834
2 94 753 618
三、四阶幻方
五阶幻方
六阶幻方
3、探究幻方的规律(1):
49 2 35 7 8 16
1、所有行、列、对角线上的数 之和均为15;
2、偶数位于角上,奇数在中间;
3、5位于中心点,相对的两个端 点数和为10。因为9个数之和是45, 所以中间的数的5。
3、探究幻方的规律(2):
49 2 35 7 8 16
探究一
龟背上的这些数填到表格中,你能发现什么?
49 2 35 7 8 16
每一行,每一列,每一条对角线上的三个 数的和,有什么特点?
1、幻方的定义(三阶8+5幻+2=方15 )
49 2
35 7
8 16
49 2 35 7 +8 +1 +6 15 15 15
4+9+2=15 3+5+7=15 8+1+6=15
1、初步认识1〜9的幻方。 2、通过尝试、调整数据,探究幻
方的关系。 3、培养学生对中国古代数学文化
的兴趣。
故事引入:
公元前三千多年,有条洛河经常发大水,皇帝 夏禹带领百姓去治理洛河,这时,从水中浮起一 只大乌龟,背上有奇特的图案。
龟背上的图案是 什么意思呢?
龟背上的图案代表了几个不同的数,人们称它为“书”。
=40 =36 =32 =28
少6 少2 多2 多6
根据刚才的情况我们发现对角线上的 4个数和就是幻和,那么就让它们位置都不变。
1 2 34 56 78 9 10 11 12 13 14 15 16
数4个的请让数4它个的们分数4别个的交数换4个的吧!
和 和 和和
=
=
==
34 34 34 34
4个数和= 34
4 38 753 276
将幻方围绕中心,向右旋转90度一次、二次、三次
向右旋转90度一次、二次、三次后将幻方上下对换。
5:如何编幻方(幻方的构成)
1)三阶幻方构成方法之一
九子斜排 上下对易 左右更替 四维挺出
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1 42 7 53 86
9
换位
9 42
4个数和= 34 1.我先我变是个魔数每数字中你列和2心们的和=点去数334与相字把谁对每和关行相于等
3.数字5和9谁关于 中心点相对
它就是对称交换法
数字依次先排好, 上下中间交叉换,左对右中间交叉换,其他地方不要变
4+5+6=15
每行、每列、对角线上的三个数的和都相等的方格,叫 “幻方”。这个相等的和叫三阶幻方的幻和。
练习1 它们是幻方么?你怎样来判别?
20 2 6 7 15 8 4 3 15
15 8 1 6 15 3 5 7 15
9 1 5 15
4 9 2 15
19 11 15 11 不是
15 15 15 15 是
456+654= 1100 852+258= 11700
6)每列每行每一条对角线上看成的三位数 和它逆转之后的三位数之和相等。
(7)幻和=九个数之和÷3, (8)中间数=幻和÷3. (9)C=(A+B)÷2 (如右图)
49 2 35 7 8 16
4、如何改变幻方:
改变数的位置还有可能满足上述规律吗?
5:如何编幻方(幻方的构成)
四阶幻方构成方法
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
原理与步骤:
1 2 34 567 8 9 10 11 12 13 14 15 16
(1)先算幻和: 幻和=(1+2+…+16)÷4= 34
三阶幻方的幻和可以用9个数的和除以3; 那么四阶幻方的幻和也可以用16个数的和除以4