大学物理化学-01章_气体 ppt课件
合集下载
物理化学 第一章 绪论气体
6. 界面与胶体科学:界面与高分散系统的热力学规 律
物理化学讲课的内容
第一章 气体的pVT关系 第二章 热力学第一定律 第三章 热力学第二定律 第四章 多组分热力学 第五章 相平衡
3-10周 讲课 40 h
第六章 化学平衡 第七章 电化学 第八章 化学动力学 第九章 界面现象与
描述真实气体的 pVT 关系的方法: 1)引入压缩因子Z,修正理想气体状态方程 2)引入 p、V 修正项,修正理想气体状态方程 3)使用经验公式,如维里方程,描述压缩因子Z 它们的共同特点是在低压下均可还原为理想气体状态方程
1. 真实气体的 pVm - p 图及波义尔温度
T > TB
pVm - p曲线都有左图所示三种
c
T4
说明Vm(g) 与Vm(l)之差减小。
l2 l1
l
g2 g1
T3
Tc
TT12gg´´12 g
T = Tc时, l – g 线变为拐点c c:临界点 ;Tc 临界温度; pc 临界压力; Vm,c 临界体积
Vm
临界点处气、液两相摩尔体积及其它性质完全相同,界
面消失气态、液态无法区分,此时:
V p m Tc 0 ,
类型。
pVm
T = TB T < TB
(1) pVm 随 p增加而上升; (2) pVm 随 p增加,开始不变, 然后增加
p 图1.4.1 气体在不同温度下的 pVm-p 图
(3) pVm 随 p增加,先降后升。
T > TB T = TB
对任何气体都有一个特殊温度 -
波义尔温度 TB ,在该温度下,压
(密闭容器)
水
乙醇
苯
t / ºC 20 40 60 80 100 120
物理化学讲课的内容
第一章 气体的pVT关系 第二章 热力学第一定律 第三章 热力学第二定律 第四章 多组分热力学 第五章 相平衡
3-10周 讲课 40 h
第六章 化学平衡 第七章 电化学 第八章 化学动力学 第九章 界面现象与
描述真实气体的 pVT 关系的方法: 1)引入压缩因子Z,修正理想气体状态方程 2)引入 p、V 修正项,修正理想气体状态方程 3)使用经验公式,如维里方程,描述压缩因子Z 它们的共同特点是在低压下均可还原为理想气体状态方程
1. 真实气体的 pVm - p 图及波义尔温度
T > TB
pVm - p曲线都有左图所示三种
c
T4
说明Vm(g) 与Vm(l)之差减小。
l2 l1
l
g2 g1
T3
Tc
TT12gg´´12 g
T = Tc时, l – g 线变为拐点c c:临界点 ;Tc 临界温度; pc 临界压力; Vm,c 临界体积
Vm
临界点处气、液两相摩尔体积及其它性质完全相同,界
面消失气态、液态无法区分,此时:
V p m Tc 0 ,
类型。
pVm
T = TB T < TB
(1) pVm 随 p增加而上升; (2) pVm 随 p增加,开始不变, 然后增加
p 图1.4.1 气体在不同温度下的 pVm-p 图
(3) pVm 随 p增加,先降后升。
T > TB T = TB
对任何气体都有一个特殊温度 -
波义尔温度 TB ,在该温度下,压
(密闭容器)
水
乙醇
苯
t / ºC 20 40 60 80 100 120
物理化学第五版_01章_气体
Maxwell速率分布定律 *Maxwell速率分布函数的推导 分子速率的三个统计平均值——最概然速率、数
学平均速率与根均方速率
Maxwell 速率分布定律 设容器内有N个分子,速率在 v v dv 范围内的分子数为 d N v
则
d Nv Ndv
或
d Nv Nf (v)dv
f (v) 称为分子分布函数,
力却是一个定值,并且是一个宏观可测的物理量。
对于一定量的气体,当温度和体积一定时, 压力具有稳定的数值。 压力p是大量分子集合所产生的总效应,是 统计平均的结果。
压力和温度的统计概念
aa' , bb' 是两个半透膜
aa ' 只允许A分子出入
bb ' 只允许B分子出入
在中间交换能量,直至
双方分子的平均平动能相等
是摩尔气体常数,等于
是热力学温度,单位为 K
T (t /℃ 273.15)K
气体分子动理论的基本公式 气体分子的微观模型 (1)气体是大量分子的集合体 (2)气体分子不停地运动,呈均匀分布状态 (3)气体分子的碰撞是完全弹性的 设在体积为V的容器内,分子总数为N,单位体 积内的分子数为n(n = N/V),每个分子的质量为m。 令:在单位体积中各群的分子数分别是 n1 ,n2 , … 等。则
n1 n2 ni ni n
i
气体分子动理论的基本公式 设其中第
i
群分子的速度为
u i ,它在 x, y, z
轴方向上的分速度为
2 ui 2 ui , x
ui, x , ui, y , ui, z ,则
2 ui , z
2 ui , y
在单位时间内,
在
学平均速率与根均方速率
Maxwell 速率分布定律 设容器内有N个分子,速率在 v v dv 范围内的分子数为 d N v
则
d Nv Ndv
或
d Nv Nf (v)dv
f (v) 称为分子分布函数,
力却是一个定值,并且是一个宏观可测的物理量。
对于一定量的气体,当温度和体积一定时, 压力具有稳定的数值。 压力p是大量分子集合所产生的总效应,是 统计平均的结果。
压力和温度的统计概念
aa' , bb' 是两个半透膜
aa ' 只允许A分子出入
bb ' 只允许B分子出入
在中间交换能量,直至
双方分子的平均平动能相等
是摩尔气体常数,等于
是热力学温度,单位为 K
T (t /℃ 273.15)K
气体分子动理论的基本公式 气体分子的微观模型 (1)气体是大量分子的集合体 (2)气体分子不停地运动,呈均匀分布状态 (3)气体分子的碰撞是完全弹性的 设在体积为V的容器内,分子总数为N,单位体 积内的分子数为n(n = N/V),每个分子的质量为m。 令:在单位体积中各群的分子数分别是 n1 ,n2 , … 等。则
n1 n2 ni ni n
i
气体分子动理论的基本公式 设其中第
i
群分子的速度为
u i ,它在 x, y, z
轴方向上的分速度为
2 ui 2 ui , x
ui, x , ui, y , ui, z ,则
2 ui , z
2 ui , y
在单位时间内,
在
《物理化学第4版》第一章-8 节流过程ppt课件
则:W1= - p1(- V1)= p1V1
W2= - p2(V2) 在压缩和膨胀时体系净功的变化应该是
两个功的代数和。 W=p1V1- p2 V2
W=W1+W2=p1V1-p2V2
即 U2 U1 p1V1 p2V2
移项 U2 p2V2 U1 p1V1
H2=H1
节流过程是等焓过程。 T变而H不变:实际气体的H 不只是T 的函数。
实际气体的焓不仅是温度的函数,还是 压力p的函数,即 H= f(T,p)。
实际气体分子间有相互作用力,使得分子间 的势能对热力学能有贡献,即U=f(T,V)。
等温过程,实际气体的dU、dH不等于零。
3.焦-汤系数
JT
def
dT dp
H
JT 称为焦-汤系数(Joule-
Thomson coefficient),它表示经节流
过程后,气体温度随压力的变化率。
因为节流过程的dp<0 , 所以:
若 J-T<0,则节流后 温度升高?降低?不变? J-T>0, 节流后 温度升高?降低?不变? J-T=0, 节流后 温度升高?降低?不变?
用于制冷设备的实际气体,其J-T>0,例如氨气。
低压低温气体
p ,则T
节流过程(管内有
填充物)
冰
箱
从
外
冰
侧
箱
向
内
环
吸
境
热
放
热
高压高温气体
电冰箱工作原理示意图
T1
Q T2
由环境付出电功
§1-8 实际气体的焓和热力学能
实际气体的热力学能 U=f (T, V)
实际气体的焓
H=f (T, p)
W2= - p2(V2) 在压缩和膨胀时体系净功的变化应该是
两个功的代数和。 W=p1V1- p2 V2
W=W1+W2=p1V1-p2V2
即 U2 U1 p1V1 p2V2
移项 U2 p2V2 U1 p1V1
H2=H1
节流过程是等焓过程。 T变而H不变:实际气体的H 不只是T 的函数。
实际气体的焓不仅是温度的函数,还是 压力p的函数,即 H= f(T,p)。
实际气体分子间有相互作用力,使得分子间 的势能对热力学能有贡献,即U=f(T,V)。
等温过程,实际气体的dU、dH不等于零。
3.焦-汤系数
JT
def
dT dp
H
JT 称为焦-汤系数(Joule-
Thomson coefficient),它表示经节流
过程后,气体温度随压力的变化率。
因为节流过程的dp<0 , 所以:
若 J-T<0,则节流后 温度升高?降低?不变? J-T>0, 节流后 温度升高?降低?不变? J-T=0, 节流后 温度升高?降低?不变?
用于制冷设备的实际气体,其J-T>0,例如氨气。
低压低温气体
p ,则T
节流过程(管内有
填充物)
冰
箱
从
外
冰
侧
箱
向
内
环
吸
境
热
放
热
高压高温气体
电冰箱工作原理示意图
T1
Q T2
由环境付出电功
§1-8 实际气体的焓和热力学能
实际气体的热力学能 U=f (T, V)
实际气体的焓
H=f (T, p)
物理化学 第一章 气 体
pV nRT
或
(1-1) (1-2)
pV
m RT M
其中的R称为摩尔气体常数,其值等于8.314J.K-1.mol-1,与气体种类无关。 理想气体状态方程只有理想气体完全遵守。 理想气体也可以定义为在任何温度、压强下都严格遵守理想气体状态方程的 气体。
实际气体处在温度较高、压力较低即气体十分稀薄时,能较好地符合这个关 系式。
图1.2 混合气体的分体积与总体积示意图
在压力很低的条件下,可得V=VA+VB,即混合气体的总体积等于所
有组分的分体积之和,称为阿马格分体积定律。通式为
V V i
式中 VB——组分B的分体积。 根据理想气体状态方程有
nB VB RT p
(1-5)
n总 V总 RT p
(1-
pV ZnRT
(1-16)
在压力较高或温度较低时,真实气体与理想气体的偏差较 大。定义“压缩因子(Z)”来衡量偏差的大小。
pV Z nRT
Z →
V V nRT / p V理想
等于同温、同压下,相同物质量的真实气体与理想气体的体
积之比。
理想气体的 pV=nRT , Z =1。
对于真实气体,若Z>1,则V> V(理想),即真实气体的体积 大于理想气体的体积,说明真实气体比理想气体难于压缩;
(1-13)
称为截项维里方程,有较大的实用价值。 当压力达到几MPa时(5MPa左右),第三维里系数渐显重要,其近 似截断式为:
Z
pV B C 1 2 RT V V
(1-14)
第四节 对应态原理及普遍化压缩因子图 一.对应态原理 二.压缩因子法 三.普遍化压缩因子图
物理化学课件(天大第五版)-真实气体
。2023PART 06
真实气体在相变过程中的 特性
REPORTING
相变过程的概念
相变过程
物质从一种相态转变为另一种相 态的过程,如气态转变为液态或 固态,液态转变为固态或气态,
固态转变为液态或气态。
相变点
物质发生相变的温度和压力点, 如水的冰点为0°C和1个大气压。
相平衡
在一定的温度和压力下,物质的 不同相态可以共存,形成一个平
REPORTING
真实气体的内能
总结词
真实气体的内能是指气体内部所有分子动能和势能的 总和,与温度、体积和物质的量有关。
详细描述
真实气体的内能是气体热力学状态的重要参数之一,它 反映了气体内部微观粒子所具有的能量。根据热力学的 知识,真实气体的内能与温度、体积和物质的量有关。 当温度升高时,气体分子的平均动能增大,导致内能增 加;而当体积增大时,分子间的平均距离增大,势能增 大,也会导致内能增加。物质的量越大,气体的内能也 越大。因此,在等温、等压条件下,真实气体的内能随 物质的量增加而增加。
反应速率
物质在相变过程中反应速率的快 慢,表示物质化学反应速度的变 化。
2023
REPORTING
THANKS
感谢观看
衡状态。
相变过程中的热力学性质
热容
在相变过程中,物质吸收或释放热量时温度的变 化,表示物质热稳定性的变化。
熵
物质在相变过程中熵的变化,表示物质内部无序 度的变化。
焓
物质在相变过程中焓的变化,表示物质能量的变 化。
相变过程中的动力学性质
扩散系数
物质在相变过程中扩散系数的变 化,表示物质传递速度的变化。
无序程度增加,因此气体的熵也随物质的量增加而增加。
真实气体在相变过程中的 特性
REPORTING
相变过程的概念
相变过程
物质从一种相态转变为另一种相 态的过程,如气态转变为液态或 固态,液态转变为固态或气态,
固态转变为液态或气态。
相变点
物质发生相变的温度和压力点, 如水的冰点为0°C和1个大气压。
相平衡
在一定的温度和压力下,物质的 不同相态可以共存,形成一个平
REPORTING
真实气体的内能
总结词
真实气体的内能是指气体内部所有分子动能和势能的 总和,与温度、体积和物质的量有关。
详细描述
真实气体的内能是气体热力学状态的重要参数之一,它 反映了气体内部微观粒子所具有的能量。根据热力学的 知识,真实气体的内能与温度、体积和物质的量有关。 当温度升高时,气体分子的平均动能增大,导致内能增 加;而当体积增大时,分子间的平均距离增大,势能增 大,也会导致内能增加。物质的量越大,气体的内能也 越大。因此,在等温、等压条件下,真实气体的内能随 物质的量增加而增加。
反应速率
物质在相变过程中反应速率的快 慢,表示物质化学反应速度的变 化。
2023
REPORTING
THANKS
感谢观看
衡状态。
相变过程中的热力学性质
热容
在相变过程中,物质吸收或释放热量时温度的变 化,表示物质热稳定性的变化。
熵
物质在相变过程中熵的变化,表示物质内部无序 度的变化。
焓
物质在相变过程中焓的变化,表示物质能量的变 化。
相变过程中的动力学性质
扩散系数
物质在相变过程中扩散系数的变 化,表示物质传递速度的变化。
无序程度增加,因此气体的熵也随物质的量增加而增加。
《物理化学1气体》课件
04 气体反应动力学 与速率方程
气体反应速率的概念
反应速率
单位时间内反应物浓度减 少或产物浓度增加的量。
反应速率常数
反应速率与反应物浓度的 乘积,表示反应速率与浓 度的关系。
活化能
反应速率与温度的关系, 表示反应所需的最低能量 。
速率方程的建立与求解
质量作用定律
反应速率与反应物浓度的幂次方 成正比。
《物理化学1气体》ppt课 件
目 录
• 气体的基本性质 • 气体定律与热力学基础 • 气体混合物与分压定律 • 气体反应动力学与速率方程 • 气体化学反应平衡常数与计算
01 气体的基本性质
气体的定义与分类
总结词
气体的定义、分类及特性
详细描述
气体是物质的一种聚集状态,具有无固定形状和体积、流动性强等特性。根据气 体分子间相互作用力的不同,气体可分为理想气体和实际气体。理想气体忽略了 气体分子间的相互作用力,而实际气体则考虑了这种相互作用力。
理想气体定律
理想气体假设
理想气体状态方程,即PV=nRT,其 中P表示压强,V表示体积,n表示摩 尔数,R表示气体常数,T表示温度。
理想气体是一种假设的气体模型,其 分子之间没有相互作用力,分子本身 的体积可以忽略不计。
理想气体状态方程的应用
用于计算气体的压力、体积、温度等 物理量之间的关系,以及气体的热力 学性质。
热力学第一定律
热力学第一定律
01不
能消失,只能从一种形式转化为另一种形式。
内能和热量
02
内能是系统内部能量的总和,热量是系统与外界交换能量的量
度。
热力学第一定律的应用
03
用于计算系统的内能、热量、功等物理量之间的关系,以及系
物理化学 -气体
因为物理量 n 中已包含单位 mol,T 中已包含单位 K了。
正确的表述应为:“物质的量为n”, “ 热力学温度为T ”
。2.对于复杂运算,一般不列出每一个物理量的 单位,而直接给出最后单位。
Vm
RT p
8.315 (273 .15 25) 100 10 3
m3 mol 1 24.79dm3 mol 1
1.2074 0.03575
- 0.03564
2021/1/24
§0.4 物理量的表示及运算
1. 物理量的表示
y [y]
y
2021/1/24
x /[ x]
•示意图 x
§0.4 物理量的表示及运算
2.对数中的物理量
• ln x、ex中的 x 为无量纲的纯数
•因为 x 原为有量纲的物理量 → dx/x 无量纲 →dx/x = dlnx 无量纲→d(x /[x] d ln( x /[x]
2021/1/24
§0.4 物理量的表示及运算
注意
3.在图中表示函数关系均是数值关系,运算时即 使用数值方程。
[例如]
应用
ln
p
vap H m R
1 T
C
作 ln
P [P]
T
1 /[T ]
图,
由直线求 vapH m 时,即应用数值方程:
ln p vapH m / J mol 1 1 C
欢 迎 走 进《 物 理 化 学 》
2021/1/24
绪论
何谓物理化学(Physical chemistry)?
物理化学 是从物质的物理现象与化学现象的联系入手,
探求化学变化基本规律的一门学科。 “用物理的理论、物理的实验手段”,探求化 学变化基本规律的一门学科。
正确的表述应为:“物质的量为n”, “ 热力学温度为T ”
。2.对于复杂运算,一般不列出每一个物理量的 单位,而直接给出最后单位。
Vm
RT p
8.315 (273 .15 25) 100 10 3
m3 mol 1 24.79dm3 mol 1
1.2074 0.03575
- 0.03564
2021/1/24
§0.4 物理量的表示及运算
1. 物理量的表示
y [y]
y
2021/1/24
x /[ x]
•示意图 x
§0.4 物理量的表示及运算
2.对数中的物理量
• ln x、ex中的 x 为无量纲的纯数
•因为 x 原为有量纲的物理量 → dx/x 无量纲 →dx/x = dlnx 无量纲→d(x /[x] d ln( x /[x]
2021/1/24
§0.4 物理量的表示及运算
注意
3.在图中表示函数关系均是数值关系,运算时即 使用数值方程。
[例如]
应用
ln
p
vap H m R
1 T
C
作 ln
P [P]
T
1 /[T ]
图,
由直线求 vapH m 时,即应用数值方程:
ln p vapH m / J mol 1 1 C
欢 迎 走 进《 物 理 化 学 》
2021/1/24
绪论
何谓物理化学(Physical chemistry)?
物理化学 是从物质的物理现象与化学现象的联系入手,
探求化学变化基本规律的一门学科。 “用物理的理论、物理的实验手段”,探求化 学变化基本规律的一门学科。
物理化学01气体
,
§1-1 理想气体的状态方程
气体理论的三位奠基者:
• 玻义尔 (1627 — 1691) Born in Ireland
00-7-22
•盖· 吕萨克 (1778 — 1850) Frenchman
• 阿伏加德罗 (1776 —1856) an Italian
3
1. 理想气体状态方程
波义尔定律 pV = 常数 (n, T 恒定)
pV (实际) nRT
Z def pV pVm (实) Vm (实) nRT RT Vm (理)
压缩因子Z:
Z 的大小描述了实际气体的关系偏离理想行为的情况:
Z 1, 理想气体; Z 1, Vm (实) Vm (理), 易压缩实际气体;
00-7-22
Z 1, Vm (实) Vm (理), 难压缩实际气体.
13
0.0323 y( Ar) 0.0094 3.452 2.694 y( N 2 ) 0.7804 3.452
00-7-22
(2)各组分气体的分压为
p( N 2 ) y( N 2 ) p 0.7804101.3 79.05kPa
p(O2 ) y(O2 ) p 0.2099101.3 21.26kPa
VB / V nB / n yB
而对非理想气体, 此二式不能成立. 应注意分压力和分体积的定义上的不同.
00-7-22 12
例:若有一空气样品,组成(质量%)如下:N275.47%,O223.19%, Ar1.29%,CO20.05%。(1)试用体积分数表示此空气的组成;(2) 计算25℃及101.325kPa下,此空气各组分气体的分压。设空气可看成理 想气体的混合物。 解:(1)体积分数即各气体的摩尔分数。设有100g空气,则
物化课件
返回
13:24:58
上一内容
下一内容
回主目录
实际气体的液化
270K时CO2相变过程
p=3.204MPa
峭, , 由 如 上在 体 于 果 升等 积 液 继 的温 仅 体 续 线线 有 压 增 段上 微 缩 加 。出 小 性 压 现改很力 陡变小,
上一内容 下一内容
气 体 全 部 凝 结 为 液 体
以上三式结合 理想气体状态方程
pV = nRT
单位:p Pa V m3
TK
n mol R J mol-1 K-1
摩尔气体常数:R = 8.314510 J mol-1 K-1
上一内容 下一内容 回主目录
返回
13:24:58
理想气体状态方程
理想气体状态方程也可表示为: pVm=RT pV = (m/M)RT 以此可相互计算 p, V, T, n, m, M, (= m/ V)
l’1 l’2 T1<T2<Tc<T3<T4
p / [Pa]
1) T < Tc 气相线 g1g’1: p , Vm 气-液平衡线 g1l1 : 加压,p*不变, gl, Vm g1: 饱和蒸气摩尔体积Vm(g) l1: 饱和液体摩尔体积Vm(l)
g’2 g’1ຫໍສະໝຸດ C l2 l1T4
T3 g2 g1 Tc
2) 质量分数wi
wi
def
mi / mi
(单位为1)
wi = 1
上一内容 下一内容 回主目录
返回
13:24:58
理想混合气体状态方程
2. 理想气体方程对理想气体混合物的应用 因理想气体分子间没有相互作用,分子本身 又不占体积,所以理想气体的 pVT 性质与气体的 种类无关,因而一种理想气体的部分分子被另一 种理想气体分子置换,形成的混合理想气体,其 pVT 性质并不改变,只是理想气体状态方程中的 n 此时为总的物质的量。
13:24:58
上一内容
下一内容
回主目录
实际气体的液化
270K时CO2相变过程
p=3.204MPa
峭, , 由 如 上在 体 于 果 升等 积 液 继 的温 仅 体 续 线线 有 压 增 段上 微 缩 加 。出 小 性 压 现改很力 陡变小,
上一内容 下一内容
气 体 全 部 凝 结 为 液 体
以上三式结合 理想气体状态方程
pV = nRT
单位:p Pa V m3
TK
n mol R J mol-1 K-1
摩尔气体常数:R = 8.314510 J mol-1 K-1
上一内容 下一内容 回主目录
返回
13:24:58
理想气体状态方程
理想气体状态方程也可表示为: pVm=RT pV = (m/M)RT 以此可相互计算 p, V, T, n, m, M, (= m/ V)
l’1 l’2 T1<T2<Tc<T3<T4
p / [Pa]
1) T < Tc 气相线 g1g’1: p , Vm 气-液平衡线 g1l1 : 加压,p*不变, gl, Vm g1: 饱和蒸气摩尔体积Vm(g) l1: 饱和液体摩尔体积Vm(l)
g’2 g’1ຫໍສະໝຸດ C l2 l1T4
T3 g2 g1 Tc
2) 质量分数wi
wi
def
mi / mi
(单位为1)
wi = 1
上一内容 下一内容 回主目录
返回
13:24:58
理想混合气体状态方程
2. 理想气体方程对理想气体混合物的应用 因理想气体分子间没有相互作用,分子本身 又不占体积,所以理想气体的 pVT 性质与气体的 种类无关,因而一种理想气体的部分分子被另一 种理想气体分子置换,形成的混合理想气体,其 pVT 性质并不改变,只是理想气体状态方程中的 n 此时为总的物质的量。
物理化学(傅献彩著) 01章 气体
令:
p pc
Vm , Vm ,c
,
T Tc
(
3
2
)(3 1) 8
Law of corresponding state
对比状态定律(Law of corresponding state)
( 3
2
)(3 1) 8
当组成、结构、分子大小相近的物质处于对比状态时,其 许多性质(包括压缩性、膨胀系数、逸度系数、黏度、折射率
l’1 l’2
T1<T2<Tc<T3<T4
p/[p]
C l2 l1 g2 g1
T4
在临界点c:
T3 Tc Tc 2 p 0 2 Vm Tc
g ’1
Vm /[Vm]
pVT 图
由van der Waals方程式求临界常数
pVm pV Z nRT RT
Z 压缩因子 (Compressibility factor)
几种典型的 Z p 曲线
300 K
N2
He CH4
T1
5 0 0 0 4 5 0 0 2.0 4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 1.0 2 0 0 0 1 5 0 0 1 0 0 0
T, V, p 构成的三维空间
ABCD曲面是根据 pV = nRT绘制的。 AD、BC为等温线(isotherms)
B
AB为等压线(isobars) CD为等容线(isochores)
p
A
C
T
D
曲面上: 任一点代表一个状态 每条线代表一个过程
V
理想气体的状态图 (相图 phase diagram)
p pc
Vm , Vm ,c
,
T Tc
(
3
2
)(3 1) 8
Law of corresponding state
对比状态定律(Law of corresponding state)
( 3
2
)(3 1) 8
当组成、结构、分子大小相近的物质处于对比状态时,其 许多性质(包括压缩性、膨胀系数、逸度系数、黏度、折射率
l’1 l’2
T1<T2<Tc<T3<T4
p/[p]
C l2 l1 g2 g1
T4
在临界点c:
T3 Tc Tc 2 p 0 2 Vm Tc
g ’1
Vm /[Vm]
pVT 图
由van der Waals方程式求临界常数
pVm pV Z nRT RT
Z 压缩因子 (Compressibility factor)
几种典型的 Z p 曲线
300 K
N2
He CH4
T1
5 0 0 0 4 5 0 0 2.0 4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 1.0 2 0 0 0 1 5 0 0 1 0 0 0
T, V, p 构成的三维空间
ABCD曲面是根据 pV = nRT绘制的。 AD、BC为等温线(isotherms)
B
AB为等压线(isobars) CD为等容线(isochores)
p
A
C
T
D
曲面上: 任一点代表一个状态 每条线代表一个过程
V
理想气体的状态图 (相图 phase diagram)
物理化学课件分压定律和分体积定律.
一般情况下,范氏方程只能满足几十标准压力 下气体的PVT性质的描述。
2023/11/10
压缩因子法
由Z的定义式可知, pV=ZnRT
维里方程
pVm=RT(1+B/Vm+C/Vm2+D/Vm3+•••)
气体的液化与液体的饱和蒸汽压
实际气体分子间存在吸引力, 从而能发生一种理 想气体不可能发生的变化——液化.气体的液化一般 需要降温和加压. 降温可减小分子热运动产生的离 散倾向, 加压则可以缩小分子间距从而增大分子间 引力.
值.
00-7-22
20
普遍化压缩因子图
将对比状态参数的表达式引入压缩因子 Z 的定义中, 得
def Z
pVm RT
pCVC prVr RTC Tr
ZC
pr Vr Tr
式中右方第一项为临界点处的压缩因子ZC, 实验 表明多数实际气体的 ZC 在 0.270.29 的范围内(参
阅表1-2), 可看作常数;根据对应状态原理,在Tr和pr 一定时, pr也一定,因而,压缩因子Z近似为一定值,即 处于对比状态的各种气体具有相同的压缩因子,它是
分压力:混合气体中某一组分B的分压力pB是该
组份单独存在并具有与混合气体相同温度和体积
时所具有的压力。
注: 总压是构成该混合物的各组分对压力所做的贡 献之和; 气体混合物中每一种气体叫做组分气体。
yB = 1
p = pB
混合理想气体:
pB (nA nB
B
nC
) RT V
B
nB
Tr和pr的一个双变量函数.
00-7-22
21
VB yBV
y B=1
V 混合气体总体积, yB 组分B的物质的量分数
2023/11/10
压缩因子法
由Z的定义式可知, pV=ZnRT
维里方程
pVm=RT(1+B/Vm+C/Vm2+D/Vm3+•••)
气体的液化与液体的饱和蒸汽压
实际气体分子间存在吸引力, 从而能发生一种理 想气体不可能发生的变化——液化.气体的液化一般 需要降温和加压. 降温可减小分子热运动产生的离 散倾向, 加压则可以缩小分子间距从而增大分子间 引力.
值.
00-7-22
20
普遍化压缩因子图
将对比状态参数的表达式引入压缩因子 Z 的定义中, 得
def Z
pVm RT
pCVC prVr RTC Tr
ZC
pr Vr Tr
式中右方第一项为临界点处的压缩因子ZC, 实验 表明多数实际气体的 ZC 在 0.270.29 的范围内(参
阅表1-2), 可看作常数;根据对应状态原理,在Tr和pr 一定时, pr也一定,因而,压缩因子Z近似为一定值,即 处于对比状态的各种气体具有相同的压缩因子,它是
分压力:混合气体中某一组分B的分压力pB是该
组份单独存在并具有与混合气体相同温度和体积
时所具有的压力。
注: 总压是构成该混合物的各组分对压力所做的贡 献之和; 气体混合物中每一种气体叫做组分气体。
yB = 1
p = pB
混合理想气体:
pB (nA nB
B
nC
) RT V
B
nB
Tr和pr的一个双变量函数.
00-7-22
21
VB yBV
y B=1
V 混合气体总体积, yB 组分B的物质的量分数
物理化学 第一章 气体
O2 UV O + O
反应活性很高的O原子与O2结合形成O3: O+O2+M O3+M 臭氧自身吸收200nm~300nm的uv,而发生
分解:
O3 UV O+O2
在 STP 条 件 下 , 臭 氧 层 厚 度 仅 仅 有 3mm。本世纪七十年代中期科学家们已 关切到某些氟氯烃对臭氧层的有害影响 使用中的氟氯烃最终大多逃逸到大气中 ,然后扩散到平流层中,在175~220nm 波长的uv辐射下引起分解:
理想气体状态方程的应用
• 计算p、V、T、n中的任意物理量,
应用于低压、高温下的真实气体。 • 气体摩尔质量的计算。 • 气体密度的计算。
例:丁烷C4H10是一种易液化的气体燃 料,计算在23℃,90.6KPa下,丁烷 气体的密度。
pV=nRT= mRT/M
=m/V
=
pM RT
=2.14g·L-1
第一章 气体
气体的基本物理特性:扩散性和可压缩性。 表现为: (1)气体没有固定的体积和形状。 (2)气体是最易被压缩的一种聚集状态。 (3)不同种气体能以任意比例相互均匀混合。 (4)气体的密度比液体和固体的密度小很多。
• 1.1 理想气体状态方程 • 1.2 气体混合物 • 1.3 气体分子运动论 • 1.4 真实气体 • 1.5 大气化学
2NO(g)+O2(g) 2NO2 (g)
波长小于400nm的阳光能引起NO2的 光化学分解:
2NO2 (g)+hv NO(g)+O(g)
O(g)+O2(g)+M O3 (g)+M 继而臭氧与未燃烧的烃和其他有机化 合物反应生成过氧乙酰硝酸脂(PAN) 、醛等二次污染物。一次和二次污染物 随着每时的时间变化而变化。
反应活性很高的O原子与O2结合形成O3: O+O2+M O3+M 臭氧自身吸收200nm~300nm的uv,而发生
分解:
O3 UV O+O2
在 STP 条 件 下 , 臭 氧 层 厚 度 仅 仅 有 3mm。本世纪七十年代中期科学家们已 关切到某些氟氯烃对臭氧层的有害影响 使用中的氟氯烃最终大多逃逸到大气中 ,然后扩散到平流层中,在175~220nm 波长的uv辐射下引起分解:
理想气体状态方程的应用
• 计算p、V、T、n中的任意物理量,
应用于低压、高温下的真实气体。 • 气体摩尔质量的计算。 • 气体密度的计算。
例:丁烷C4H10是一种易液化的气体燃 料,计算在23℃,90.6KPa下,丁烷 气体的密度。
pV=nRT= mRT/M
=m/V
=
pM RT
=2.14g·L-1
第一章 气体
气体的基本物理特性:扩散性和可压缩性。 表现为: (1)气体没有固定的体积和形状。 (2)气体是最易被压缩的一种聚集状态。 (3)不同种气体能以任意比例相互均匀混合。 (4)气体的密度比液体和固体的密度小很多。
• 1.1 理想气体状态方程 • 1.2 气体混合物 • 1.3 气体分子运动论 • 1.4 真实气体 • 1.5 大气化学
2NO(g)+O2(g) 2NO2 (g)
波长小于400nm的阳光能引起NO2的 光化学分解:
2NO2 (g)+hv NO(g)+O(g)
O(g)+O2(g)+M O3 (g)+M 继而臭氧与未燃烧的烃和其他有机化 合物反应生成过氧乙酰硝酸脂(PAN) 、醛等二次污染物。一次和二次污染物 随着每时的时间变化而变化。
物理 化学 第一章 课件
(3) 量的数值
特定单位表示的数值,量与单位的比值。{A}= A/[A]。在图、表中常用到。 如 T/K =300。图中横坐标表示为x/[x], 如 T/K; 纵坐标 y/[y], 如 p/kPa。
20
图1.1.2 300 K下N2, He, CH4的 pVm-p 等温线
21
0.2.2 对数中的物理量 lnA 或 logA
0 绪 论
0.1 课程简介
0.1.1 什么是物理化学
化学:无机化学 有机化学 物理化学 分析化学 (高分子化学)
物理化学是化学的理论基础,是用物理的原理和方法来 研究化学中最基本的规律和理论,所研究的是普遍适用于各 个化学分支的理论问题——理论化学(化学中的哲学)。 研究化学变化中的普遍规律,不管是有机还是无机,化 学变化及相关的物理变化都是物理化学研究的对象。
作业/考题中若有 1 mol, 25℃,常数如π,e,二分之一等..., 约 定有效数字位数为无限多位。
24
第1章 气体的pVT关系
• 物质的聚集状态 气体、液体、固体。
宏观性质:p, V, T,ρ, U…
p, V, T 物理意义明确,易于测量
状态方程 联系 p, V, T 之间关系的方程。
液体和固体,其体积随压力和温度的变化很小,常 忽略不计;气体在改变压力和温度时,其体积会发生较 大变化,通常只讨论气体的状态方程。
物理化学
溶 液 化 学
9
0.1.3 本课程 物理化学B 的主要内容
绪论 气体的 pVT 关系 热力学第一定律 热力学第二定律 多组分系统热力学 化学平衡 相平衡 电化学 界面现象 化学动力学
胶体化学
10
0.1.4 关于本课程
第一章 大学物理化学
3. 范德华方程 (1) 范德华方程 理想气体状态方程 : 实质为: 实质为: ( 分子间无相互作用力时的 气体压力 × ( 1mol 气体压力) 气体分子的自由活动空间 ) = RT PVm=RT
实际气体: 分子间有相互作用力 主要是吸引长程力) 分子间有相互作用力(主要是吸引长程力 实际气体:1.分子间有相互作用力 主要是吸引长程力
例题:管道输送天然气,输送压力为 例题:管道输送天然气,输送压力为200KPa,T= , = 25℃时,管道内的天然气密度是多少?(近似将天 管道内的天然气密度是多少? 近似将天 ℃ 然气视作纯甲烷) 然气视作纯甲烷 解: M 甲烷=1.604×10 -2Kg.mol-1
P 3 −2 200 ×10 × 1.604 ×10 = 8.314 × 298.15
:
解:烃类气体的分压为 PA ,水蒸气分压 PB PB= 3.167KPa , PA= P -PB=101.198KPa
nB ⋅P a) 由公式 P B= yB P = ∑ nB
Hale Waihona Puke 可得nB PB = n A PA
⇒
PB nB = ⋅ nA PA
3.167 B nB = ×1000 mol = 31.30 mol 101.198
分子间相互作用减弱了分子对器壁的碰撞, 分子间相互作用减弱了分子对器壁的碰撞,使气体压力 减小; 减小;可将这种由于分子间相互吸引力对压力的影响理 解为内压力 内压力, 解为内压力,P内 P内=a / Vm2 a > 0 范德华常数 , 单位Pa . m6. mol-2
实际测定压力值 P = P理- P内, P理 = P + P内 = P + a / Vm2
气体
{
物理化学第一章 气体的pVT关系课件
1
22.4第一章 气体的pVT关系
14
物质的聚集状态
气体 液体 固体
V 受 T、p 的影响很大 V 受 T、p的影响较小
联系 p、V、T 之间关系的方程称为状态方程
对于由纯物质组成的均相流体 n 确定: f ( p, V, T ) = 0 n不确定: f ( p, V, T, n ) = 0
即:理想气体混合物的总体积V 等于各组分B在相同温度T及总 压p条件下占有的分体积VB*之和。 阿马加定律
27
阿马加定律表明理想气体混合物的体积具有加和性, 在相同温度、压力下,混合后的总体积等于混合前各组 分的体积之和。
液体混合物的摩尔分数一般用 x 表示
(2) 质量分数wB
w B =de=f m B
mA
A
显然 wB=1
(量纲为1)
22
(3)体积分数 B
B
=de=f
x
BV
* m,B
x
AV
* m,A
V
* B
V
* A
A
A
显然 B=1
(量纲为1)
(V m*,为B 混合前纯物质在一定温度、压力下的摩尔体积)
8
化学热力学、化学动力学、量子力学、统计力学
——构成物理化学的四大基础
上册
第一章 气体的pVT关系
第二章 热力学第一定律 第三章 热力学地二定律 第四章 多组分热力学 第五章 化学平衡 第六章 相平衡
下册 第七章 电化学 第八章 量子力学基础 第九章 统计热力学初步 第十章 界面现象 第十一章 化学动力学 第十二章 胶体化学
p V
nRT
物理化学第一章气体的pVT性质
V VB B
如两种气体混合 V = V*A + V*B
nB RT V p
* B
(3)适用于理想气体混合物,低压下的真实气体混合物;对高压下的混 合气体,需用偏摩尔体积取代摩尔体积。
=======分体积定律是理想气体的必然规律========
11
Physical Chemistry CAI
斥力
A B E E吸引+E排斥= 6 12 r r
对真实气体,通过降低温度和增加压力都
E
引力
E
可使气体的摩尔体积减小,即分子间距减小,
最终导致液化。
r0 r
图1-2 兰纳德-琼斯势能曲线
14
Physical Chemistry CAI
物理化学教学课件
2.真实气体p-Vm等温图
1869年,Andrews T,通过研究n一定的CO2气体的系列实验,采
物理化学教学课件
(3)沸点:
当液体的饱和蒸汽压等于外界压力(pex, External)时,液体开始沸 腾(汽化),此时的温度称为液体的沸点。
习惯上将101.325kPa(标准大气压)下的沸点成为正常沸点。
水(100℃),乙醇(78℃),苯(80℃)
在外压较低 (高原上, pex <101.325kPa)时, 沸点降低(水的沸点 < 100℃),所以在高原上煮鸡蛋不熟。 在外压较高(高压釜中, pex>101.325kPa)时,沸点升高(水的沸点 >100℃),所以用高压锅煮饭易熟。 部分液体的饱和蒸汽压-温度关系表(Page13-table 1-2)。
2. 液、固体的复杂性——液、固体的分子间作用力较大,研究较复杂,甚 至无法研究。 人们常利用气体的一些性质,并加以修正,来处理液、固体行为,亦 能得到令人满意结果。
如两种气体混合 V = V*A + V*B
nB RT V p
* B
(3)适用于理想气体混合物,低压下的真实气体混合物;对高压下的混 合气体,需用偏摩尔体积取代摩尔体积。
=======分体积定律是理想气体的必然规律========
11
Physical Chemistry CAI
斥力
A B E E吸引+E排斥= 6 12 r r
对真实气体,通过降低温度和增加压力都
E
引力
E
可使气体的摩尔体积减小,即分子间距减小,
最终导致液化。
r0 r
图1-2 兰纳德-琼斯势能曲线
14
Physical Chemistry CAI
物理化学教学课件
2.真实气体p-Vm等温图
1869年,Andrews T,通过研究n一定的CO2气体的系列实验,采
物理化学教学课件
(3)沸点:
当液体的饱和蒸汽压等于外界压力(pex, External)时,液体开始沸 腾(汽化),此时的温度称为液体的沸点。
习惯上将101.325kPa(标准大气压)下的沸点成为正常沸点。
水(100℃),乙醇(78℃),苯(80℃)
在外压较低 (高原上, pex <101.325kPa)时, 沸点降低(水的沸点 < 100℃),所以在高原上煮鸡蛋不熟。 在外压较高(高压釜中, pex>101.325kPa)时,沸点升高(水的沸点 >100℃),所以用高压锅煮饭易熟。 部分液体的饱和蒸汽压-温度关系表(Page13-table 1-2)。
2. 液、固体的复杂性——液、固体的分子间作用力较大,研究较复杂,甚 至无法研究。 人们常利用气体的一些性质,并加以修正,来处理液、固体行为,亦 能得到令人满意结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一内容 下一内容 回主态原理
临界压缩因子(critical compression factor )
zc
pcVm,c RTc
物质 He Ar
N2 O2 CO CO2 CH4
zc 0.299 0.291 0.289 0.294 0.288 0.274 0.289
对于大多数物质,用上式计算的zc的值约在0.26~0.29 。
大学物理化学-01章_气体 ppt课件
上一内容 下一内容 回主目录
返回
1-1 理想气体状态方程
1. 理想气体状态方程
pV nRT
上一内容 下一内容 回主目录
返回
2020/12/7
理想气体模型
该方程的另外两种表达方式为: pV=(m/M)RT
M为摩尔质量; m为气体的质量。 2. 理想气体模型 (1)分子之间无相互作用力 (2)分子本身不占有体积
上一内容 下一内容 回主目录
返回
2020/12/7
对应状态原理
2.对应状态原理
Define : Tr= T/Tc reduced temperature pr= p/pc reduced pressure Vr= V/Vc reduced volume
任何气体只要两个对比参数相同,则第三个对比参 数也必然相同,这就是对应状态原理。此时称它们 处于相同的对比状态。
z pVm RT
zc
prVr Tr
这样可以将Z表示为两个对比参数的函数。即 Z=f(pr,Tr)
2. 范德华方程(van der Waals equation) (1)方程的形式
(pVam2)V (mb)RT
a和b称为范德华常数。a/V2m为压力修正项;b
为体积修正项。
上一内容 下一内容 回主目录
返回
2020/12/7
维利方程
(2)范德华常数与临界参数的关系 a=27R2Tc2/64pc; b=RTc/8pc
混合物的摩尔质量定义为: Mmix=∑yBMB=∑mB/∑nB
3.道尔顿定律 Define: 在气体混合物中
上一内容 下一内容 回主目录
返回
2020/12/7
道尔顿定律
pBpyB
pB : 气体B的分压 p: 混合气体的总压 yB: 气体B在混合气中的摩尔分数
此定义既适用于理想气体 也可适用于低压下的实际气体
(3)范德华方程的应用 2. 维利方程Virial equation (纯经验方程)
pVm RT
(1 B2 Vm
VBm32
)
pVm RT
(1B2'
pB3'
p2
)
上一内容 下一内容 回主目录
返回
2020/12/7
其它重要方程举例
R - K equation (Redlich and Kwong)
p
a
pVm T>TB
T=TB
T<TB
p
上一内容 下一内容 回主目录
返回
2020/12/7
真实气体状态方程
波义尔温度的定义:
Lim[(pVm)/p]TB=0 p0 波义尔温度一般是气体临界温度的2~2.5倍。不 同的气体具有不同的波义尔温度。
上一内容 下一内容 回主目录
返回
2020/12/7
范德华方程
(V m b )V m T 1 /2
(V m b )RT
B-W-R方程 Berthelot方程
上一内容 下一内容 回主目录
返回
2020/12/7
1-5对应状态原理及普遍化压缩因子
1 压缩因子
z pVm Vm(实际气体) RT Vm(理想气体)
对于理想气体,任何温度和压力下,z恒等于1。 对于真实气体,z<1真实气体比理想气体容易压缩;z>1 难以压缩;可见z反映了实际气体压缩的难易程度。
p pB及pBnBRT/V
B
上一内容 下一内容 回主目录
返回
2020/12/7
阿马加定律
定义:V=∑V*B
理想气体混合物的总体积为各组分分体积之和。 式中V*B=nBRT/p
进一步中得:
yB= V*B /V
即理想气体混合物中某一组分B的分体积与总体 积之比等于该组分的摩尔分数yB。
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
2020/12/7
对应状态原理
处于相同对比状态下的气体具有相近的热力学 性质
Van der Waals 对比方程:
(pr V3r2)V (r 13)83Tr
上一内容 下一内容 回主目录
返回
2020/12/7
普遍化压缩因子图
把对比状态参数的表达式引入到压缩因子的定义 式,可以得到:
上一内容 下一内容 回主目录
返回
2020/12/7
摩尔气体常数
3.摩尔气体常数 R为摩尔气体常数,其值为8.314510J mol-1 K-1
。
它是通过实验方法测定的pVT数据,然后通过外推 法获得。
作pV~p图,见P.10图1.1.2。
R=lim(pVm)T/T= 8.3145 J/mol/K
上一内容 下一内容 回主目录
返回
2020/12/7
1-3气体的液化及临界参数
1 液体的饱和蒸汽压
气液平衡时,饱和蒸气的压力。是温度的函数。
2 临界参数
(1)临界温度Tc:气体加压液化的最高允许温 度。
(2)临界压力Pc:临界温度时的饱和蒸汽压力
(3)临界体积Vc:在临界温度和临界压力下, 物质的摩尔体积。
上一内容 下一内容 回主目录
返回
2020/12/7
1-2 理想气体混合物
1-2 理想气体混合物 1 混合物的组成 (1)摩尔分数x或y
xB(或yB)=nB/∑nA (2)质量分数
wB=mB/∑mA
(3)体积分数
B=xB V*m,B/(∑ xA V*m,A)
上一内容 下一内容 回主目录
返回
2020/12/7
道尔顿定律
2.理想气体方程对理想气体混合物的应用 pV=nRT=(m/Mmix)RT
(3)T>Tc
温度和压力略高于临界点的状态,称为超临界流体。 超临界流体密度很大,具有溶解性能。在恒温变压或 恒压变温时,体积变化很大,改变了溶解性能,故可 用于提取某些物质,这种技术称为超临界萃取。
上一内容 下一内容 回主目录
返回
2020/12/7
1-4真实气体状态方程
1 真实气体的pVm-p图及波义尔温度
返回
2020/12/7
气体的液化及临界参数
3 真实气体的p-Vm图及气体的液化
p
pc
c
T3
p2
Tc
p1
T2
T1
上一内容 下一内容 回主目录
返回
Vm
2020/12/7
气体的液化及临界参数
等温线有三种类型:
(1)T<Tc
(2)T=Tc,C点称为临界点。几何意义为:压力对体积 的一阶和二阶偏导数等于零。