定积分的概念 说课稿 教案 教学设计
定积分概念教案范文
定积分概念教案范文教案标题:定积分概念的引入和初步认识一、教学目标1.了解定积分概念的引入背景和发展历程;2.掌握定积分的基本定义;3.能够应用定积分求解简单的几何和物理问题。
二、教学重点1.定积分引入背景和基本概念;2.定积分的基本定义和求解方法。
三、教学难点2.定积分的应用举例。
四、教学准备1.教师准备:教案、黑板、粉笔、教材参考书。
2.学生准备:课前预习教材相关内容,笔记本、笔等。
五、教学过程第一步:导入(10分钟)1.引入背景:告诉学生数学是一门从古至今都有许多人致力于研究的学科,其中有很多重要的概念和定理。
本节课我们将要学习的是定积分概念,它是微积分学中的基本概念之一第二步:展示(15分钟)1.介绍定积分的提出背景和发展历程,如牛顿、莱布尼兹等人对定积分的贡献;2.引入定积分的基本概念:设函数f(x)在闭区间[a,b]上有界,将[a,b]分为n个小区间,每个小区间长度为Δx,用Δx表示。
在每个小区间内任取一点ξi(ξi属于[i-1,i])并计算f(ξi)Δx,然后将这n 个小区间上的和表示为Σf(ξi)Δx;3. 引入定积分的基本定义:当n趋向于无穷大,并且Δx趋向于0时,如果极限lim(Δx→0)Σf(ξi)Δx存在,且对任意x ∈ [a, b],极限lim(n→∞)lim(Δx→0)Σf(ξi)Δx存在,那么称该极限为函数f(x)在闭区间[a, b]上的定积分,记作∫[a, b]f(x)dx,即∫[a,b]f(x)dx=lim(n→∞)lim(Δx→0)Σf(ξi)Δx;4.解释定积分的几何意义:定积分表示曲线与x轴所围成的面积。
通过几何图形进行解释和演示。
第三步:练习(25分钟)1.基本练习:通过一些基本的题目来巩固定积分的基本定义和概念的理解;2.综合练习:通过一些实际问题来应用定积分,如求一段弓形所围成的面积、求物体在一定时间内的位移等。
第四步:讲解与总结(15分钟)1.请学生上台分别讲解几个基本练习题的解题思路和方法;2.强调定积分与不定积分的区别:不定积分结果是一个函数表达式,而定积分结果是一个数值;3.总结定积分的基本概念和定义,强调定积分解决实际问题的重要性。
定积分的概念教案
定积分的概念教案一、教学目标:1.了解定积分的定义和计算方法;2.掌握定积分的性质和应用;3.培养学生的数学计算能力和逻辑思维能力。
二、教学内容:1.定积分的定义;2.定积分的计算方法;3.定积分的性质和应用。
三、教学重点:1.定积分的定义;2.定积分的计算方法。
四、教学难点:1.定积分的性质和应用;2.定积分与原函数的关系。
五、教学过程:Step 1 引入教师与学生展开对话,探讨学生对积分的了解:教师:同学们,你们对积分有什么了解?学生:积分就是求和。
教师:不错,积分的确是求和,但是定积分具体是什么呢?我们一起来探讨一下。
Step 2 定积分的定义教师向学生介绍定积分的定义:教师:定积分是微积分的一个重要概念,表示函数曲线与x轴之间的面积。
我们用符号∫来表示定积分,函数f(x)的定积分表示为∫f(x)dx,在积分号下面写上被积函数,dx表示自变量。
Step 3 定积分的计算方法教师通过示例向学生演示定积分的计算方法:教师:我们以函数f(x)=x^2为例,计算f(x)在区间[1,3]上的定积分。
教师在黑板上写下∫(1→3)x^2dx,并进行具体的计算步骤解释。
Step 4 定积分的性质和应用教师向学生介绍定积分的性质和应用,并通过例题进行讲解:教师:定积分具有线性性质、区间可加性和变量替换的性质,同时也可以用于计算面积、体积、质量等。
我们来看一个例题,计算函数f(x)=x在区间[-2,2]上的定积分,并解释其实际意义。
Step 5 定积分与原函数的关系教师引导学生思考定积分与原函数的关系:Step 6 总结与归纳教师与学生总结本节课的内容,并归纳出定积分的概念和性质:教师:同学们,通过本节课的学习,我们初步了解了定积分的定义、计算方法和性质。
下节课我们将进一步学习定积分的应用。
大家要做好预习哦!六、教学反思本节课通过引入、定义、示例演算等方式,使学生初步了解了定积分的概念和计算方法。
通过例题讲解,学生对定积分的应用有了基本的认识。
定积分的概念说课稿
定积分的概念说课稿定积分的概念说课稿作为一名默默奉献的教育工作者,就有可能用到说课稿,说课稿有助于提高教师的语言表达能力。
说课稿要怎么写呢?下面是小编为大家整理的定积分的概念说课稿,仅供参考,大家一起来看看吧。
众所周知,高等数学是工科专业最重要的课程之一。
其重要的原因不仅在于可以学到一些数学概念、公式和结论,为其他数学课和专业课的学习打好基础,更重要的是通过学习数学可以培育人的理性思维品格和思辩能力,能启迪智慧,开发创造力。
下面,笔者将从教材、教法、设计理念以及教学设计四个方面,介绍“定积分的概念”这节课。
一、说教材分析课程定位:高等数学在高职(专)院校的教学计划中是一门重要的公共基础理论课。
通过本课程的学习,使学生获得够用的微积分、向量代数及空间解析几何的基本知识、必要的基础理论和常用的运算方法,为学习后续课程,特别是专业课程的学习和进一步扩展数学知识奠定必要的基础。
地位作用:本节课选自世纪数学教育信息化精品教材《高等数学》第五章第一节定积分的概念,是高等数学中最主要的经典理论,是学生进入“积分”世界必须跨过的第一道门槛。
这节课上承导数、不定积分,下接定积分在几何、物理、经济、电工学等其他学科中的应用。
教学内容:本节内容为定积分概念,主要包括三方面内容:两个引例——曲边梯形的.面积和变速直线运动的路程;定积分的定义及几何意义;定积分的性质。
教学目标:知识目标——通过探求曲边梯形的面积,使学生了解“分割、近似、求和、取极限”的思想方法;能力目标——通过类比“割圆术”,引导学生萌发“以直代曲”的想法,逐步培养学生的辨证思维能力和知识迁移的能力;情感目标——从实践中创设情境,渗透“化整为零零积整”的辨证唯物观,培养学生的创新意识和科技服务于生活的人文精神。
二、说教学方法学情分析:学生参加过高考,具备一定初等数学基础知识,但学生学高等数学的基础不扎实。
教学方法:数学课程对于高职学生来说,往往难度很大,教学时力求从学生已有知识和实际学习情况出发引入新课,启发、诱导学生参与教学活动,提出问题、分析问题、解决问题,适当采用自学辅导法(阅读教材)、通过以上方法的运用,让学生掌握重点知识,突破难点,提高应用知识的能力。
定积分概念说课
S f (i ) x (i )2 x 取极限,其值
i 1 i 1
n
ห้องสมุดไป่ตู้
n
运用四步曲解决背景一
y
y f (x)
o
a
b
x
运用四步曲解决背景二
背景二:变速直线运动的路程 设某物体作变速直线运动,已知速度v=v(t)是时间 t的连续函数,且v(t ) 0 ,现确定物体由时刻t=a 到时刻t=b这一段时间内,即在时间间隔[a,b]内所 经过的路程s.
你能用方案 1 你能用求和符 和 2近似的表 号写出由方案 示出曲边梯形 3求出的和式 的面积 S吗? 吗?
S
f ( )
i 1 i
n
x
( )
i 1 i
n
2
x
1 2 1 1 1 i (1 )(2 ) 3 n 6 n n i 1
n 1
1 2 1 3 i (1 1 )(2 1 ) i 1 n 6 n n
1.导入新课
平 面 规 则 图 形 的 面 积 ? ?
如何求这些 不规则图形 的面积呢? ?
2.讲授新课
背景一:曲边梯形的面积
简化
y
y f (x)
o a
b
x
探究
y
yx
2
一 般 化 曲 线
具 体 曲 线
o
1
x
方法探究
你还记得圆的 面积公式是怎 样推导的吗? 这里运用了哪 些数学思想? 你能归纳一下 推导公式的步 骤吗?
n
公式: 12 +2 2 +
+n 2
1 n( n 1)(2n 1) 6
Sn
定积分概念的课程设计
定积分概念的课程设计一、教学目标本节课的教学目标是让学生掌握定积分的概念及其应用。
具体来说,知识目标包括:了解定积分的定义、性质和计算方法;理解定积分在实际问题中的应用。
技能目标则要求学生能够运用定积分解决简单的问题,如计算曲线下的面积、求解弯曲物体的质心等。
情感态度价值观目标则是培养学生的数学思维能力,提高他们对数学的兴趣和自信心。
二、教学内容本节课的教学内容主要包括定积分的定义、性质和计算方法。
首先,引导学生回顾不定积分的基本概念,为学生引入定积分做铺垫。
然后,详细讲解定积分的定义,通过实例让学生理解定积分的概念。
接着,介绍定积分的性质,如线性性质、保号性等,并通过例题让学生掌握这些性质的应用。
最后,讲解定积分的计算方法,如牛顿-莱布尼茨公式、分部积分法等,并通过练习让学生熟练运用这些方法。
三、教学方法为了达到本节课的教学目标,我将采用多种教学方法相结合的方式进行教学。
首先,运用讲授法,清晰、系统地讲解定积分的概念、性质和计算方法。
其次,采用讨论法,引导学生分组讨论定积分在实际问题中的应用,激发学生的思考。
此外,还将运用案例分析法,通过分析具体案例,让学生更好地理解定积分的应用。
最后,适时进行实验法,让学生在实验中感受定积分的作用,提高他们的实践能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,我将准备以下教学资源:教材、参考书、多媒体资料、实验设备。
教材和参考书将作为主要教学资源,为学生提供系统的理论知识。
多媒体资料则用于辅助教学,以图片、动画等形式展示定积分的概念和应用,增强学生的学习兴趣。
实验设备则用于进行实验教学,让学生在实践中掌握定积分的方法。
五、教学评估为了全面、客观地评估学生的学习成果,本节课的评估方式包括平时表现、作业和考试三个部分。
平时表现主要考察学生在课堂上的参与程度、提问回答等情况,以鼓励学生积极思考和提问。
作业则包括定积分的计算练习和应用问题,以此检验学生对知识的掌握程度。
高中数学定积分的概念教案新人教版选修
高中数学定积分的概念教案新人教版选修一、教学目标1. 理解定积分的概念,掌握定积分的基本性质和计算方法。
2. 能够运用定积分解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
二、教学内容1. 定积分的概念介绍定积分的定义、性质和计算方法,引导学生理解定积分的本质。
2. 定积分的计算讲解定积分的计算法则,包括牛顿-莱布尼茨公式、换元积分法、分部积分法等,让学生掌握定积分的计算技巧。
3. 定积分在实际问题中的应用通过实际问题,引导学生运用定积分解决面积、体积、弧长等问题,提高学生的数学应用能力。
三、教学重点与难点1. 定积分的概念与性质2. 定积分的计算方法3. 定积分在实际问题中的应用四、教学方法1. 采用讲授法,讲解定积分的概念、性质和计算方法。
2. 利用例题,引导学生掌握定积分的计算技巧。
3. 结合实际问题,培养学生运用定积分解决实际问题的能力。
4. 组织讨论,让学生在探讨中深化对定积分概念的理解。
五、教学过程1. 引入:通过复习初中数学中的积分概念,引导学生思考如何将积分概念推广到无限区间。
2. 讲解:讲解定积分的定义、性质和计算方法,让学生理解定积分的本质。
3. 练习:布置定积分的计算练习题,让学生巩固所学知识。
4. 应用:结合实际问题,讲解定积分在面积、体积、弧长等方面的应用,让学生体会定积分的实用价值。
6. 作业:布置课后作业,巩固所学知识。
六、定积分的性质与计算法则1. 性质:定积分具有线性性质,即$\int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = \int_{a}^{b} (f(x) + g(x)) \, dx$。
定积分与积分区间有关,即$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$。
定积分与积分函数的单调性有关,即若$f(x)$ 在$[a, b]$ 上单调递增,则$\int_{a}^{b} f(x) \, dx$ 可以表示为$F(b) F(a)$,其中$F(x)$ 是$f(x)$ 的一个原函数。
定积分概念教学设计
定积分概念教学设计第1篇:定积分的概念的教学设计《1.5.3定积分的概念》教学设计1.教材分析1.1课标要求分析从教材上的要求来看,要求学生认识定积分的知识背景,理解背景中两个典型问题的解决思想,并能概括它们的共同特征从而引入定积分概念,理解定积分的含义和其符号的含义,明白定积分的几何意义和基本性质。
我个人认为由两个实例引入定积分概念这步很重要,能让学生理解定积分这一抽象的概念,并理解定积分的用途。
1. 2教学内容分析 1.2.1内容背景分析本节内容是人教A版选修2—2的1.5.3的内容,前面两节学习了如何解决“求曲边梯形面积”和“求变速运动路程”两个经典问题,在这两个问题的知识背景下这节课很自然地引入了定积分的概念。
这样能让学生充分理解定积分的由来和用途。
1.2.2教学内容的分析人教版的这节课的内容比较简短,要求掌握的层次也比较低。
主要通过前面两个实例的解决思路进行概括引入定积分的概念,明白积分的概念,积分符号的含义,了解定积分的几何意义和几个基本性质。
通过例1让学生进一步熟悉定积分的定义,熟悉计算定积分的“四步曲”。
2.学情分析我上这堂课的班级是高二(3)班,这个班在高二四个班中属于中等水平,上课思维不大活跃,不分学生接受能力还可以,但后进生比较多,这些学生基础较为薄弱,而且定积分的概念较为抽象,在引入的过程中包含了数列求和,求极限等复杂的知识内容。
作为引入定积分概念的课,推导的计算过程简单带过就好,不宜把知识点挖得太深。
我把这节课的重点放在让学生了解定积分概念的由来,明白定积分符号的含义、定积分的集合意义和一些基本性质,让学生掌握用定义求定积分的步骤。
3.教学目标1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景;2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分;3.理解掌握定积分的几何意义. 4.教学重点和难点重点:理解定积分的概念、定积分的几何意义及基本性质,能用定义求简单的定积分.难点:定积分的概念、定积分的几何意义. 5.教学过程1.创设情景复习:1.回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决思路,解决步骤:求曲边梯形面积: 分割→ 以直代曲→求和→取极限(逼近)求汽车路程:分割→以不变代变→求和→取极限(逼近)2.思考一下解决前面两个问题的共同特点: 2.新课讲授1.定积分的概念一般地,设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<x2<<xi-1<xi<<xn=b将区间[a,b]等分成n个小区间,每个小区间长度为∆x (n∆x=nb-a[x,x]n),在每个小区间i-1ib-af(ξi)n 上取一点ξi(i=1,2,n),作和式:Sn=∑f(ξi)∆x=∑i=1i=1如果∆x无限接近于0(亦即n→+∞)时,上述和式为函数f(x)在区间[a,b]上的定积分。
定积分的概念教案
定积分的概念教案课题:定积分的概念研究目标及重、难点:一、教学目标:1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景。
2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分。
3.理解掌握定积分的几何意义。
二、教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义。
教学难点:定积分的概念、定积分的几何意义。
教学流程:一、复:1.回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤:分割→近似代替(以直代曲)→求和→取极限(逼近)2.对这四个步骤再以分析、理解、归纳,找出共同点。
二、新课探析:1.定积分的概念:设函数f(x)在区间[a,b]上连续,用分点一般地将区间[a,b]等分成n个小区间,每个小区间长度为Δx,取一点ξi(i=1,2.n)在每个小区间[x(i-1),xi]上任取一点ξi,作和式:Sn=∑f(ξi)Δx,当上述和式Sn无限趋近于常数S,即S=limSn(n→∞)时,上述常数S称为函数f(x)在区间[a,b]上的定积分。
记为:S=∫baf(x)dx,其中∫为积分号,b为积分上限,a为积分下限,f(x)为被积函数,x为积分变量,[a,b]为积分区间,∫f(x)dx为被积式。
说明:1)定积分不是Sn。
2)用定义求定积分的一般方法是:①分割:n等分区间[a,b];②近似代替:取点ξi∈[xi-1,xi];③求和:∑f(ξi)Δx;④取极限:∫f(x)dx=lim∑f(ξi)Δx(n→∞)。
3)曲边图形面积:S=∫f(x)dx。
2.定积分的几何意义:从几何上看,如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,则定积分∫f(x)dx表示由直线x=a,x=b(a≠b),y=0和y=f(x)所围成的曲边梯形的面积,如图中的阴影部分。
另外,定积分还可以表示变速运动路程S=∫bta2v(t)dt和变力做功W=∫btaF(r)dr的大小。
定积分的概念 说课稿 教案 教学设计
积为 5 。
2
2
即: (x 1)dx
5
1
2
2
思考:若改为计算定积分 (x 1)dx 2
呢?
改变了积分上、下限,被积函数在[ 2,2]
上出现了负值如何解决呢?(后面解决的 问题)
5
五、小结 1. 定 积 分 的 概 念 、 用 定 义 法 求 简 单 的 定 积 分 、 定积分的几何意义.
6
定积分。记为: S
b
f (x )dx ,
a
其中 积分号, b -积分上限, a -积
分下限,f (x) -被积函数,x -积分变量,
[a, b] -积分区间, f (x )dx -被积式。
b
说明:(1)定积分 f (x )dx 是一个常数, a
即 Sn 无限趋近的常数 S ( n
时)记
为
b a
f
(x
加强对定 积分的运 算性质的 理解。
性质 2
b
kf (x )dx
b
k f (x )dx (k为常数)
a
a
y
(定积分的线性性质);
性质
3
b
a [f1(x )
f2 (x )]dx
b
a f1(x )dx
b
a f2 (x )dx
(定积分的线性性质);
质4
b
f (x )dx
c
f (x )dx
b
f (x )dx (其中a c b )
值。分析:令 f (x ) x 3 ;
(1)分割
y
独立思考 和数学表 达能力.
把区间 0,1 n 等分,则第 i 个区间为:
i 1,i (i 1,2, ,n),每个小区间长 nn
《定积分的概念》说课
《定积分的概念》说课一、教学目标的确定根据《大纲》的要求和本节所处的地位,我认为通过本节课的学习,应使学生达到:1、进一步理解微积分思想,会用“分割、近似代替、求和、取极限”的方法、步骤分析问题,从而培养学生的逻辑思维能力。
2、理解用极限的思想方法思考与处理问题,从而培养学生的创新意识。
3、引导学生学会联想、归纳、总结等思想方法。
4、在学习过程中,渗透对学生主动探索学习精神的培养。
二、教学设计的理念与思路本教学设计是以培养应用型人才的高等学校经济管理类专业的课程标准为依据,与《经济数学》课的整体设计相衔接的总体思路,充分体现工学结合、能力导向等现代高职教育思想,体现了校内学习与实际工作的一致性.三、教学内容设计(教材分析)微积分的出现,与其说是整个数学史,不如说是整个人类历史上的一件大事,它从生产技术和理论科学的需要中产生,同时又回过头来深刻地影响着生产和自然科学的发展。
《定积分的概念》是本章第一节内容,题目本身就是强调概念,是学生学习定积分的基础;也为定积分的应用作好铺垫。
这也符合《大纲》中明确规定的使学生形成“用数学意识”的要求。
根据《大纲》的要求和本节课的地位,我认为本节课的重点是:理解并掌握微积分思想方法,理解曲边梯形的面积及变速运动路程的求法思路即“分割、近似代替、求和、取极限”,同时曲边梯形面积的求法思路步骤及理解“微积分思想方法"也是本节课的难点所在.说它为重点是根据《大纲》的要求、它所处的历史地位和它应用的广泛性所决定的;说它是难点主要是因为这种思想方法不同于前面学习过的函数与方程思想、数形结合思想等基本的思想方法,在学生的头脑中并没有与之相联系的认知结构,只有将头脑中原有的认知结构加以改组和顺应;同时,从历史上看,人类从对微积分的认识到掌握微积分理论,经过了千年历史,所以在短短几节课内达到深刻理解这种思想方法,的确是不容易的,所以,它将成为本节的难点所在.四、教学活动设计(学法的指导)德国教育家斯多惠说:“一个坏教师奉送真理,一个好教师教人发现真理”,我深深体会到,必须在给学生传授知识的同时教给他们好的学习方法,就是说让他们“会学习”。
定积分的概念说课稿 教案 交设计
定积分的概念一、教学目标:知识与技能:1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.过程与方法:通过对曲边梯形面积问题的求解及变速直线运动路程的运算,体会“以直代曲”、“以不变代变”的思想方法.情感、态度与价值:让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神.二、教学重点、难点重点:求曲边梯形的面积和汽车行驶的路程.难点:了解“以直代曲”、“以不变代变”的思想方法.三、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.四、教学过程(一)温故知新任何一个平面图形都有面积,其中矩形、正方形、三角形、平行四边形、梯形等平面多边形的面积,可以利用相关公式进行计算.如图所示的平面图形,是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的,称之为曲边梯形,如何计算这个曲边梯形的面积呢?(二)探索新知探究点一 求曲边梯形的面积 思考1 如何计算下列两图形的面积?答 ①直接利用梯形面积公式求解.②转化为三角形和梯形求解.问题 如图,如何求由抛物线y =x 2与直线x =1,y =0所围成的平面图形的面积S? 思考2 图中的图形与我们熟悉的“直边图形”有什么区别?思考3 能否将求曲边梯形的面积问题转化为求“直边图形”的面积问题?(归纳主要步骤)答 (如图)可以通过把区间[0,1]分成许多小区间,将曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值进行求和,就得到曲边梯形面积的近似值,随着拆分越来越细,近似程度会越来越好. S n =∑ni =1S i ≈∑ni =1(i -1n )2·Δx =∑n i =1(i -1n )2·1n (i =1,2,…,n )=0·1n +(1n )2·1n +…+(n -1n )2·1n=1n 3[12+22+…+(n -1)2]=13(1-1n )(1-12n ). ∴S =lim n →∞S n =lim n →∞ 13(1-1n )(1-12n )=13.求曲边梯形的面积可以通过分割、近似代替、求和、取极限四个步骤完成.思考4 在“近似代替”中,如果认为函数f (x )=x 2在区间[i -1n ,i n ](i =1,2,…,n )上的值近似地等于右端点in 处的函数值f (i n ),用这种方法能求出S 的值吗?若能求出,这个值也是13吗?取任意ξi ∈[i -1n ,i n ]处的函数值f (ξi )作为近似值,情况又怎样?其原理是什么?答 以上方法都能求出S =13.我们解决此类问题的原理是“近似代替”和“以直代曲”,在极限状态下,小曲边梯形可以看做小矩形.例1 求由直线x =0,x =1,y =0和曲线y =x 2所围成的图形的面积.过各分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n . (2)近似代替在区间[i -1n ,i n ](i =1,2,…,n )上,以i -1n 的函数值⎝⎛⎭⎫i -1n 2作为高,小区间的长度Δx =1n 作为底边的小矩形的面积作为第i 个小曲边梯形的面积,即ΔS i ≈(i -1n )2·1n .(3)求和曲边梯形的面积近似值为S =∑n i =1S i ≈∑n i =1(i -1n )2·1n =0·1n +(1n )2·1n +(2n )2·1n +…+(n -1n )2·1n =1n 3[12+22+…+(n -1)2]=13(1-1n )(1-12n). (4)取极限 曲边梯形的面积为 S =lim n →∞ 13(1-1n )(1-12n )=13. 反思与感悟 求曲边梯形的思想及步骤:(1)思想:以直代曲、逼近;(2)步骤:分割→近似代替→求和→取极限;(3)关键:近似代替;(4)结果:分割越细,面积越精确. 跟踪训练1 求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积.解 ∵y =x 2为偶函数,图象关于y 轴对称,∴所求曲边梯形的面积应为抛物线y =x 2(x ≥0)与直线x =0,y =4所围图形面积S 阴影的2倍,下面求S 阴影.由⎩⎪⎨⎪⎧y =x 2x ≥0y =4,得交点为(2,4),如图所示,先求由直线x =0,x =2,y =0和曲线y =x 2围成的曲边梯形的面积.(1)分割将区间[0,2] n 等分,则Δx =2n , 取ξi =2i -1n. (2)近似代替求和 S n =∑ni =12i -1n ]2·2n =8n 3[12+22+32+…+(n -1)2]=83(1-1n )(1-12n). (3)取极限S =lim n →∞S n =lim n →∞ 83(1-1n )(1-12n )=83. ∴所求平面图形的面积为S 阴影=2×4-83=163.∴2S 阴影=323,即抛物线y =x 2与直线y =4所围成的图形面积为323。
定积分的概念 说课稿 教案 教学设计
定积分的概念教材分析《定积分的概念》从曲边梯形的面积及变速直线运动的共同特征概括出定积分的概念,它是学生学习定积分的基础,为学习定积分的应用作好铺垫.因此这节课有承前启后的作用,是本章的重点内容之一.本节课的重点是:理解并掌握定积分的概念、定积分的几何意义.理解定积分的概念是难点.主要是这种“以曲代直”“逼近”的思想方法在学生的头脑中并没有与之相联系的认知结构,只有将头脑中原有的认知结构加以改组和顺应,在几节课内达到深刻理解这种思想方法是难点所在.课时分配1课时.教学目标知识与技能目标通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;能用定积分的定义求简单的定积分;理解掌握定积分的几何意义;借助于几何直观的基本思想,理解定积分的概念.过程与方法目标培养学生的逻辑思维能力和创新意识.情感、态度与价值观激发学生主动探索学习的精神.重点难点重点:定积分的概念、定积分的几何意义.难点:定积分概念的理解.教学过程引入新课提出问题:回忆前面曲边梯形的面积、变速运动的路程等问题的解决方法与步骤.活动成果:分割→近似代替→求和→取极限活动设计:将以下问题及其解决步骤通过多媒体投影到屏幕上.物体做变速直线运动,速度函数为v =v(t),求它在a ≤t ≤b 内的位移s.步骤如下: (1)分割:用分点a =t 0<t 1<t 2<…<t n =b 将时间区间[a ,b]等分成n 个小区间[t i -1,t i ](i =1,2,…,n),其中第i 个时间区间的长度为Δt =t i -t i -1,物体在此时间段内经过的路程为Δs i .(2)近似代替:当Δt 很小时,在[t i -1,t i ]上任取一点ξi ,以v(ξi )来代替[t i -1,t i ]上各时刻的速度,则Δs i ≈v(ξi )·Δt i .(3)求和:s =1nii S=∆∑≈∑i =1nv (ξi )Δt.(4)取极限:Δt →0时,上式右端的和式作为s 近似值的误差会趋于0,因此s =0lim t ∆→∑i =1nv(ξi )Δt.探究新知提出问题1:请同学们对求曲边梯形的面积和变速运动的路程两个实例的四个步骤对比分析,找出共同点.活动设计:先让学生独立思考,再分小组讨论、交流.活动成果:1.二者都通过四个步骤——分割、近似代替、求和、取极限来解决问题; 2.解决这两个问题的思想方法是相同的,都采用了“逼近”的思想.总结:类似的问题都可以通过这种方法来解决,而且最终结果都可以归结为这种类型的和式的极限.提出问题2:你能不能类似地将在区间[a ,b]上连续的问题函数f(x)的最终结果归结为这种类型的和式的极限.活动设计:学生先独立思考,必要时允许学生合作、讨论、交流.学情预测:开始学生的回答可能不全面、不准确,但在教师的不断补充、纠正下,会趋于完善.活动成果:师生共同概括出定积分的概念: 一般地,设函数f(x)在区间[a ,b]上连续,用分点 a =x 0<x 1<x 2<…<x i -1<x i <…<x n =b将区间[a ,b]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n),作和式:∑i =1n f (ξi )Δx =∑i =1nb -an f(ξi ),当n →∞时,上述和式无限接近某个常数,那么称该常数为函数f(x)在区间[a ,b]上的定积分.记为⎠⎛ab f(x)dx ,即⎠⎛ab f(x)dx =lim n →∞∑ni =1b -an f(ξi ), 其中f(x)称为被积函数,x 叫做积分变量,[a ,b]叫做积分区间,b 叫做积分上限,a 叫做积分下限,f(x)dx 叫做被积式.教师补充以下几点:(1)定积分⎠⎛a b f(x)dx 是一个常数;(2)定积分⎠⎛ab f(x)dx 是一种特定形式的和式∑i =1nb -a n f(ξi )的极限,即⎠⎛a b f(x)dx 表示当n →∞时,和式∑i =1n b -a n f(ξi )所趋向的定值;(3)对区间[a ,b]的分割是任意的,只要保证每一小区间的长度都趋向于0就可以了;(4)考虑到定义的一般性,ξi 是第i 个小区间上任意取定的点,但在解决实际问题或计算定积分时,可以把ξi 都取为每个小区间的左端点(或都取为右端点),以便得出结果.设计意图通过上述操作、思考问题使学生建立起对定积分的初步、直观的认识,并训练和培养学生的抽象概括能力.提出问题3:你能说说定积分的几何意义吗?活动设计:学生独立解决,必要时,教师指导、提示.学情预测:如果学生回答此问题有困难,可提示学生回顾求曲边梯形面积的例子. 活动成果:结合课本本节图1.57总结定积分⎠⎛ab f(x)dx(f(x)≥0)的几何意义:如果在区间[a ,b]上函数f(x)连续且恒有f(x)≥0,那么定积分⎠⎛ab f(x)dx 表示由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积.提出问题4:思考课本本节的探究问题. 活动设计:学生独立思考,并给出答案.活动成果:通过对定积分几何意义的理解,学生不难考虑到如何用定积分表示位于x 轴上方的两条曲线y =f 1(x),y =f 2(x)与直线x =a ,x =b 围成的平面图形面积.由于图中用虚线给出了辅助线,学生易得到阴影部分的面积为S =⎠⎛a b f 1(x)dx -⎠⎛ab f 2(x)dx.教师引导学生根据定积分的定义,可以得出定积分的如下性质:性质1:⎠⎛a b kf(x)dx =k ⎠⎛ab f(x)dx(k 为常数);性质2:⎠⎛a b [f 1(x)±f 2(x)]dx =⎠⎛a b f 1(x)dx±⎠⎛ab f 2(x)dx ;性质3:⎠⎛ab f(x)dx =⎠⎛ac f(x)dx +⎠⎛cb f(x)dx(其中a<c<b).提出问题5:性质1等式两边的两个定积分上、下限和被积函数分别是什么? 活动设计:以提问的形式让学生直接作答.提出问题6:你能从定积分的几何意义解释性质3吗? 活动设计:学生思考、交流、探索解决问题.学情预测:若学生解决问题有困难,教师可辅助学生用图象的方法帮助学生从几何直观上感知性质3的成立.活动成果:教师指出性质3为定积分对积分区间的可加性,它对把区间[a ,b]分成有限个(两个以上)小区间的情形也成立.给出以上3个性质,便于我们计算定积分.理解新知1.用定义求定积分的一般方法是:①分割:n 等分区间[a ,b];②近似代替:取点ξi ∈[x i -1,x i ];③求和:∑i =1nb -an f(ξi );④取极限:⎠⎛ab f(x)dx =lim n →∞∑i =1nb -an f(ξi ). 2.一般情况下,定积分∫b a f(x)dx 的几何意义是介于x 轴、函数f(x)的图形以及直线x =a ,x =b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.即∫b a f(x)dx =x 轴上方面积-x 轴下方的面积.运用新知例1利用定积分的定义,计算定积分∫10x 3dx 的值.解:令f(x)=x 3. (1)分割在区间[0,1]上等间隔地插入n -1个点,将区间[0,1]等分成n 个小区间[i -1n ,in](i =1,2,…,n),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、求和取ξi =i n (i =1,2,…,n),则∫10x 3dx ≈S n =∑i =1n (i n )3·1n =1n 4∑i =1n i 3=1n 4·n 2(n +1)24=14(1+1n)2.(3)取极限∫10x 3dx =lim n →∞S n =lim n →∞ 14(1+1n )2=14. 例2根据定积分的几何意义推出下列定积分的值.(1)∫10xdx ;(2)∫R 0R 2-x 2dx.思路分析:如果在区间[a ,b]上函数f(x)连续且恒有f(x)≥0,那么定积分∫b a f(x)dx 表示由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积.(1)中的定积分的值即为由直线x =0,x =1,y =0和y =x 所围成的图形的面积;(2)中的定积分的值为由直线x =0,x =R ,y =0和曲线y =R 2-x 2所围成的图形的面积.解:(1)由图象可知,由直线x =0,x =1,y =0和y =x 所围成的图形为一个直角三角形,两条直角边边长均为1,则面积为12×1×1=12,所以∫10xdx =12. (2)由图象可知,由直线x =0,x =R ,y =0和曲线y =R 2-x 2所围成的图形面积即为圆x 2+y 2=R 2面积的14,则面积为14πR 2,所以∫R 0R 2-x 2dx =14πR 2. 变练演编例 计算定积分∫20x 3dx 的值,并从几何上解释这个值表示什么? 解:计算定积分∫20x 3dx 的值:(1)分割在区间[0,2]上等间隔地插入n -1个点,将区间[0,2]等分成n 个小区间[2(i -1)n ,2i n ](i =1,2,…,n),每个小区间的长度为Δx =2i n -2(i -1)n =2n.(2)近似代替、求和取ξi =2in(i =1,2,…,n),则∫20x 3dx ≈S n =∑i =1n(2i n )3·2n =16n 4∑i =1n i 3=16n 4·n 2(n +1)24=4(1+1n)2. (3)取极限∫20x 3dx =lim n →∞S n =lim n →∞4(1+1n )2=4. 由定积分的几何意义,可知这个值表示由直线y =0,x =0,x =2和曲线y =x 3所围成的图形的面积.活动设计:学生在理解例1和例2的基础上,独立完成此例练习. 设计意图设置本题意在让学生进一步理解定积分的定义和其几何意义,训练学生思维的灵活性. 达标检测1. lim n →∞ 1n [cos πn +cos 2πn +…+cos (n -1)πn +cos nπn ]写成定积分的形式,可记为( )A .∫π0cosxdx B.1π∫π0cosxdxC .∫10cosxdxD .∫π0cosx xdx 2.用定积分表示由曲线y =x 3和直线y =x 所围成的图形面积. 3.当f(x)≥0时,定积分∫b a f(x)dx 的几何意义是__________; 当f(x)≤0时,定积分∫b a f(x)dx 的几何意义是__________. 4.根据定积分的几何意义,求∫2-24-x 2dx 的值. 答案:1.B 2.∫10(x -x 3)dx.3.由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积 由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积的相反数4.2π.课堂小结1.知识收获:(1)定积分的概念;(2)定义法求简单的定积分;(3)定积分的几何意义. 2.方法收获:联想、归纳、总结的思想方法. 3.思维收获:从特殊到一般.。
定积分的概念教案
定积分的概念教案教案标题:定积分的概念教案教案目标:1. 理解定积分的概念及其在数学中的应用;2. 掌握定积分的计算方法;3. 能够运用定积分解决实际问题。
教学内容:1. 定积分的概念介绍;2. 定积分的计算方法;3. 定积分的应用。
教学步骤:引入活动:1. 引导学生回顾不定积分的概念和计算方法,以便为定积分的引入做铺垫。
主体活动:2. 介绍定积分的概念和意义,并与不定积分进行对比,强调二者的区别和联系。
3. 解释定积分的计算方法,包括Riemann和Newton-Leibniz公式等,通过实例演示如何进行定积分的计算。
4. 引导学生思考定积分的应用领域,如面积计算、物理学中的速度、加速度计算等,并结合实际问题进行案例分析和讨论。
5. 练习定积分的计算方法和应用,提供一些练习题,让学生进行个人或小组练习,并及时给予指导和反馈。
总结活动:6. 总结定积分的概念、计算方法和应用,强调定积分在数学中的重要性,并鼓励学生在今后的学习中继续深入探究。
教学资源:1. 教科书或教学课件;2. 白板、彩色粉笔/马克笔;3. 实例演示材料;4. 练习题。
评估方法:1. 教师观察学生在课堂上的参与程度和对概念的理解程度;2. 学生完成的练习题和解答过程;3. 学生参与案例分析和讨论的贡献。
拓展活动:1. 鼓励学生自主学习和探究更多与定积分相关的概念和应用;2. 提供相关参考资料和学习资源,供学生进一步学习和研究。
注意事项:1. 确保教学内容和步骤的连贯性和逻辑性;2. 根据学生的学习进度和理解程度,灵活调整教学节奏;3. 鼓励学生积极参与课堂讨论和练习,培养他们的问题解决能力和数学思维能力。
《定积分的概念》教学教案
《定积分的概念》教学教案教学教案《定积分的概念》一、教学目标1.理解定积分的概念和基本性质;2.掌握计算定积分的方法和技巧;3.运用定积分解决实际问题。
二、教学重点1.定积分的概念和基本性质;2.计算定积分的方法和技巧。
三、教学难点1.理解定积分的概念和基本性质;2.运用定积分解决实际问题。
四、教学准备1.教材:数学教材、习题集等;2.工具:黑板、粉笔等。
五、教学过程Step 1 知识导入(5分钟)1.复习集中讨论上一节课的内容,引入定积分的概念。
2.提问:你们对定积分有什么了解?Step 2 定积分的概念(20分钟)1. 导入:引入定积分的基本概念,如Riemann和、分割、积分和面积的关系等。
2.讲解:通过具体的例子,解释定积分的定义和意义。
3.提问:如何通过曲线的面积概念引入定积分?Step 3 定积分的基本性质(15分钟)1.引入:引入定积分的基本性质,如线性性质、区间可加性、保号性等。
2.讲解:通过具体例子验证定积分的基本性质。
3.提问:如何理解定积分的线性性质?Step 4 计算定积分(25分钟)1.导入:通过几何问题,引入定积分的计算方法。
2.讲解:教授求定积分的方法和技巧,如代数法、几何法、换元法等。
3.举例:通过具体的例子讲解并计算定积分。
4.练习:让学生完成相应的练习题。
Step 5 运用定积分(20分钟)1.导入:通过实际问题引入定积分的应用。
2.讲解:教授定积分在物理学和经济学等领域的应用。
3.举例:通过实际问题的例子,展示定积分的应用过程。
4.提问:你对定积分的应用有何感悟?Step 6 拓展延伸(15分钟)1.讲解:让学生了解定积分的应用不仅限于一元函数,还可以推广到二元和多元函数。
2.提问:你能举例说明定积分在二元和多元函数中的应用吗?六、教学总结(10分钟)1.复习:对本节课的知识点进行复习。
2.总结:对本节课的教学内容进行总结,概括定积分的概念、基本性质和计算方法。
定积分概念说课稿
定积分的概念说课稿一、教材分析1、教材的地位和作用本节课选自二十一世纪普通高等教育系列教材《高等数学》第三章第二节定积分的概念与性质,是上承导数、不定积分,下接定积分在水力学、电工学、采油等其他学科中的应用。
定积分的应用在高职院校理工类各专业课程中十分普遍。
2、教学目标根据教材内容及教学大纲要求,参照学生现有的知识水平和理解能力,确定本节课的教学目标为:(1)知识目标:掌握定积分的概念,几何意义和性质(2)能力目标:掌握“分割、近似代替、求和、取极限”的方法,培养逻辑思维能力和进行知识迁移的能力,培养创新能力。
(3)思想目标:激发学习热情,强化参与意识,培养严谨的学习态度。
3、教学重点和难点教学重点:定积分的概念和思想教学难点:理解定积分的概念,领会定积分的思想二、学情分析一般来说,学生从知识结构上来说属于好坏差别很大,有的接受很快,有的接受很慢,有的根本听不懂,基于这些特点,综合教材内容,我以板书教学为主,多媒体课件为辅,把概念性较强的课本知识直观化、形象化,引导学生探究性学习。
三、教法和学法1、教法方面以讲授为主:案例教学法(引入概念)问题驱动法(加深理解)练习法(巩固知识)直观性教学法(变抽象为具体)2、学法方面:板书教学为主,多媒体课件为辅(化解难点、保证重点)(1)发现法解决第一个案例(2)模仿法解决第二个案例(3)归纳法总结出概念(4)练习法巩固加深理解四、教学程序1、组织教学2、导入新课:我们前面刚刚学习了不定积分的一些基本知识,我们知道不定积分的概念、几何意义和性质,今天我们要学习定积分的概念、几何意义和性质。
3、讲授新课(分为三个时段)第一时段讲授概念:案例1:曲边梯形的面积如何求?首先用多媒体演示一个曲边梯形,然后提出问题(1)什么是曲边梯形?(2)有关历史:简单介绍割圆术及微积分背景(3)探究:提出几个问题(注意启发与探究)a、能否直接求出面积的准确值?b、用什么图形的面积来代替曲边梯形的面积呢?三角形、矩形、梯形?采用一个矩形的面积来近似与二个矩形的面积来近似,一般来说哪个值更接近?二个矩形与三个相比呢?……探究阶段、概念引入阶段、创设情境、抛砖引玉(4)猜想:让学生大胆设想,使用什么方法,可使误差越来越小,直到为零?(5)论证:多媒体图像演示,直观形象模拟,让学生逐步观察到求出面积的方法.(6)教师讲解分析:“分割成块、近似代替、积累求和、无穷累加”的微积分思想方法。
高中数学定积分的概念教案新人教版选修
高中数学定积分的概念教案新人教版选修一、教学目标1. 理解定积分的概念,掌握定积分的定义方法和性质。
2. 学会利用定积分解决实际问题,提高运用数学知识解决实际问题的能力。
3. 培养学生的逻辑思维能力、创新能力和合作能力。
二、教学内容1. 定积分的概念:定积分的定义、定积分的性质。
2. 定积分的计算:牛顿-莱布尼茨公式、定积分的换元法、分部积分法。
3. 定积分在实际问题中的应用。
三、教学重点与难点1. 重点:定积分的概念、性质,定积分的计算方法。
2. 难点:定积分的理解和运用,定积分的计算技巧。
四、教学方法1. 采用问题驱动法,引导学生主动探究定积分的概念和性质。
2. 利用案例分析法,让学生学会将实际问题转化为定积分问题。
3. 运用讨论法,培养学生的合作能力和创新思维。
五、教学过程1. 导入:通过生活中的实例,引导学生思考如何求解曲边图形的面积。
2. 探究定积分的概念:讲解定积分的定义,让学生理解定积分的基本思想。
3. 学习定积分的性质:引导学生通过举例,总结定积分的性质。
4. 定积分的计算:讲解牛顿-莱布尼茨公式,教授换元法和分部积分法。
5. 应用定积分解决实际问题:让学生分组讨论,选取实例进行分析。
6. 总结与反馈:对所学内容进行总结,收集学生反馈,及时调整教学方法。
六、教学评价1. 评价学生对定积分概念的理解程度,通过课堂提问、作业批改等方式进行。
2. 评价学生对定积分性质的掌握情况,通过课后练习、小测验等方式进行。
3. 评价学生运用定积分解决实际问题的能力,通过分组讨论、课堂展示等方式进行。
七、教学资源1. PPT课件:制作精美的PPT课件,展示定积分的概念、性质和计算方法。
2. 教学案例:收集与生活实际相关的案例,用于引导学生运用定积分解决实际问题。
3. 练习题库:编写一定数量的练习题,用于巩固学生对定积分的理解和运用。
八、教学进度安排1. 第1周:导入定积分的概念,讲解定积分的定义和性质。
大学数学定积分的概念教案
课程名称:高等数学授课对象:大学本科生课时:2课时教学目标:1. 理解定积分的概念,掌握定积分的基本思想和定义过程。
2. 能够运用定积分的概念解决实际问题,如计算曲边梯形的面积。
3. 培养学生的逻辑思维能力、抽象思维能力和解决问题的能力。
教学重点:1. 定积分的概念2. 定积分的几何意义教学难点:1. 定积分的概念建立2. 定积分的几何意义教学准备:1. 教学课件2. 练习题3. 课堂演示工具教学过程:第一课时一、导入1. 介绍定积分产生的背景,如几何学、物理学等领域中面积、体积、功等问题。
2. 引导学生回顾导数的概念,引出定积分的定义。
二、讲授新课1. 定积分的概念(1)介绍定积分的定义:定积分是求一个函数在一个区间上的总和的极限。
(2)举例说明定积分的定义:如计算曲边梯形的面积。
(3)讲解定积分的几何意义:定积分的几何意义是求一个函数在一个区间上的净面积。
2. 定积分的性质(1)线性性质:定积分的线性性质是指定积分具有可加性和可逆性。
(2)保号性质:定积分的保号性质是指如果函数在一个区间上单调递增(或递减),则定积分的值也单调递增(或递减)。
三、课堂练习1. 计算定积分的值。
2. 根据定积分的几何意义,求解实际问题。
第二课时一、复习1. 回顾定积分的概念、性质和几何意义。
2. 复习课堂练习中的题目。
二、讲授新课1. 定积分的计算方法(1)积分公式:介绍基本的积分公式,如幂函数、指数函数、三角函数等。
(2)积分法则:介绍积分法则,如换元积分法、分部积分法等。
2. 定积分的应用(1)计算曲边梯形的面积。
(2)计算平面图形的面积。
(3)计算空间图形的体积。
三、课堂练习1. 计算定积分的值。
2. 根据定积分的应用,求解实际问题。
教学总结:通过本节课的学习,学生应该掌握定积分的概念、性质、计算方法和应用。
在教学过程中,注重启发式教学,引导学生主动思考,培养学生的逻辑思维能力和抽象思维能力。
同时,通过实际问题,让学生体会定积分的实际应用价值。
定积分的概念教案
定积分的概念教案教学目标:了解定积分的概念及其几何意义,熟练掌握定积分的计算方法。
教学重点:掌握定积分的概念及其几何意义。
教学难点:运用定积分的概念解决实际问题。
教学准备:教师准备教材、教具和白板笔等。
教学过程:Step 1:导入问题教师可以提出一个实际问题,如:一辆汽车在1小时内的速度是多少?请学生思考并展开讨论。
Step 2:引入定积分教师出示一张速度-时间图像,简单介绍图像含义,即速度的变化情况。
Step 3:讨论定积分概念教师引导学生思考:如何根据速度-时间图像计算汽车在1小时内行驶的距离?学生可以按时间分割成不同的小段,并计算每个小段的行驶距离。
引出定积分的概念:将时间划分成无限小的小段,计算每个小段的行驶距离,并对其求和。
Step 4:定积分的计算方法教师介绍定积分的计算方法:将定积分问题转化为求函数的不定积分问题,然后根据不定积分的法则进行计算。
Step 5:定积分的几何意义教师引导学生思考:定积分的几何意义是什么?可以让学生按照概念中的思路进行讨论,并引导学生认识到定积分表示函数与横轴之间的面积。
Step 6:应用定积分解决实际问题教师出示一个实际问题,如:一块不规则形状的地块的面积如何计算?引导学生将地块的形状划分成无数个小矩形或小三角形,然后利用定积分的概念求解。
Step 7:练习与总结教师提供一些定积分的练习题,供学生巩固知识并提出问题。
在练习过程中,教师及时纠正学生的错误,引导学生总结定积分的计算方法和几何意义。
Step 8:课堂小结教师对本节课进行小结,强调定积分的概念及其几何意义,并鼓励学生继续探索和应用定积分。
Step 9:课后作业教师布置相关的课后作业,要求学生继续练习定积分的计算及应用,并预习下节课内容。
以上为定积分的概念教案。
定积分的概念 说课稿 教案 教学设计
写出面积求和式。老师①巡视,给予指导,即时纠正学生中的运算错误。②及时实物投影
③比较三种求和式的优劣,规定近似代替的原则。
数A,则图形的面积与正方形面积的比约为。
方法4“称量”面积:在正方形区域内均匀铺满一层细沙,分别称得重量是P(正方形区域内细沙重)、A(所求图形内细沙重),则所求图形的面积与正方形面积的比是重量之比。
二.二.合作探究
问题一曲边梯形的面积
如图,阴影部分类似于一个梯形,但有一边是曲线的一段,我们把由直线和曲线所围成的图形称为曲边梯形.如何计算这个曲边梯形的面积?
通过分割、逼近的观点体会定积分的来历,使学生从本质上理解定积分的几何意义,从而激发学生学习数学的兴趣。
重点目标
定积分的概念、用定义求简单的定积分、定积分的几何意义
难点目标
定积分的概念、定积分的几何意义.
导入示标
一.创设情景
问题:我们在小学、初中就学习过求平面图形面积的问题。有的是规则的平面图形,但现实生活中更多的是不规则的平面图形。对于不规则的图形我们该如何求面积?比如浙江省的国土面积。
学做思二:课堂练习
例题示范:汽车行驶路程问题:汽车以速度v做匀速直线运动时,经过时间t所行驶的路程为s=vt。如果汽车做变速直线运动,在时刻t的速度为 ,那么它在 这段时间行驶的路程是多少?
解答:略。
学做思三:归纳总结
通过以上练习,我们归纳总结如何和曲边梯形面积和路程问题的步骤:
(1)分割
(2)代替
课题名称
定积分的概念
三维目标
知识与技能:
⒈通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的概念
【教学目标】
1.了解定积分的概念,会用定义求定积分.
2.理解定积分的几何意义.
3.掌握定积分的基本性质.
【教法指导】
本节学习重点:掌握定积分的基本性质.
本节学习难点:理解定积分的几何意义.
【教学过程】
☆复习引入☆
任何一个平面图形都有面积,其中矩形、正方形、三角形、平行四边形、梯形等平面多边形的面积,可以利用相关公式进行计算.如图所示的平面图形,是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的,称之为曲边梯形,如何计算这个曲边梯形的面积呢?
解析:请同学思考并回顾以前所学知识并积极回答之.
☆探索新知☆
探究点一定积分的概念
思考1 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.
答两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限.思考2 怎样正确认识定积分ʃb a f(x)d x?
(2)定积分就是和的极限lim
n→∞∑n
i=1
(ξi)·Δx,而ʃb a f(x)d x只是这种极限的一种记号,读作“函数f(x)从a到b 的定积分”.
(3)函数f(x)在区间[a,b]上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件).
例1 利用定积分的定义,计算ʃ10x3d x的值.
解令f(x)=x3.
(1)分割
在区间[0,1]上等间隔地插入n -1个分点,把区间[0,1]等分成n 个小区间[i -1n ,i n ](i =1,2,…,n ),每个小区间的长度为Δx =i n -
i -1n =1n . (2)近似代替、求和 取ξi =i n (i =1,2,…,n ),则
ʃ10x 3
d x ≈S n =∑n
i =1f (i n
)·Δx =∑n i =1 (i n )3·1n
=1
n 4∑n i =1i 3=1n 4·14n 2(n +1)2=14(1+1n )2. (3)取极限
ʃ10x 3d x =lim n →∞S n =lim n →∞ 14(1+1n )2=14
. 反思与感悟 (1)利用定积分定义求定积分的数值仍然是“分割、近似代替、求和、取极值”这一过程,需要注意的是在本题中将近似代替、求和一起作为步骤(2),从而省略了解题步骤.
(2)从过程来看,当f (x )≥0时,定积分就是区间对应曲边梯形的面积.
跟踪训练1 用定义计算ʃ2
1(1+x )d x .
2+i -1n ,从而得∑n i =1f (ξi )Δx =∑n i =1(2+i -1n )·1n =∑n i =1⎝ ⎛⎭
⎪⎫2n +i -1n 2 =2n ·n +1n
2[0+1+2+…+(n -1)] =2+1n 2·n n -12=2+n -12n
. (3)取极限:S =lim n →∞
⎝ ⎛⎭⎪⎫2+n -12n =2+12=52
. 因此ʃ21(1+x )d x =52
. 探究点二 定积分的几何意义
思考1 从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么ʃb a f (x )d x 表示什么?
答 当函数f (x )≥0时,定积分ʃb
a f (x )d x 在几何上表示由直线x =a ,x =
b (a <b ),y =0及曲线y =f (x )所围成的曲边梯形的面积.
思考2 当f (x )在区间[a ,b ]上连续且恒有f (x )≤0时,ʃb a f (x )d x 表示的含义是什么?若f (x )有正有负呢?
答 如果在区间[a ,b ]上,函数f (x )≤0时,那么曲边梯形位于x 轴的下方(如图①). 由于b -a n >0,f (ξi )≤0,故 f (ξi )b -a n
≤0.从而定积分ʃb a f (x )d x ≤0,这时它等于如图①所示曲边梯形面积的相反值,即ʃb a f (x )d x =-S .
当f (x )在区间[a ,b ]上有正有负时,定积分ʃb a f (x )d x 表示介于x 轴、
函数f (x )的图象及直线x =a ,x =b (a ≠b )之间各部分面积的代数和(在x 轴上方的取正,在x 轴下方的取负).(如图②),即ʃb
a f (x )d x =-S 1+S 2-S 3. 例2 利用几何意义计算下列定积分:
(1)ʃ3-39-x 2d x ;(2)ʃ3-1(3x +1)d x .
(2)由直线x =-1,x =3,y =0,以及y =3x +1所围成的图形,如图所示:
ʃ3
-1(3x +1)d x 表示由直线x =-1,x =3,y =0以及y =3x +1所围成的图形在x 轴上方
的面积减去在x 轴下方的面积,
∴ʃ3-1(3x +1)d x =12×(3+13)×(3×3+1)-12(-13+1)×2=503-23
=16. 反思与感悟 利用几何意义求定积分,关键是准确确定被积函数的图象,以及积分区间,正确利用相关的几何知识求面积.不规则的图象常用分割法求面积,注意分割点的准确确定.
跟踪训练2 根据定积分的几何意义求下列定积分的值:
(1)ʃ1-1x d x ;(2)ʃ2π0cos x d x ;(3)ʃ1-1|x |d x .
解 (1)如图(1),ʃ1-1x d x =-A 1+A 1=0.
(2)如图(2),ʃ2π0cos x d x =A 1-A 2+A 3=0.
(3)如图(3),∵A 1=A 2,∴ʃ1-1|x |d x =2A 1=2×12
=1. (A 1,A 2,A 3分别表示图中相应各处面积)
探究点三 定积分的性质
思考1 定积分的性质可作哪些推广?
答 定积分的性质的推广 ①ʃb a [f 1(x )±f 2(x )±…±f n (x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ±…±ʃb
a f n (x )d x ;
②ʃb a f (x )d x =ʃ
c 1a f (x )
d x +ʃc 2c 1f (x )d x +…+ʃb c n f (x )d x (其中n ∈N *). 思考2 如果一个函数具有奇偶性,它的定积分有什么性质?
例3 计算ʃ3-3(
9-x 2-x 3
)d x 的值. 解 如图,
由定积分的几何意义得ʃ
3-39-x 2d x =π×322=9π2, ʃ3-3x 3d x =0,由定积分性质得
ʃ3-3(9-x 2-x 3)d x =ʃ3-39-x 2d x -ʃ3-3x 3d x =9π2
. 反思与感悟 根据定积分的性质计算定积分,可以先借助于定积分的定义或几何意义求出相关函数的定积分,再利用函数的性质、定积分的性质结合图形进行计算.
跟踪训练3 已知ʃ10x 3d x =14,ʃ21x 3d x =154,ʃ21x 2d x =73,ʃ42x 2d x =563
,求: (1)ʃ203x 3d x ;(2)ʃ416x 2d x ;(3)ʃ21(3x 2-2x 3
)d x .
解 (1)ʃ203x 3d x =3ʃ20x 3d x =3(ʃ10x 3d x +ʃ21x 3d x )
=3×(14+154
)=12; (2)ʃ416x 2d x =6ʃ41x 2d x =6(ʃ21x 2d x +ʃ42x 2d x )=6×(73+563
)=126; (3)ʃ21(3x 2-2x 3)d x =ʃ213x 2d x -ʃ212x 3
d x
=3ʃ21x 2d x -2ʃ21x 3d x =3×73-2×154=7-152=-12
.。