定义新运算练习答案

合集下载

2024六年级专项训练定义新运算练习及答案解析

2024六年级专项训练定义新运算练习及答案解析

第11讲定义新运算第一关1个新运算符【知识点】定义新运算是指用一个符号和已知运算表达式表示一种新的运算.注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算.(2)我们还要知道,这是一种人为的运算形式.它是使用特殊的运算符号,如:*、▲、★、◎、△、◆、■等来表示的一种运算.(3)新定义的算式中,有括号的,要先算括号里面的.【例1】规定:a△b=3a-2b.已知x△(4△1)=7,求x△5。

【答案】17【例2】定义a⊕b=2a+b,求(3⊕4)⊕5。

【答案】25【例3】设a、b为自然数,定义a⊕b=4a+b+2,求3⊕2。

【答案】16【例4】定义:a⊕b=a+b+ab,则(2⊕3)⊕4的值是多少?【答案】59【例5】已知a@b=2×a+b,求99@1。

【答案】199【例6】定义:a☆b=a1b-,求2☆(3☆4)。

【答案】2【例7】A、B表示两个数,若规定A*B=3243A B-,求12*6。

【答案】5【例8】把“△”定义为一种运算符号,其意义为:a△b=ba,求2△1+3△1+6△1。

【答案】1【例9】定义:△(A,B,C,D)=A×4+B×3+C×2+D×1,那么,△(2,0,1,6)【答案】16【例10】对不为零的自然数a,b,c,规定新运算“☆”:☆(a,b,c)=a-b ca+b c÷⨯,求☆(1,2,3)。

【答案】1 21【例11】规定一种运算“~”,a~b表示a,b中较大的数减较小的数的差,例如6~3=6-3=3,2~5=5-2=3.试求:(9~4)+(1~8)×(2~6)。

【答案】33【例12】定义a*b=a×b+a-2b,若3*m=17,求m。

【答案】14【例13】已知a、b为自然数,a∨b=2a+b,a∨2a∨3a∨4a∨5a∨6a∨7a∨8a∨9a=3039,求a。

小学奥数 定义新运算 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  定义新运算 精选练习例题 含答案解析(附知识点拨及考点)

定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

定义新运算附答案

定义新运算附答案

定义新运算附答案定义新运算附答案我们学过的常⽤运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算⽅式不同,实际是对应法则不同.可见⼀种运算实际就是两个数与⼀个数的⼀种对应⽅法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有⼀个唯⼀确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这⼀讲中,我们定义了⼀些新的运算形式,它们与我们常⽤的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表⽰数,规定a△b=3×a-2×b,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:⽤运算符号前⾯的数的3倍减去符号后⾯的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例⼦可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第⼆步39△2=3 × 39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例⼦可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为 a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:①5※7=5×7-(5+7)=35-12=23,7※5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第⼆步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例⼦可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么 8x-13=3 解出x=2.例3、定义新的运算a ⊕ b=a×b+a+b.①求6 ⊕ 2,2 ⊕ 6;②求(1 ⊕ 2)⊕ 3,1 ⊕(2 ⊕ 3);③这个运算有交换律和结合律吗?解:① 6 ⊕ 2=6×2+6+2=20,2 ⊕ 6=2×6+2+6=20.②(1 ⊕ 2)⊕ 3=(1×2+1+2)⊕ 3=5 ⊕ 3=5×3+5+3=231 ⊕(2 ⊕ 3)=1 ⊕(2×3+2+3)=1 ⊕ 11=1×11+1+11=23.③先看“⊕”是否满⾜交换律:a ⊕ b=a×b+a+bb ⊕ a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕ b=b ⊕ a,因此“⊕”满⾜交换律.再看“⊕”是否满⾜结合律:(a ⊕ b)⊕ c=(a×b+a+b)⊕ c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕ c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕ b)⊕ c=a ⊕(b ⊕ c),因此“⊕”满⾜结合律.说明:“⊕”对于普通的加法不满⾜分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有⼀个数学运算符号“?”,使下列算式成⽴:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?解:通过对2?4=8,5?3=13,3?5=11,9?7=25这⼏个算式的观察,找到规律: a ?b =2a +b ,因此7?3=2×7+3=17.例5、x 、y 表⽰两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、 n 、k 均为⾃然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采⽤分析法,从要求的问题⼊⼿,题⽬要求1△2)*3的值,⾸先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以⾸先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a*3,按“*”的定义: a*3=ma+3n ,在只有求出m 、n 时,我们才能计算a*3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.⼜因为m 、n 均为⾃然数,所以解出:①当m=1,n=2时:(2*3)△4=(1×2+2×3)△4 =8△4=k ×8×4=32k 有32k=64,解出k=2. ②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4 =9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是⾃然数⽭盾,因此m=3,n =1,k=971 这组值应舍去. 所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上⾯这⼀类定义新运算的问题中,关键的⼀条是:抓住定义这⼀点不放,在计算时,严格遵照规定的法则代⼊数值.还有⼀个值得注意的问题是:定义⼀个新运算,这个新运算常常不满⾜加法、乘法所满⾜的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运⽤这些运算律来解题.课后习题m=1n =2m=2n =23(舍去)m=3 n =11.a*b 表⽰a 的3倍减去b 的21,例如: 1*2=1×3-2×21=2,根据以上的规定,计算:①10*6;②7*(2*1). 2.定义新运算为 a ⼀b =b1a +,①求2⼀(3⼀4)的值;②若x ⼀4=1.35,则x =? 3.有⼀个数学运算符号○,使下列算式成⽴: 21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“?”,对于任意两个整数a 、b , a ⊕b =a +b +1, a ?b=a ×b -1,①计算4?[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”, x △y=y×2x ×m y×x ×6+(其中m 是⼀个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成⽴,求a 的值.7.“*”表⽰⼀种运算符号,它的含义是: x*y=xy 1+))((A y 1x 1++,已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b÷a ba +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为⾃然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表⽰选择两数中较⼤数的运算,例如:5◇3=3◇5=5,符号△表⽰选择两数中较⼩数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++&&=?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1) =10x +(1+2+3+?+9)=10x + 45因此有10x + 45=65,解出x=2.欢迎您的下载,资料仅供参考!致⼒为企业和个⼈提供合同协议,策划案计划书,学习资料等等打造全⽹⼀站式需求。

定义新运算附答案

定义新运算附答案

定义新运算附答案我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 × 39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为 a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:①5※7=5×7-(5+7)=35-12=23,7※5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么 8x-13=3 解出x=2.例3、定义新的运算a ⊕ b=a×b+a+b.①求6 ⊕ 2,2 ⊕ 6;②求(1 ⊕ 2)⊕ 3,1 ⊕(2 ⊕ 3);③这个运算有交换律和结合律吗?解:① 6 ⊕ 2=6×2+6+2=20,2 ⊕ 6=2×6+2+6=20.②(1 ⊕ 2)⊕ 3=(1×2+1+2)⊕ 3=5 ⊕ 3=5×3+5+3=231 ⊕(2 ⊕ 3)=1 ⊕(2×3+2+3)=1 ⊕ 11=1×11+1+11=23.③先看“⊕”是否满足交换律:a ⊕ b=a×b+a+bb ⊕ a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕ b=b ⊕ a,因此“⊕”满足交换律.再看“⊕”是否满足结合律:(a ⊕ b)⊕ c=(a×b+a+b)⊕ c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕ c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕ b)⊕ c=a ⊕(b ⊕ c),因此“⊕”满足结合律.说明:“⊕”对于普通的加法不满足分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12; 因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?解:通过对2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25这几个算式的观察,找到规律: a ⊗b =2a +b ,因此7⊗3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、 n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a*3,按“*”的定义: a*3=ma+3n ,在只有求出m 、n 时,我们才能计算a*3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4 =8△4=k ×8×4=32k 有32k=64,解出k=2. ②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4 =9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971 这组值应舍去. 所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.课后习题m=1n =2m=2n =23(舍去)m=3 n =11.a*b 表示a 的3倍减去b 的21,例如: 1*2=1×3-2×21=2,根据以上的规定,计算: ①10*6; ②7*(2*1). 2.定义新运算为 a ㊀b =b1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =? 3.有一个数学运算符号○,使下列算式成立: 21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b , a ⊕b =a +b +1, a ⊗b=a ×b -1, ①计算4⊗[(6⊕8)⊕(3⊕5)]的值; ②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”, x △y=y×2x ×m y×x ×6+(其中m 是一个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ), 若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是: x*y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b÷a ba +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++&&=?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1) =10x +(1+2+3+⋯+9)=10x + 45因此有10x + 45=65,解出x=2.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

定义新运算题目及答案解析-小学奥数

定义新运算题目及答案解析-小学奥数

专题定义新运算知识点1 直接运算型【基础训练】1、【★】设a,b都表示两个不同的数,规定:a△b=2×a+3×b,表示a的2倍加上b的3倍的和.(1)求4△7的值.(2)求2△3的值.【答案】(1)29;(2)13【解析】(1)找到a与b对应的数,根据定义的新运算,将算式中的a与b换成对应的数,再进行计算,即a=4,b=7,4△7=2×4+3×7=29;(2)方法同上,即a=2,b=3,2△3=2×2+3×3=13.2、【★★】设a、b都表示两个不同的数,规定:a▽b=a×b-(a+b).(1)求5▽6▽7的值.(2)求7▽(5▽4)的值.【答案】107;59【解析】(1)按照从左往右的顺序计算,①先算5▽6=5×6-(5+6)=30-11=19,②再算19▽7=19×7-(19+7)=133-26=107,所以5▽6▽7=107.(2)有括号的要先算括号里面的,①先算5▽4=5×4-(5+4)=20-9=11,②再算7▽11=7×11-(7+11)=77-18=59,所以7▽(5▽4)=59.3、【★★】x,y表示两个数,规定新运算“☆”及“○”如下:x☆y=2×x+3×y,x○y=6×x×y.(1)求10☆2的值.(2)求4○25的值.【答案】26;600【解析】(1)原式=2×10+3×2=26;(2)原式=6×4×25=600【拓展提升】1、【★★★】规定:a□b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数.求1□100的值.【答案】5050【解析】1□100=1+2+3+…+100=(1+100)×100÷2=50502、【★★★】已知x、y是任意有理数.我们规定:x☆y=x+y-1,x○y=x×y-2.(1)求10☆9.(2)求7○8.(3)求4○[(6☆8)☆(3○5)]的值.【答案】18;54;98【解析】(1)10☆9=10+9-1=18;(2)7○8=7×8-2=54(3)先算小括号里面的6☆8和3○5,6☆8=6+8-1=13,3○5=3×5-2=13.再计算中括号里面的13☆13=13+13-1=25.最后计算4○25=4×25-2=98.知识点2 反解未知型【拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x×y+2A,已知3□4=16.(1)求常数A是多少?(2)求3□(4□5)【答案】2;76【解析】(1)建立方程,3×4+2A=16,解得A=2.(2)先算括号里面的,①4□5=4×5+2×2=20+4=24,②再算3□24=3×24+2×2=72+4=762、【★★★★】规定:()()()121a b a a a a b ∆=+++++++-,其中a 、b 表示自然数. 已知1465x ∆∆=(),求x .【答案】x=2【解析】先求1△4=1+2+3+4=10,再算x △10=65,那么x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,即10x+45=65,解得x=2知识点3 总结规律型【拓展提升】1、【★★★】已知:13123*=⨯⨯,242345*=⨯⨯⨯,4545678*=⨯⨯⨯⨯,…(1)求33*的值.(2)求25*的值.【答案】60;7202、【★★★】已知:12111∇=+,23222222∇=++,444444444444∇=+++,……(1)求73∇的值 。

小学数学《定义新运算》练习题(含答案)

小学数学《定义新运算》练习题(含答案)

小学数学《定义新运算》练习题(含答案)(一) 直接运算型【例1】 (★★)定义运算“⊕”如下:()2a b a b ⊕=+÷(1) 计算2007⊕2009,2006⊕2008(2) 计算1⊕5⊕9,1⊕(5⊕9),分析:(1)2007⊕2009=(2007+2009)÷2=2008;2006⊕2008=(2006+2008)÷2=2007(2)1⊕5⊕9=(1+5)÷2⊕9=3⊕9=(3+9)÷2=61⊕(5⊕9)=1⊕(5+9)÷2=1⊕7=(1+7)÷2=4;【例2】 (★★★)n*b 表示n 的3倍减去b 的2倍,例如3*2=3×3-2×2=5.根据以上的规定,10*6应等于_____.分析:根据新运算“*”的规定:10*6=10×3-6×2=18.[巩固] 设a △b =a ×a -2×b ,那么,5△6=______,5△2=_____.分析:(1)5△6=5×5-2×6=13(2)5△2=5×5-2×2=21【例3】 (★★★)我们规定:a c b d =ad -bc ,例如:23 14=2×4-1×3=8-3=5. 求45 610的值.分析:45 610=4×10-5×6=40-30=10[前铺]如果用|A,B|表示A 与B 中较大数与较小数之差,求:(1)|2+3,2×3|;(2)||3,5|,3|分析:(1)|2+3,2×3|=|5,6|=6-5=1(2)||3,5|,3|=|5-3,3|=|2,3|=3-2=1【例4】 (★★★南京市第二届“兴趣杯”少年数学邀请赛决赛)设m 、n 是两个数,规定:m*n =4×n-(m +n)÷2,这里“×,+,一,÷”是通常的四则运算符号,括号的作用也是通常的含义,“*”是新的运算符号. 计算:3*(4*6)= _____.分析:4*6=4×6-(4+6)÷2=19,3*19=4×19-(3+19)÷2=65.[巩固] 规定:a ▽b =(a +b )÷2+2×a ,则3▽(6▽8)是多少?.分析:6▽8=(6+8)÷2+2×6=19,3▽19=(3+19)÷2+2×3=17,所以3▽(6▽8)=17.【例5】 (★★★★奥数网题库)定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =(a+b)÷2,如果a +b 是奇数,则a ☆b =(a+b-1)÷2.求:(1)(1 999☆2 000)☆(2 001☆2 002);(2)1 998☆(2 000☆2 002)☆2 004.分析:(1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数, 所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (3) 因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以 1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001[巩固] 定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =(a+b)÷3,如果a +b 除以3余数为1,则a*b =(a+b-1)÷3,如果a +b 除以3余数为2,则a*b =(a+b-2)÷3.求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891【例6】 (★★★北京市第十一届“迎春杯”赛)如果 3*2=3+33=362*3=2+22+222=2461*4=1+11+111+1111=1234那么4*5=( ).分析:4*5=4+44+444+4444+44444=49380[巩固]规定: 6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234.求7*5.分析:7*5=7+77+777+7777+77777=86415【例7】 (★★★★奥数网题库)定义新运算“!”如下:对于认识自然数n ,n !=n ×(n -1)×(n -2)×……×3×2×1.(1) 求3!,4!,5!;(2) 证明:3×(6!)+24×(5!)=7!分析:(1)3!=3×2×1=6;4!=4×3×2×1=24;5!=5×4×3×2×1=120;(2)证明:3×(6!)+24×(5!)=3×(6!)+4×6×(5!)=3×(6!)+4×(6!)=7×(6!)=7![拓展] 对自然数m ,n (n ≥m ),规定m n P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120.(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[总结] 这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.(二)反求未知数【例8】 (★★★★奥数网题库)假设A*B 表示A 的3倍减去B 的2倍,即A*B =3A -2B.已知w*(4*1)=7,求w*4的值.分析:4*1=3×4-2×1=10,所以w*(4*1)=w*10=3×w -10×2=7,所以w =9.那么w*4= 9*4=3×9-4×2=19.[前铺]对于数 a , b , c , d ,规定〈a , b , c ,d 〉=2ab-c +d.已知〈1,3,5,x 〉=7,求x 的值.分析:<1,3, 5,x >=2×1×3-5+x =1+x=7,x=6【例9】(★★★★奥数网题库)对于两个数a、b,a△b表示a+b-1.计算:(1)(7△8)△6(2)(6△A)△A=84,求A.分析:(1)7△8=7+8-1=14,14△6=14+6-1=19;(2)6△A=6+A-1=5+A,(5+A)△A=5+A+A-1=2×A+4=84,所以A=40.[拓展]如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,那么当( a△2)△3=12时, a等于几?分析:(a△2)△3=[(a-2)×2]△3=(2a-4)△3=(2a-4-2)×3=6a-18,由6a-18=12,解得a=5【例10】(★★★★第八届“祖冲之杯”数学邀请赛)对整数A、B、C,规定符号等于A×B+B×C-C÷A,例如:=3×5+5×6-6÷3=15+30-2=43,已知:=28,那么A=_______.分析:2A+4A-4÷2=28,即 6A=30,A=5[总结] 这类题型给出的运算式中含有一个或多个未知数,我们不能直接根据运算式计算,首先,我们应该根据给出的运算等式将未知数求出来,再进行运算.(三)其他常见类型【例11】(★★★★★南京市首届“兴趣杯”少年数学邀请赛)小明来到红毛族探险,看到下面几个红毛族的算式:8×8=8,9×9×9=5,9×3=3, (93+8)×7=837.老师告诉他,红毛族算术中所用的符号“+、一、×、÷、( )、=”与我们算术中的意义相同,进位也是十进制,只是每个数字虽然与我们写法相同,但代表的数却不同. 请你按红毛族的算术规则,完成下面算式:89×57=______ .分析: 由红毛族算式“8×8=8 ”知“8”是1,“9×9×9=5”可知“9”是2,“5”是8.由“9×3=3”知“3”是0.“7”是5.于是可知“89×57”是12×85=1020即“8393”.[前铺]a、b、c代表一位数,规定a×a=a,b×b×b=c,b×d=d,问a+b+c+d=?分析:由a×a=a可知a=1,由b×b×b=c,可知b=2,c=8,由b×d=d可知,d=0,所以a+b+c+d=1+2+8+0=11【例12】(★★★第九届“祖冲之杯”数学邀请赛)下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A 值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,A×B=C ,所以当输入A值是2008,输入B值是4时,C=A×B=2008×4=8032[拓展]如果运算器输出的是下面的规律,“?”应填什么呢?分析:通过观察,15÷3=5=4+1,28÷7=4=3+1,60÷15=4=3+1,所以,第四列的?处应填(7+1)×8=64,第五列的?处应填:52÷13-1=4-1=31.(例1)a、b是自然数,规定:a△b=a×5+b÷3,求8△9的值.分析:8△9=8×5+9÷3=432.a*b表示a的3倍减去b的一半,例如,1*2=1×3-2÷2=2,根据这个规定,计算:(1)10*6 (2)7*(2*4).分析:10*6=10×3-6÷2=27,7*(2*4)=7*(2×3-4÷2)=7*4=7×3-4÷2=193.(例5)定:A※B=B×B+A,计算(2※3)※(4※1)的值.分析:2※3=3×3+2=11,4※1=1×1+4=5,11※5=5×5+11=36,所以最后结果(2※3)※(4※1)=36.4.(例4)如果a◇b=a×b-(a+b),已知(3◇4)◇x=19,求x的值.分析:3◇4=3×4-(3+4)=5,5◇x=19,5×x-(5+x)=19,4x-5=19,4x=24,x=6.5.(例12)右下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,A÷B×2=C ,所以当输入A值是2008,输入B值是4时,C=A÷B=2008÷4×2=1004。

奥数练习--定义新运算练习有答案

奥数练习--定义新运算练习有答案

三年级思维训练3--定义新运算一、已知当口大于或等于6时, 规定a△6=3×a+4×6; 当a小于b时, 规定a△6=4×a+3×b, 按此规定计算: (6△4)△35=二、定义新运算符号*为A* B=A×B-A-B, 已知X*5=11, 那么X=三、规定2⊕I= 2 , 2⊕2=2+22=24, 3⊕3=3+33+333=369 ,那么5⊕5=四、通过一种新的运算“△”计算,有以下结果:2△3=2×3×4=244△2=4×5=20那么6△3-7△2等于多少?五、定义f(1)=1, f(2)=1+2=3, f(3)=1+2+3=.6, …, 那么f(100)=六、若记号“贝.贝→京京”代表“贝贝比京京高”,依照下图的记号,最高的是七、如果P↑表示P+1, P↓表示P-1, 则(4↑) ×(3↓)等于1. A. 9↓ B. 1.0↓ C. 11↓ D.12↑ E.13↓八、规定一种运算符号“@”, M@N=(M+N)÷5, 那么X@5=10中X的值是九、在密码学中,直接可以看到的内容是明码,对明码进行某种处理后得到的内容为密码有一种密码, 将英文26个字母a、b、c…、z(不论大小写)依次对1、2、3…、26这26个自然数(见表格)。

当明码对应的序号x为奇数时,密码对应的序号y=(x+1)÷2;当明码对10应的序号 x为偶数时,密码对应的序号y=x÷2+13。

按上述规定,请你算出明码“ love”译成密码是什么?十、对于任意自然数, 定义n! =1×2×…×n, 如4!-1×2×3×4. 那么, 1! +2!+3 ! +4 ! +5 !=十一、规定3.☆2=3+33=36, 2☆3=2+22+222=246, 1☆4=1+11+111+1111=1234.如果一位数a、b满足a☆b=49380, 求a和b.十二、规定1※2=1+2=3,2※3=2+3+4=9,5※4=5+6+7+8=26. 如果a※15=165, 那么a=十三、如果A*B=2A+B,若A*2A*3A*4A*5A=570, 那么 A=十四、已知有一个数学符号△使下列等式成立: 2△4=8,5△3=13,3△5=11, 9△7=25, 那么7△3=十五、我们规定: AOB表示A、B中较大的数, A△B表示A、B中较小的数. 则(10△8-6○5)×(1 1013+15△20)=十六、已知“△”表示一种运算符号, 若a△b=(a-b) ÷2, 则3△(6△4)=十七、对于数x、y,定义两种运算“*”及“△”如下:x*y=6x+5y, x△y=3xy, 则(2*3)△4=十八、如果6*2=6+7。

小学数学《定义新运算》练习题(含答案)(1)

小学数学《定义新运算》练习题(含答案)(1)

小学数学《定义新运算》练习题(含答案)(一) 直接运算型【例1】 (★★奥数网题库)定义运算“⊕”如下:2a b a b +⊕=. (1) 计算2006⊕2008(2) 计算3⊕7⊕11,3⊕(7⊕11)(3) a b b a ⊕=⊕是否成立?(4) ()a b c a b c ⊕⊕=⊕⊕是否成立?分析:(教师先告诉学生2a b +表示(a+b )÷2) (1)2006⊕2008=200620082+=2007; (2)3⊕7⊕11=372+⊕11=5⊕11=5112+=8 3⊕(7⊕11)=3⊕7112+=3⊕9=392+=6; (3)因为2a b a b +⊕=,2b a b a +⊕=,又因为22a b b a ++=,所以a b b a ⊕=⊕成立; (4)由(2)的结论,3⊕7⊕11=8,3⊕(7⊕11)=6,因为8≠6,所以,()a b c a b c ⊕⊕=⊕⊕不成立.(强调“举反例”时只要有一个就能说明证明不成立)[拓展]两个整数a 和b ,a 除以b 的余数记为ab.例如,135=3.根据这样定义的运算,计算: (1)(269) 4等于多少? (2)108(200819)分析:(1)因为:26÷9=2……8,8÷4=2,所以 (269)4=84=0(2)因为:2008÷19=105……13,108÷13=8……4,所以 108(200819)=10813=4【例2】 (★★奥数网题库)规定:符号“△”为选择两数中较大的数的运算,“ ☆”为选择两数中较小的数的运算,例如,3△5=5,3☆5=3.请计算下式:[(70☆3)△5]×[ 5☆(3△7)].分析:因为(70☆3)△5=3△5=5,5☆(3△7)=5☆7=5,所以[(70☆3)△5]×[ 5☆(3△7)]=5×5=25[拓展]定义符号“\”表示求两个自然数相除所得的商的运算,例如:9\2=4,10\3\=3(1) 求:29\8,2008\4,(1320×500)\250;(2) 适用符号“\”和已经学过的运算符号来表示“求两个自然数相除所得余数”的运算.分析:(1)因为29÷8=3…5,所以29\8=3,同理,2008\4=502,(1320×500)\250=2640(2)因为被除数÷除数=商…余数,所以余数=被除数-除数×商,所以,a 除以b 的余数为a-b ×(a\b )【例3】 (★★★奥数网题库)我们规定:a c b d =ad -bc ,例如:23 14=2×4-1×3=8-3=5. 求45 610的值.分析:45 610=4×10-5×6=40-30=10[前铺]如果用|A,B|表示A 与B 中较大数与较小数之差,求:(1)|2+3,2×3|;(2)||3,5|,3|分析:(1)|2+3,2×3|=|5,6|=6-5=1(2)||3,5|,3|=|5-3,3|=|2,3|=3-2=1【例4】 (★★★奥数网题库)定义新的运算a b a b a b ⊕=⨯++,求:(1)62⊕,26⊕(2)(12)3⊕⊕,1(23)⊕⊕(3)这个运算有交换律吗?分析:(1)62⊕=6×2+6+2=20;26⊕=2×6+2+6=20(2)(12)3⊕⊕=(1×2+1+2)⊕3=5⊕3=5×3+5+3=23;1(23)⊕⊕=1⊕(2×3+2+3)=1⊕11=1×11+1+11=23(3)由于a b a b a b ⊕=⨯++=×b a b a ++(普通加法、乘法交换律),所以a b b a ⊕=⊕,即满足交换律.[拓展]定义运算※为a ※b =a ×b -(a +b ),(1) 求5※7,7※5;(2) 求12※(3※4),(12※3)※4;(3) 这个运算“※”有交换律、结合律吗?分析:(1)5※7=5×7-(5+7)=35-12=23,7※ 5= 7×5-(7+5)=35-12=23.(2)要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.(3)由于a ※b =a ×b -(a +b );b ※a =b ×a -(b +a )=a ×b -(a +b )(普通加法、乘法交换律), 所以有a ※b =b ※a ,因此“※”有交换律.由(2)的例子可知,运算“※”没有结合律.【例5】 (★★★★奥数网题库)定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =a b 2+,如果a +b 是奇数,则a ☆b =a b 12+-. 求:(1)(1 999☆2 000)☆(2 001☆2 002);(2)1 998☆(2 000☆2 002)☆2 004.分析:(先告诉学生a b 2+是一种运算,表示(a+b )÷2,a b 12+-就表示(a+b-1)÷2) (1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数, 所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (2)因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以 1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001.[巩固] 定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =a b 3+,如果a +b 除以3余数为1,则a*b =a b-13+,如果a +b 除以3余数为2,则a*b =a b-23+. 求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891【例6】 (★★★★奥数网题库)对自然数m ,n (n ≥m ),规定m n P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[前铺]定义新运算“!”如下:对于认识自然数n ,n !=n ×(n -1)×(n -2)×……×3×2×1.求3!,4!,5!;证明:3×(6!)+24×(5!)=7!分析:(1)3!=3×2×1=6;4!=4×3×2×1=24;5!=5×4×3×2×1=120;(2)证明:3×(6!)+24×(5!)=3×(6!)+4×6×(5!)=3×(6!)+4×(6!)=7×(6!)=7![总结]这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.(二)反求未知数【例7】 (★★★★奥数网题库)如果a △b 表示(a-2)×b ,例如3△4=(3-2)×4=4,那么当( a △2)△3=12时, a 等于几?分析:(a △2)△3=[(a -2)×2]△3=(2a -4)△3=(2a-4-2)×3=6a-18,由6a-18=12,解得a=5[前铺]对于两个数a 、b ,a △b 表示a +b -1.计算:(1)(7△8)△6(2)(6△A )△A =84,求A .分析:(1)7△8=7+8-1=14,14△6=14+6-1=19;(2)6△A =6+A -1=5+A ,(5+A )△A =5+A +A -1=2×A +4=84,所以A =40.【例8】 (★★★★奥数网题库)定义新运算“※”如下:对任意自然数a ,b ,a ※b=5×a-3×b ,能否找到一个自然数n ,使得5※6※n=5※(6※n )?如果存在,求出自然数n ;如果不存在,说明理由.分析:5※6※n=(5×5-3×6)※n=7※n=5×7-3×n ;5※(6※n )=5※(5×6-3×n )=5※(30-3×n )=5×5-3×(30-3×n )=9×n-65,因为5※6※n=5※(6※n ),所以有35-3×n=9×n-65,即12×n=100,所以没有满意的自然数n ,使得5※6※n=5※(6※n )【例9】 (★★★★奥数网题库)规定:a △b=a +(a +1)+(a +2)+…+(a +b-1),其中a 、b 表示自然数.(1)求1△100的值;(2)已知x △10=75,求x.分析:(1)1△100=1+2+3+……+100=5050(2)x △10=x +x +1+x +2+……+x +9=10×x +45=75,10×x=30,所以x=3[拓展] 对于任意的整数x 与y 定义新运算“△”:x △y=y mx y x 26+⋅⋅ (其中m 是一个确定的整数).如果1△2=2,则2△9=?分析:已知1△2=2,根据定义得 1△2=6121221224m m ⨯⨯==⨯+⨯+,于是有2×(m +4)=12,解出m=2.所以 6295429==222911⨯⨯⨯+⨯[总结] 这类题型给出的运算式中含有一个或多个未知数,我们不能直接根据运算式计算,首先,我们应该根据给出的运算等式将未知数求出来,再进行运算.(三)计算机程序语言【例10】 (★★★第九届“祖冲之杯”数学邀请赛)下图是一个运算器的示意图,A 、B 是输入的两上数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是2008,输入B 值是4时,运算器输出的C 值是_____.分析:运算器输入的A 是被除数,B 是除数,输出的是商减去1,2008÷4=502,502-1=501,所以C =501.【例11】 (★★★★奥数网题库)有A ,B ,C ,D 四种装置,将一个数输入一种装置后会输出另一个数.装置A ∶将输入的数加上5;装置B ∶将输入的数除以2;装置C ∶将输入的数减去4;装置D ∶将输入的数乘以3.这些装置可以连接,如装置A 后面连接装置B 就写成A·B,输入1后,经过A·B,输出3.那么输入9,经过A·B·C·D,输出几?分析:输入9经过A 装置以后结果是9+5=14,再经过B 装置以后结果是14÷2=7,经过C 装置以后结果成为7-4=3,最后经过D 装置以后,最终输出结果等于3×3=9.[拓展]有A ,B ,C ,D 四种装置,将一个数输入一种装置后会输出另一个数.装置A ∶将输入的数加上5;装置B ∶将输入的数除以2;装置C ∶将输入的数减去4;装置D ∶将输入的数乘以3.这些装置可以连接,如装置A 后面连接装置B 就写成A ·B ,输入1后,经过A ·B ,输出3.经过B ·D ·A ·C ,输出的是100,输入的是几?分析:(方法一)假设输入的是w,那么经过B·D·A·C,变为:w÷2×3+5-4=100,w=66 (方法二)将100反过来经过C之前为:100+4=104,经过C·A之前为104-5=99,经过C·A·D 之前为:99÷3=33,经过C·A·D·B之前为:33×2=66(四)其他常见类型【例12】(★★★★★南京市首届“兴趣杯”少年数学邀请赛)印第安人的古老部落里有这样一些式子:8×8=8,9×9×9=5,9×3=3, (93+8)×7=837.这些算术中所用的符号“+、一、×、÷、( )、=”与我们算术中的意义相同,进位也是十进制,只是每个数字虽然与我们写法相同,但代表的数却不同.请你按印第安人的算术规则,完成下面算式:89×57=______ .分析: 由印第安人的算式“8×8=8”知“8”是1,“9×9×9=5”可知“9”是2,“5”是8.由“9×3=3”知“3”是0.继而可推得“7”是5.于是可知“89×57”是12×85=1020即“8393”.[前铺]a、b、c代表一位数,规定a×a=a,b×b×b=c,b×d=d,问a+b+c+d=?分析:由a×a=a可知a=1,由b×b×b=c,可知b=2,c=8,由b×d=d可知,d=0,所以a+b+c+d=1+2+8+0=111.(例2)规定:a▽b=(a+b)÷2+2×a,则3▽(6▽8)是多少?.分析:6▽8=(6+8)÷2+2×6=19,3▽19=(3+19)÷2+2×3=17,所以3▽(6▽8)=17.2.(例6)如果 3*2=3+33=362*3=2+22+222=2461*4=1+11+111+1111=1234那么4*5=( ).分析:4*5=4+44+444+4444+44444=493803.(例7)对于数 a, b, c, d,规定〈a, b, c,d〉=2ab-c+d.已知〈1,3,5,x〉=7,求x 的值.分析:<1,3, 5,x>=2×1×3-5+x=1+x=7,x=64.(例9)如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,那么当( a△2)△3=12时, a等于几?分析:(a△2)△3=[(a-2)×2]△3=(2a-4)△3=(2a-4-2)×3=6a-18,由6a-18=12,解得a=55.(例10)右下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,10÷5=2,48÷8=6,121÷11=11,5=2+3,9=6+3,14=11+3,所以(A-3)×B=C ,所以当输入A值是2008,输入B值是4时,C=(A-3)×B=2005×4=8020。

集合中的定义新运算(含答案)

集合中的定义新运算(含答案)

集合中的定义新运算一、单选题(共10道,每道10分)1.设集合,,如果把b-a叫做集合的“长度”,那么集合的“长度”是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:新定义集合2.若集合S满足对任意的,有,则称集合S为“闭集”,下列集合不是“闭集”的是( )A.自然数集B.整数集C.有理数集D.实数集答案:A解题思路:试题难度:三颗星知识点:新定义集合3.设和是两个集合,定义集合,如果,,那么( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:新定义集合4.对于集合A,B,规定,则( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:新定义集合5.定义,设集合,,则集合的所有元素之和为( )A.3B.0C.6D.-2答案:B解题思路:试题难度:三颗星知识点:新定义集合6.设集合,集合,定义,则的元素个数为( )A.4B.7C.10D.12答案:C解题思路:试题难度:三颗星知识点:新定义集合7.设集合,在上定义运算为:,其中,.那么满足条件的有序数对共有( )个.A.12B.8C.6D.4答案:A解题思路:试题难度:三颗星知识点:新定义集合8.设是整数集的一个非空子集,对于,如果且,那么是的一个“孤立元”,给定,则A的所有子集中,“孤立元”仅有1个的集合共有( )个.A.10B.11C.12D.13答案:D解题思路:试题难度:三颗星知识点:新定义集合9.集合A的n元子集是指A的含有n个元素的子集.已知集合中所有二元子集中两个元素的和的集合为,则集合的任意2个不同元素的差的绝对值的集合是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:新定义集合10.对于集合M,定义函数,对于两个集合M,N,定义集合.已知,,下列结论不正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:新定义集合。

小学数学《定义新运算》练习题(含答案)

小学数学《定义新运算》练习题(含答案)

小学数学《定义新运算》练习题(含答案)(一) 直接运算型【例1】(★★★奥数网题库)两个整数a 和b ,a 除以b 的余数记为ab.例如,135=3.根据这样定义的运算,计算: (1)(269)4等于多少?(2)108(200819)分析:(1)因为:26÷9=2……8,8÷4=2,所以 (269)4=84=0 (2)因为:2008÷19=105……13,108÷13=8……2,所以 108(200819)=10813=4[前铺]定义运算“⊙”如下:2a ba b +⊕=. (1) 计算2007⊕2009,2006⊕2008 (2) 计算1⊕5⊕9,1⊕(5⊕9),分析:(教师先告诉学生2a b+表示(a+b )÷2) (1)2007⊕2009=200720092+=2008;2006⊕2008=200620082+=2007(2)1⊕5⊕9=152+⊕9=3⊕9=392+=6 1⊕(5⊕9)=1⊕592+=1⊕7=172+=4;【例2】 (★★★奥数网题库)定义运算※为a ※b =a ×b -(a +b ), (1) 求5※7,7※5; (2) 求12※(3※4),(12※3)※4;(3) 这个运算“※”有交换律、结合律吗?分析:(1)5※7=5×7-(5+7)=35-12=23,7※ 5= 7×5-(7+5)=35-12=23.(2)要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.(3)由于a ※b =a ×b -(a +b );b ※a =b ×a -(b +a )=a ×b -(a +b )(普通加法、乘法交换律), 所以有a ※b =b ※a ,因此“※”有交换律.由(2)的例子可知,运算“※”没有结合律.[巩固]定义新的运算a b a b a b ⊕=⨯++,求: (1)62⊕,26⊕(2)(12)3⊕⊕,1(23)⊕⊕(3)这个运算有交换律吗?分析:(1)62⊕=6×2+6+2=20;26⊕=2×6+2+6=20(2)(12)3⊕⊕=(1×2+1+2)⊕3=5⊕3=5×3+5+3=23; 1(23)⊕⊕=1⊕(2×3+2+3)=1⊕11=1×11+1+11=23(3)由于a b a b a b ⊕=⨯++=×b a b a ++(普通加法、乘法交换律),所以a b b a ⊕=⊕,即满足交换律.[拓展]如果a 、b 、c 是三个整数,则他们满足加法交换律和结合律,即a +b =b +a ,(a +b )+c =a +(b +c ).现在规定一种运算“*”,它对于整数a 、b 、c 、d 满足:(a ,b )*(c ,d )=(a ×c +b ×d ,a ×c -b ×d ).例如:(4,3)*(7,5)=(4×7+3×5,4×7-3×5)=(43,13).请你举例说明:“*”运算是否满足交换律和结合律.分析:(7,5)*(4,3)=(4×7+3×5,4×7-3×5)=(43,13),所以“*”运算满足加法交换律, (2,1)*(3,2)*(3,4)=(2×3+1×2,2×3-1×2)*(3,4)=(8,4)*(3,4)=(3×8+4×4,3×8-4×4)=(40,8) ;(2,1)*[(3,2)*(3,4)]=(2,1)*[3×3+2×4,3×3-2×4]=(2,1)*[17,1]=(2×17+1×1,2×17-1×1)=(35,33).所以,(2,1)*(3,2)*(3,4)≠ (2,1)*[(3,2)*(3,4)],因此 “*”不满足结合律. 【例3】 (★★★奥数网题库)我们规定:a cb d =ad+bc ,求2516 4021的值. 分析:2516 4021=25×21+40×16=525+640=1165[巩固]我们规定:a cb d =ad -bc ,例如:23 14=2×4-1×3=8-3=5. 求45610的值.分析:45610=4×10-5×6=40-30=10【例4】 (★★★南京市第二届“兴趣杯”少年数学邀请赛决赛)规定:符号“△”为选择两数中较大的数的运算,“ ☆”为选择两数中较小的数的运算,例如,3△5=5,3☆5=3.请计算下式:[(70☆3)△5]×[ 5☆(3△7)].分析:因为(70☆3)△5=3△5=5,5☆(3△7)=5☆7=5,所以[(70☆3)△5]×[ 5☆(3△7)]=5×5=25[巩固] 定义两种运算“⊕”“⊗”,对于任意两个整数a 、b ,a ⊕b=a+b-1,a ⊗b=a ×b-1,计算:4[]⊗⊕⊕⊕(68)(35)分析:⊕68=6+8-1=13,⊕35=3+5-1=7,137⊕=13+7-1=19,4⊗19=4×19-1=754[]⊗⊕⊕⊕(68)(35)=75【例5】 (★★★★奥数网题库)定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =a b3+,如果a +b 除以3余数为1,则a*b =a b-13+,如果a +b 除以3余数为2,则a*b=a b-23+. 求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891[巩固]定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =a b2+,如果a +b 是奇数,则a ☆b =a b 12+-. 求:(1)(1 999☆2 000)☆(2 001☆2 002); (2)1 998☆(2 000☆2 002)☆2 004.分析: (教师先告诉学生2a b+表示(a+b )÷2) (1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数,所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (3) 因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001【例6】 (★★★★奥数网题库)对自然数m ,n (n ≥m ),规定mn P =n ×(n -1)×(n -2)×…×(n -m +1);[(1)(1)][(1)1]m m mn m nn n n m m m CP P =÷=⨯-⨯⨯-+÷⨯-⨯⨯.求:123456666666,,,,,C C C C C C分析:16C=(16P)÷(11P)=6÷1=6;26C=(6×5)÷(2×1)=15;36C=(6×5×4)÷(3×2×1)=20;46C=(6×5×4×3)÷(4×3×2×1)=15;56C=(6×5×4×3×2)÷(5×4×3×2×1)=6;66C=(66P)÷(66P)=1[前铺]对自然数m ,n (n ≥m ),规定mn P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[总结]这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.(二) 反求未知数【例7】 (★★★★奥数网题库)定义新运算“※”如下:对任意自然数a ,b ,a ※b=5×a-3×b ,能否找到一个自然数n ,使得5※6※n=5※(6※n )?如果存在,求出自然数n ;如果不存在,说明理由.分析:5※6※n=(5×5-3×6)※n=7※n=5×7-3×n ;5※(6※n )=5※(5×6-3×n )=5※(30-3×n )=5×5-3×(30-3×n )=9×n-65,因为5※6※n=5※(6※n ),所以有35-3×n=9×n-65,即12×n=100,所以没有满意的自然数n ,使得5※6※n=5※(6※n )【例8】(★★★★奥数网题库)对于任意的整数x 与y 定义新运算“△”:x △y=ymx yx 26+⋅⋅ (其中m 是一个确定的整数).如果1△2=2,则2△9=?分析:已知1△2=2,根据定义得 1△2=6121221224m m ⨯⨯==⨯+⨯+,于是有2×(m +4)=12,解出m=2.所以6295429==222911⨯⨯⨯+⨯[拓展]x 、y 表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时:(2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k 有32k=64,解出k=2. ②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k=64,k 不是自然数, 所以m=l ,n=2,k=2. (1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.[总结] 这类题型给出的运算式中含有一个或多个未知数,我们不能直接根据运算式计算,首先,我们应该根据给出的运算等式将未知数求出来,再进行运算.(三)计算机程序语言【例9】 (★★★第九届“祖冲之杯”数学邀请赛)如下图是一个运算器的示意图,A 、B 是输入的两上数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是1999,输入B 值是9时,运算器输出的C 值是_____.分析:观察表格可得:运算器输入的A 是被除数,B 是除数,输出的是余数因为1999÷9=222……1,所以C =1.[前铺]下图是一个运算器的示意图,A 、B 是输入的两上数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是2008,输入B 值是4时,运算器输出的C 值是_____.分析:运算器输入的A是被除数,B是除数,输出的是商减去1,2008÷4=502,502-1=501,所以C=501.【例10】(★★★★奥数网题库)有A,B,C,D四种装置,将一个数输入一种装置后会输出另一个数.装置A∶将输入的数加上5;装置B∶将输入的数除以2;装置C∶将输入的数减去4;装置D∶将输入的数乘以3.这些装置可以连接,如装置A后面连接装置B就写成A·B,输入1后,经过A·B,输出3.(1)输入9,经过A·B·C·D,输出几?(2)经过B·D·A·C,输出的是100,输入的是几?分析:(1)输入9经过A装置以后结果是9+5=14,再经过B装置以后结果是14÷2=7,经过C装置以后结果成为7-4=3,最后经过D装置以后,最终输出结果等于3×3=9.(2)最后经过装置C后结果是100,那么输入装置C的数字是100+4=104,那么输入A的数字是104-5=99,输入D的数是99÷3=33,输入B的数是33×2=66.所以最开始输入的数是66.[拓展]例题中的装置,输入7,输出的还是7,用尽量少的装置应怎样连接?分析:C·D·A·B(四)其他常见类型【例11】(★★★★★南京市首届“兴趣杯”少年数学邀请赛)王歌暑假去非洲旅游,到了一个古老部落,看到下面几个部落的算式:8×8=8,9×9×9=5,9×3=3, (93+8)×7=837.导游告诉他,部落算术中所用的符号“+、一、×、÷、( )、=”与我们算术中的意义相同,进位也是十进制,只是每个数字虽然与我们写法相同,但代表的数却不同.请你按古老部落的算术规则,完成下面算式:89×57=______ .分析: 由部落算式“8×8=8”知“8”是1,“9×9×9=5”可知“9”是2,“5”是8.由“9×3=3”知“3”是0.继而可推得“7”是5.于是可知“89×57”是12×85=1020即“8393”.[前铺]a、b、c代表一位数,规定a×a=a,b×b×b=c,b×d=d,问a+b+c+d=?分析:由a×a=a可知a=1,由b×b×b=c,可知b=2,c=8,由b×d=d可知,d=0,所以a+b+c+d=1+2+8+0=11【例12】(★★★★★奥数网题库)先阅读下面材料,再解答后面各题.现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…N、M这26个字母依次对应1、2、3、…、25、26这26个整数(见下表):'(1263)32'17(12631)31'8(12632)3xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是正整数,,被整除是正整数,,被除余是正整数,,被除余 将明文转换成密文,如:,即R 变为L ; ,即A 变为S .按上述方法将明文HAK 译为密文.分析:这是一道非常有意思的题目.明文HAK 对应16、11、18;16217233++=,即H 变为V ;1118123++=,即A 变为S ;1863=,即K 变为Y ,所以将明文HAK 译为VSY . 1.(例2)规定:A ※B =B ×B +A , (1)计算(2※3)※(4※1), (2)这个运算有交换律吗?分析:(1)2※3=3×3+2=11,4※1=1×1+4=5,11※5=5×5+11=36,所以最后结果(2※3)※(4※1)=36.(2)因为B ※A =A ×A +B ≠ B ×B +A ,所以 这个运算不符合交换律 2.(例6)定义新运算“!”如下:对于认识自然数n ,n !=n ×(n -1)×(n -2)×……×3×2×1.(1) 求3!,4!,5!; (2) 证明:3×(6!)+24×(5!)=7! 分析:(1)3!=3×2×1=6; 4!=4×3×2×1=24;5!=5×4×3×2×1=120;(2)证明:3×(6!)+24×(5!)=3×(6!)+4×6×(5!)=3×(6!)+4×(6!) =7×(6!) =7!3.(例7)“⊙”表示一种新的运算符号,已知:2⊙3=2+3+4;7⊙2=7+8;3⊙5=3+4+5+6+7,按此规则,如果n ⊙8=68,那么n 的值是多少?分析:观察条件可知⊙前面一个数表示相加的开始一个数,⊙后面一个数表示连续相加的个数,所以n⊙8=n+(n+1)+(n+2)+…+(n+7)=8×n+1+2+3+4+5+6+7=8×n+28=68,所以n=5.4.(例8)对整数A、B、C,规定符号等于A×B+B×C-C÷A,例如:=3×5+5×6-6÷3=15+30-2=43,已知:=28,那么A=_______.分析:2A+4A-4÷2=28,即 6A=30,所以A=55.(例10)有A、B、C、D四种计算装置,装置A:将输入的数乘以5;装置B:将输入的数加3;装置c:将输入的数除以4;装置D:将输入的数减6.这些装置可以连结,如装置A后面连结装置B,写成A·B,输入4,结果是23;装置B后面连结装置A就写成B·A,输入4,结果是35.装置A·C·D连结,输入8,结果是多少?分析:输入8经过A装置以后,结果为8×5=40,经过C装置以后,结果为40÷4=10,经过D装置以后,结果成为10-6=4.所以最终结果为4.。

小学奥数题及答案:定义新运算

小学奥数题及答案:定义新运算

小学奥数题及答案:定义新运算小学奥数题及答案:定义新运算定义新运算:(高等难度)规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)×(B○5+A△3)=96,且A、B均为大于0的自然数A×B的所有取值有()个。

定义新运算答案:共5种;分类讨论,由于题目中所要求的定义新运算的符号是较大的数与较大的数,则对于A或者B有3类不同的范围,A小于3,A大于等于3,小于5,A大于等于5。

对于B也有类似,两者合起来共有3×3=9种不同的`组合,我们分别讨论。

1)当A<3,B<3,则(5+B)×(5+A)=96=6×16=8×12,无解;2)当3≤A<5,B<3时,则有(5+B)×(5+3)=96,显然无解;3)当A≥5,B<3时,则有(A+B)×(5+3)=96,则A+B=12.所以有A=10,B=2,此时乘积为20或者A=11,B=1,此时乘积为11。

4)当A<3,3≤B<5,有(5+3)×(5+A)=96,无解;5)当3≤A<5,3≤B<5,有(5+3)×(5+3)=96,无解;6)当A≥5,3≤B<5,有(A+3)×(5+3)=27,则A=9.此时B=3后者B=4。

则他们的乘积有27与36两种;7)当A<3,B≥5时,有(5+3)×(B+A)=96。

此时A+B=12。

A与B的乘积有11与20两种;8)当3≤A<5,B≥5,有(5+3)×(B+3)=96。

此时有B=9.不符;9)当A≥5,B≥5,有(A+3)×(B+3)=96=8×12。

则A=5,B=9,乘积为45。

所以A与B的乘积有11,20,27,36,45共五种。

【小学奥数题及答案:定义新运算】。

小学六年级奥数题:定义新运算(A)---习题详解

小学六年级奥数题:定义新运算(A)---习题详解

小学六年级奥数题:定义新运算(A)---习题详解三、定义新运算(一)1.规定新运算$a☉b=$2.规定“※”为一种运算,对任意两数$a,b$,有$a※b=$3.设$a,b,c,d$是自然数,定义$\langle a,b,c,XXX则$\langle\langle 1,2,3,4\rangle,\langle 4,1,2,3\rangle,\langle3,4,1,2\rangle,\langle 2,3,4,1\rangle\rangle=$4.$[A]$表示自然数$A$的约数的个数。

例如,4有1,2,4三个约数,可以表示成$[4]=3$。

计算:$([18]+[22])÷[7]=$5.规定新运算※:$a※b=3a-2b$。

若$x※(4※1)=7$,则$x=$6.两个整数$a$和$b$,$a$除以$b$的余数记为$a☆b$。

例如,$13☆5=3$,$5☆13=5$,$12☆4=0$。

根据这样定义的运算,$(26☆9)☆4=$7.对于数$a,b,c,d$,规定$\langle a,b,c,d\rangle=2ab-c+d$。

如果$\langle 1,3,5,x\rangle=7$,那么$x=$8.规定:$6※2=6+66=72$,$2※3=2+22+222=246$,$1※4=1+11+111+1111=1234$。

$7※5=$9.规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数。

例如:$3△5=5$,$3☉5=3$。

那么,$[(7☉3)△5]×[5☉(3△7)]= $10.假设式子$a\#a\times b$表示经过计算后,$a$的值变为原来$a$与$b$的值的积,而式子$b\#a-b$表示经过计算后,$b$的值为原来$a$与$b$的值的差。

设开始时$a=2$,$b=2$,依次进行计算$a\#a\times b$,$b\#a-b$,$a\#a\times b$,$b\#a-b$,则计算结束时,$a$与$b$的和为$\frac{a+b}{ab}-$,则$2☉(5☉3)$之值为$.$ 若$6※x=33$,则$x=$二、解答题11.设$a,b,c,d$是自然数,对每两个数组$(a,b)$,$(c,d)$,我们定义运算※如下:$(a,b)※(c,d)=(a+c,b+d)$;又定义运算△如下:$(a,b)△(c,d)=(ac+bd,ad+bc)$。

三年级数学思维专项训练3--定义新运算(原卷+解析版)

三年级数学思维专项训练3--定义新运算(原卷+解析版)

三年级思维训练3--定义新运算一、已知当口大于或等于6时,规定a△6=3×a+4×6;当a小于b时,规定a△6=4×a+3×b,按此规定计算:(6△4)△35=二、定义新运算符号*为A* B=A×B-A-B,已知X*5=11,那么X=三、规定2⊕I= 2 , 2⊕2=2+22=24, 3⊕3=3+33+333=369 ,那么5⊕5=四、通过一种新的运算“△”计算,有以下结果:2△3=2×3×4=244△2=4×5=20那么6△3-7△2等于多少?五、定义f(1)=1,f(2)=1+2=3,f(3)=1+2+3=6,…,那么f(100)=六、若记号“贝贝京京”代表“贝贝比京京高”,依照下图的记号,最高的是七、如果P↑表示P+1,P↓表示P-1,则(4↑)×(3↓)等于1.A.9↓B.10↓C.11↓ D.12↑ E.13↓八、规定一种运算符号“@”,M@N=(M+N)÷5,那么X@5=l0中X的值是九、在密码学中,直接可以看到的内容是明码,对明码进行某种处理后得到的内容为密码有一种密码,将英文26个字母a、b、c…、z(不论大小写)依次对1、2、3…、26这26个自然数(见表格)。

当明码对应的序号x为奇数时,密码对应的序号y=(x+1)÷2;当明码对应的序号x为偶数时,密码对应的序号y=x÷2+13。

字 a b c d e f g h i j k l m序 1 2 3 4 5 6 7 8 9 10 11 12 13字n o p q r s t u v w x y z序14 15 16 17 18 19 20 21 22 23 24 25 26按上述规定,请你算出明码“love”译成密码是什么?十、对于任意自然数,定义n!=l×2×…×n,如4!-1×2×3×4.那么,1!+2!+3 !+4 !+5 !=十一、规定3☆2=3+33=36, 2☆3=2+22+222=246, l☆4=1+11+111+111l=1234.如果一位数a、b满足a☆b=49380,求a和b.十二、规定1※2=1+2=3,2※3=2+3+4=9,5※4=5+6+7+8=26.如果a※15=165,那么a= 十三、如果A*B=2A+B,若A*2A*3A*4A*5A=570,那么A=十四、已知有一个数学符号△使下列等式成立:2△4=8,5△3=13,3△5=11, 9△7=25,那么7△3=十五、我们规定:AΟB表示A、B中较大的数,A△B表示A、B中较小的数.则(10△8-6Ο5)×(11Ο13+15△20)=十六、已知“△”表示一种运算符号,若a△b=(a-b)÷2,则3△(6△4)=十七、对于数x、y,定义两种运算“*”及“△”如下:x* y=6x+5y,x△y=3xy,则(2*3)△4=十八、如果6*2=6+7。

定义新运算

定义新运算

定义新运算例1.定义两种新运算:a※b=2×a+b,a◇b=a-3×b.已知x、y使得(x◇y)※1=377.04,x◇(y※1)=172.84,那么x-y=.[答疑编号0518380101]【答案】196.14【解答】根据符号的定义得x◇y=(377.04-1)÷2=188.02,x◇(y※1)=x-3×(y※1)=x-6×y-3=172.84,于是可列方程组,解得,那么x-y=196.14。

例2.定义a◎b表示a′b的整数部分,例如3.5◎1.5表示3.5′1.5=5.25的整数部分,等于5.(1)计算:98◎π=.(2)计算:199◎π+199◎(4-π)=.[答疑编号0518380102]【答案】(1)307 (2)795【解答】(1)98π=100×π-2×π≈314.159-6.283,所以,整数部分是307.(2)199×4=796,题中两个部分分别取整,所以整数的和小于796,又由于每个式子舍去的部分都是小于1的。

所以,整数的和大于794。

因此计算的结果是795。

例3.对于两个不相等的正整数,定义a☆b表示a、b中较小数的3倍减去较大数,例如4☆7=4′3-7=5.(1)计算:197☆98=;(2)如果a☆17=22,那么a的所有可能值是.[答疑编号0518380103]【答案】(1)97 (2)13,29【解答】(1)197☆98=98×3-197=(100-2)×3-(200-3)=97(2)当a<17时,3a-17=22,得到a=13;当a>17时,3×17-a= 22,得到a=29。

例4.规定A#表示A′2,A△表示A′3-1,例如4#=8,5△=14.已知可以将#和△分别填入到两个括号中,并且在方框内填入相同的自然数,可以使两个等式都成立,那么横线上应该填的数是多少?□()-9=200□()+9=[答疑编号0518380104]【答案】149【解答】当第一个式子,括号内填井号时,不成立。

八年级数学 上册 代数方程 定义新运算 专题练习(含答案)

八年级数学 上册 代数方程 定义新运算 专题练习(含答案)

八年级数学上册代数方程定义新运算专
题练习(含答案)
概述
本文档为八年级数学上册的专题练,主题为代数方程的定义和
新运算。

该练旨在帮助学生巩固和加深对代数方程和新运算的理解,并提供答案供学生参考。

内容
本专题练包含多个问题,涵盖了代数方程的定义和新运算的应用。

学生可以通过解答这些问题来加深对相关知识的理解和掌握。

以下是部分问题的示例:
1. ### 问题一
已知方程 $2x - 5 = 7$,求解 $x$ 的值。

答案:$x = 6$
2. ### 问题二
已知方程 $3(x + 2) = 12$,求解 $x$ 的值。

答案:$x = 2$
3. ### 问题三
已知方程 $4(2x - 3) = 20$,求解 $x$ 的值。

答案:$x = 4$
4. ### 问题四
定义新运算 $*$ 如下:$a * b = 2ab - a + b$。

已知 $x = 2$,$y = 3$,求解 $x * y$ 的值。

答案:$x * y = 23$
注意事项
- 学生在练时应独立完成,尽量不寻求他人协助。

- 练题中涉及的内容应以教材为准。

- 请谨慎对待答案,确保在完成练后自行核对答案,注意练过程中的错误和疏漏。

祝学习进步!。

七年级数学有理数定义新运算灵活运用练习题(含答案)

七年级数学有理数定义新运算灵活运用练习题(含答案)

七年级数学有理数定义新运算(一)一、填空题1.规定a ☉b =ab b a -,则2☉(5☉3)之值为 . 2.规定“※”为一种运算,对任意两数a ,b ,有a ※b 32b a +=,若6※x 322=,则x = . 3.设a ,b ,c ,d 是自然数,定义bc ad d c b a +>=<,,,.则<><><<,3,2,1,4,4,3,2,13, 4, 1, 2>>=<>1,4,3,2, .4.[A ]表示自然数A 的约数的个数.例如,4有1,2,4三个约数,可以表示成[4]=3.计算:]7[])22[]18([÷+= .5.规定新运算※:a ※b=3a -2b .若x ※(4※1)=7,则x= .6.两个整数a 和b ,a 除以b 的余数记为a ☆b .例如,13☆5=3,5☆13=5,12☆4=0.根据这样定义的运算,(26☆9) ☆4= .7.对于数a ,b ,c ,d 规定d c ab d c b a +->=<2,,,.如果7,5,3,1>=<x ,那么x = .8.规定:6※2=6+66=72,2※3=2+22+222=246, 1※4=1+11+111+1111=1234.7※5= .9.规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数.例如:3△5=5,3☉5=3.那么,[(7☉3)△5]×[5☉(3△7)]= .10.假设式子b a a ⨯#表示经过计算后,a 的值变为原来a 与b 的值的积,而式子b a b -#表示经过计算后,b 的值为原来a 与b 的值的差.设开始时a =2,b =2,依次进行计算b a a ⨯#,b a b -#,b a a ⨯#,b a b -#,则计算结束时,a 与b 的和是 .二、解答题11.设a ,b ,c ,d 是自然数,对每两个数组(a ,b ),(c ,d ),我们定义运算※如下: (a ,b )※(c ,d )= (a+c ,b +d );又定义运算△如下: (a ,b )△(c ,d )= (ac+bd ,ad+bc ).试计算((1,2) ※(3,6))△((5,4)※(1,3)).12.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示为羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了.对羊或狼,可用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算.运算的结果是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼).13.22264⨯⨯=222⨯⨯⨯表示成()664=f ; 33333243⨯⨯⨯⨯=表示成()5243=g . 试求下列的值:(1)()=128f ; (2))()16(g f =; (3)6)27()(=+g f ;(4)如果x , y 分别表示若干个2的数的乘积,试证明:)()()(y f x f y x f +=⋅.14.两个不等的自然数a 和b ,较大的数除以较小的数,余数记为a ☉b ,比如5☉2=1,7☉25=4,6☉8=2.(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;(2)已知11☉x =2,而x 小于20,求x ;(3)已知(19☉x )☉19=5,而x 小于50,求x .答 案1. 120411.5☉3=15165335=-,2☉(5☉3)=2☉12041112016121516151621516==-=. 2. 8.依题意,6※326x x +=,因此322326=+x ,所以x=8. 3. 280.;1421343,2,1,4;1032414,3,2,1=⨯+⨯>=<=⨯+⨯>=<.1443121,4,3,2;1014232,1,4,3=⨯+⨯>=<=⨯+⨯>=<原式2801014141014,10,14,10=⨯+⨯>==<.4. 5.因为23218⨯=有6)12()11(=+⨯+个约数,所以[18]=6,同样可知[22]=4,[7]=2.原式52)46(=÷+=.5. 9.因为4※1=101243=⨯-⨯,所以x ※(4※1)= x ※10=3x -20.故3x -20=7,解得x =9.6. 0.89226+⨯=,26☆9=8,又428⨯=,故(26☆9)☆4=8☆4=0.7. 6.因为x x x +=+-⨯⨯>=<15312,5,3,1,所以71=+x ,故6=x .8. 86415.7※5=7+77+777+7777+77777=86415.9. 25.原式=[3△5]×[5☉7]=5×5=25.10. 14. 第1次计算后,422=⨯=a ;第2次计算后,224=-=b ;第3次计算后,824=⨯=a ;第4次计算后,628=-=b .此时1468=+=+b a .11. (1,2)※(3,6)=(1+3,2+6)=(4,8),(5,4)※(1,3)=(5+1,4+3)=(6,7).原式=(4,8)△(6,7)=(4×6+8×7,4×7+8×6)=(80,76).12. 原式=羊△羊☆羊△狼=羊☆羊△狼=羊△狼=狼.13. (1)()72)128(7==f f ; (2)()())81(342)16(44g g f f ====;(3)因为()())8(233636)27(633f f g g ===-=-=-,所以6)27()8(=+g f ;(4)令,2,2n m y x ==则n y f m x f ==)(,)(.()())()(222)(y f x f n m f f y x f n m n m +=+==⋅=⋅+.14. (1)1991☉2000=9;由5☉19=4,得(5☉19)☉19=4☉19=3;由19☉5=4,得(19☉5)☉5=4☉5=1.(2)我们不知道11和x 哪个大(注意,x ≠11),即哪个作除数,哪个作被除数,这样就要分两种情况讨论.1) x <11,这时x 除11余2, x 整除11-2=9.又x ≥3(因为x 应大于余数2),所以x =3或9.2) x >11,这时11除x 余2,这说明x 是11的倍数加2,但x <20,所以x =11+2=13. 因此(2)的解为x =3,9,13.(3)这个方程比(2)又要复杂一些,但我们可以用同样的方法来解.用y 表示19☉x ,不管19作除数还是被除数,19☉x 都比19小,所以y 应小于19. 方程y ☉19=5,说明y 除19余5,所以y 整除19-5=14,由于y ≥6,所以y =7,14. 当y =7时,分两种情况解19☉x =7.1)x <19,此时x 除19余7,x 整除19-7=12.由于x ≥8,所以x =12.2) x >19,此时19除x 余7, x 是19的倍数加7,由于x <50,所以x =19+7=26或7219+⨯=x =45.当y =14时,分两种情况解19☉x =14.1) x<19,这时x除19余14, x整除19-14=5,但x大于14,这是不可能的.2)x>19,此时19除x余14,这就表明x是19的倍数加14,因为x<50,所以x=19+14=33.总之,方程(19☉x)☉19=5有四个解,x=12,26,33,45.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档