交流调速系统

合集下载

交流调速系统的一般技术要求

交流调速系统的一般技术要求

交流调速系统的一般技术要求交流调速系统主要应用于电机控制领域,通过改变电机的工作频率来实现对电机转速的调解。

在不同的应用场景下,交流调速系统需要满足一系列的技术要求,以确保系统的稳定运行和高效性能。

本文将从以下几个方面介绍交流调速系统的一般技术要求。

一、电机选型交流调速系统需要根据实际应用需求选择合适的电机。

在选型过程中,需要考虑电机的额定功率、额定转速、负载特性等因素。

此外,还需根据工作环境的特殊要求选择适合的电机类型,如防爆电机、高温电机等。

二、变频器性能交流调速系统的核心组成部分是变频器,其性能对系统整体的控制精度和稳定性至关重要。

常见要求包括变频器的输出频率范围、输出电压范围、输出电流能力、响应速度等。

同时,变频器还应具备过载保护、短路保护、过压保护等功能,以提高系统的安全性。

三、控制方式交流调速系统可以通过多种控制方式实现,如开环控制和闭环控制。

开环控制适用于对转速要求不高的场景,闭环控制适用于对转速精度较高的场景。

在选择控制方式时,需综合考虑应用需求、成本、稳定性等因素。

四、反馈传感器闭环控制系统需要使用反馈传感器来实时监测电机的转速,并将信息反馈给控制器进行调节。

常见的反馈传感器包括编码器、霍尔传感器等。

选择合适的反馈传感器可提高系统的控制精度和稳定性。

五、系统的安全性和可靠性交流调速系统在运行过程中需要具备良好的安全性和可靠性。

这包括防止过载、短路等故障的发生,以及系统的过温保护、过压保护等功能。

此外,还需要对系统进行合理的绝缘、接地等设计,以确保人身安全和设备的正常运行。

六、EMC要求交流调速系统需要满足电磁兼容(EMC)的要求,以保证系统在电磁环境中的正常工作,同时不会对周围的其他设备和系统造成干扰。

在设计和使用过程中,需要采取各种措施,如滤波器、屏蔽等,以减少电磁辐射和抗干扰能力。

七、故障诊断和维修交流调速系统需要具备故障诊断和维修功能,以提高系统的可维护性和可靠性。

系统应该具备故障自诊断的能力,能够及时发现和报告故障信息。

交流调速系统概述

交流调速系统概述

交流调速系统概述Revised on July 13, 2021 at 16:25 pm交流调速系统概述1.1、交流调速系统的特点对于可调速的电力拖动系统;工程上往往把它分为直流调速系统和交流调速系统两类;这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的..所谓交流调速系统;就是以交流电动机作为电能—机械能的转换装置;并对其进行控制以产生所需要的转速..相比于直流电动机;交流电动机具有结构简单;制造成本低;坚固耐用;运行可靠;维护方便;惯性小;动态响应好;以及易于向高压、高速和大功率方向发展等优点..随着电力电子技术;大规模集成电路和计算机控制技术的迅速发展;交流可调传动得到了广泛的发展;诸如交流电动机的串级调速、各种类型的变频调速;特别是矢量控制技术的应用;使得交流调速系统逐步具备了宽的调速范围、较高的稳速精度、快速的动态响应以及在四象限作可逆运行等良好的技术性能..现在从数百瓦的伺服系统到数百千瓦的特大功率高速传动系统;从一般要求的小范围调速传动到高精度、快响应、大范围的调速传动;从单机传动到多机协调运转;已几乎都可采用交流调速传动..1.2交流调速系统的应用由于交流调速系统的优越性;其已经普遍应用于现代工业中;主要由以下几个方面:1、风机、水泵、压缩机耗能占工业用电的40%;进行变频、串级调速;可以节能..2、对电梯等垂直升降装置调速实现无级调速;运行平稳、档次提高..3、纺织、造纸、印刷、烟草等各种生产机械;采用交流无级变速;提高产品的质量和效率..4、钢铁企业在轧钢、输料、通风等多种电气传动设备上使用交流变频传动..5、有色冶金行业如冶炼厂对回转炉、培烧炉、球磨机、给料等进行变频无级调速控制..6、油田利用变频器拖动输油泵控制输油管线输油..此外;在炼油行业变频器还被应用于锅炉引风、送风、输煤等控制系统..7、变频器用于供水企业、高层建筑的恒压供水..8、变频器在食品、饮料、包装生产线上被广泛使用;提高调速性能和产品质量..9、变频器在建材、陶瓷行业也获得大量应用..如水泥厂的回转窑、给料机、风机均可采用交流无级变速..10、机械行业是企业最多、分布最广的基础行业..从电线电缆的制造到数控机床的制造..电线电缆的拉制需要大量的交流调速系统..一台高档数控机床上就需要多台交流调速甚至精确定位传动系统;主轴一般采用变频器调速只调节转速或交流伺服主轴系统既无级变速又使刀具准确定位停止;各伺服轴均使用交流伺服系统;各轴联动完成指定坐标位置移动..1.3、交流调速系统分类交流调速系统分为交流异步电动机调速系统和交流同步电动机调速系统两大类..1、在交流异步电动机中;从定子传入转子的电磁功率m p 可以分成两部分:一部分m mech p s -1p )(=是拖动负载的有效功率;另一部分是m s sp p =与转差率s 成正比的转差功率;转差功率的流向是调速系统效率高低的标志..就转差功率的流向向而言;交流异步电动机调速系统可以分为三种:1、转差功率消耗型调速系统这种调速系统全部转差功率都被消耗掉;用增加转差功率的消耗来换取转速的降低;转差率s 增大;转差功率m s sp p =增大;以发热形式消耗在转子电路里;使得系统效率也随之降低..定子调压调速、电磁转差离合器调速及绕线式异步电动机转子串电阻调速这三种方法属于这一类;这类调速系统存在着调速范围愈宽;转差功率s p 愈大;系统效率愈低的问题;故不值得提倡..2、转差功率馈送型调速系统这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用;转速越低回馈的功率越多;但是增设的装置也要多消耗一部分功率..绕线式异步电动机转子串级调速即属于这一类;它将转差功率通过整流和逆变作用;经变压器回馈到交流电网;但没有以发热形式消耗能量;即使在低速时;串级调速系统的效率也是很高的..3、转差功率不变型调速系统这种调速系统中;转差功率仍旧消耗在转子里;但不论转速高低;转差功率基本不变..如变极对数调速;变频调速即属于这一类;由于在调速过程中改变同步转速0n ;转差率s 是一定的;故系统效率不会因调速而降低..在改变0n 的两种调速方案中;又因变极对数调速为有极调速;且极数很有限;调速范围窄;所以;目前在交流调速方案中;变频调速是最理想;最有前途的交流调速方案..2、在交流同步电动机中;由于其转差功率恒为零;从定子传入的电磁功率m P 全部变为机械轴上输出的机械功率m ech P ;只能是转差功率不变型的调速系统..其表达式为p 1n f60n n ==;同步电动机的调速只能通过改变同步转速1n 实现;由于同步电动机极对数是固定的;只能采用变压变频调速..交流调速系统的调速2.1三大调速方案由电机与拖动技术知;交流异步电动机的转速公式如下:n 1p s -1f 60n )(=1-1式中 n p ——电动机定子绕阻的磁极对数;1f ——电动机定子电压供电频率;s ——电动机的转差率..由电机理论知道;三相异步电动机定子每相电动势的有效值是m 11g N 4.44f Φ=E 1-2式中g E —气隙磁通在定子每相中感应电动势的有效值V ;1f —定子频率Hz ;1N —定子每相绕组串联匝数;m Φ—每极磁通量Wb..从上两式中可以看出;调节交流异步电动机的转速有三大类方案..1、变压变频调速当异步电动机的磁极对数n p 一定;转差率s —定时;改变定子绕组的供电频率1f 可以达到调速目的;为了达到良好的控制效果;常采用电压——频率协调控制;电动机转速n 基本上与电源的频率 1f 成正比;因此;就能平滑地调节供电电源的频率;无级地调节异步电动机的转速..变频调速调速范围大;低速特性较硬;只要控制好g E 和1f 便可达到控制气隙磁通m Φ的目的;对此有基频额定频率50Hz f =以下和基频以上两种情况;基频50Hz f =以下;保持气隙磁通不变;属于恒转矩调速方式;在基频50Hz f =以上;保持定子电压不变;属于恒功率调速方式..1、基频以下调速在基频一下调速时;为了保持电动机的负载能力;应保持气隙磁通m Φ为额定值N m Φ不变;这就要求频率1f 从额定值N 1f 向下调节时;必须同时降g E 使 m 11g N 4.44f Φ=E 常数= ; 即保持电动势与频率之比常数进行控制..这种控制又称为恒磁通变频调速;属于恒转矩调速方式..但是;g E 难于直接检测和直接控制..当g E 和1f 的值较高时;定子的漏阻抗压降相对比较小;如忽略不计;则可近似地保持定子相电压s U 和频率1f 的比值为常数;即认为g E U =1;保持=1f s U 常数即可;这就是恒压频比控制方式;是近似的恒磁通控制..低频时;1U 和g E 都较小;定子电阻和漏磁感抗压降主要是定子电阻压降所占的分量比较显着;不能再忽略..这时;可以人为地适当提高定子电压s U ;以便近似地补偿定子阻抗压降;使气隙磁通基本保持不变..图1 基频以下调速机械特性(2)、基频以下电流补偿控制基频以下运行时;采用恒压频比的控制方法具有控制简便的有点;但负载的变化将导致磁通的改变;因此采用需要采用定子电流补偿;根据电子电流的大小改变电子电压;保持磁通恒定..有保持定子磁通ms Φ曲线a 、气隙磁通m Φ曲线b 和转子磁通mr Φ曲线c 恒定的三种控制方法;以下图 2 是这三种控制方法的特性曲线图2 不同控制方式下;异步电动机的机械特性与恒压频比控制相比;恒定子磁通ms Φ、恒气隙磁通m Φ和恒转子磁通mr Φ的控制方式均需要定子电流补偿;控制要复杂一些..恒定子磁通ms Φ和恒气隙磁通m Φ的控制方式虽然改善了低速性能;但机械特性还是非线性的;产生转矩的能力受到限制..恒转子磁通mr Φ的控制方式;可以得到和直流他励电动机一样的线性机械特性;性能最佳..3、基频以上调速在基频以上调速时;频率可以从N 1f 往上升高;但受电机绝缘耐压的限制;定子电压s U 却不能超过额定电压;最多只能保持sN U U =s 额定电压不变..由式1-2可知;这必然会导致主磁通m Φ随着1f 的上升而降低;使异步电动机工作在弱磁状态;允许输出转矩减小;但转速却升高了;可以认为允许输出转功率基本不变;属于近似的恒功率调速方式..其机械特性曲线在固有特性曲线之上..2、改变电动机的极对数调速由异步电动机的同步转速n 11p f 60n =可知;在供电电源频率1f 不变的条件下;通过改接定子绕组的连接方式来改变异步电动机定子绕组的磁极对数n p ;即可改变异步电动机的同步转速1n ;从而达到调速的目的..这种控制方式比较简单;只要求电动机定子绕组有多个抽头;然后通过触点的通断来改变电动机的磁极对数..采用这种控制方式;电动机转速的变化是有级的;不是连续的;一般最多只有三档;适用于自动化程度不高;且只需有级调速的场合..3、改变电动机的变转差率调速由式1-1知;可以通过改变异步电动机的转差率s 来改变电动机转速..改变转差率调速的方法很多;常用的方案有:异步电动机定子调压调速、电磁转差离合器调速、绕线式异步电动机转子回路串电阻调速和串级调速等..1、异步电动机定子调压调速定子调压调速系统就是在恒定交流电源与交流电动机之间接入晶闸管作为交流电压控制器;这种调压调速系统仅适用于一些属短时与重复短时作深调速运行的负载..为了能得到好的调速精度与能稳定运行;一般采用带转速负反馈的控制方式..所使用的电动机可以是绕线式异电动机或是有高转差率的鼠笼式异步电动机..2、电磁转差离合器调速电磁转差离台器调速系统;是由鼠笼式异步电动机、电磁转差离合器以及控制装置组合而成..鼠笼式电动机作为原动机以恒速带动电磁离合器的电枢转动;通过对电磁离合器励磁电流的控制实现对其磁极的速度调节..这种系统一般也采用转速闭环控制..3、绕线式异步电动机转子回路串电阻调速绕线式异步电动机转子回路串电阻调速就是通过改变转子回路所串电阻来进行调速;这种调速方法简单;但调速是有级的;串入较大附加电阻后;电动机的机械特性很软;低速运行损耗大;稳定性差..4、绕线式异步电动机串级调速绕线式异步电动机串级调速系统就是在电动机的转子回路中引入与转子电势同频率的反向电势f E ;只要改变这个附加的;同电动机转子电压同频率的反向电势f E ;就可以对绕线式异步电动机进行平滑调速..f E 越大;电动机转速越低..上述这些调速的共同特点是在调速过程中没有改变电动机的同步转速0n ;所以低速时转差率s 较大..2.2、异步电动机的调速系统1、脉冲宽度调制技术在异步电动机变频调速时;为了得到理想的控制效果需要有电压与频率均可调的交流电源;常用的交流可调电源是由电力电子器件构成的静止式功率变换器;一般称为变频器..这就涉及到了交流PWM 变频技术;即脉冲宽度调制技术;这是现代变频器中用得最多的控制技术..脉冲宽度调制PWM 的基本思想是:控制逆变器中的电力电子器件的开通或关断;输出电压为高度相等、宽度按一定规律变化的脉冲序列;用这样的高频脉冲序列代替期望的输出电压..传统的交流PWM 技术是用正玄波来调制等腰三角波;称为正弦脉冲宽度调制SPWM;随着控制技术的发展;产生了电流跟踪PWMCFPWM 控制技术和电压空间矢量PWMSVPWM 控制技术..1、正弦脉冲宽度调制SPWMSPWM 是以频率与期望值得输出电压波相同的正弦波作为调制波;以频率与期望波高得多的等腰三角波作为载波;当调制波与载波相交时;由它们的交点确定逆变器开关器件的通断时刻;从而获得高度相等、宽度按正弦规律变化的脉冲序列..SPWM 采用三相分别调制;在调制度为1时;输出相电压的基波幅值为2U d;输出线电压的基波幅值为d 23U ;直流电压的利用率为[]9866.0..若调制度大于1;直流电压的利用率可以提高;但会产生失真现象;谐波分量增加..这是普通SPWM 变频器的一个短处;其输出电压带有一定得谐波分量;为降低谐波分量;减少电动机的转矩脉动;在SPWM 的基础上衍生出“消除指定次数谐波”的SHEPWM 控制技术..2、电流跟踪PWMCFPWM 控制技术SPWM 控制技术的目的只在于使输出电压接近正玄波;并为考虑到电流波形因负载的性质及大小的影响..对了、交流电动机来说;应该保证为正玄波的是电流;稳态时在绕组中通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值;不产生脉动;这就是以正弦波电流为控制目标的优越性;电流跟踪PWM 就能实现这种控制..CFPWM 的控制方法是在原有主回路的基础上;采用电流闭环控制;使实际电流快速跟随给定值;在稳态时;尽可能使实际电流接近正弦波形..常用的电流闭环控制方法是电流滞环跟踪PWM..在电流滞环跟踪PWM 的控制系统中;以PWM 变压变频器的A 相控制原理为例..其中;电流控制器是滞环的比较器;环宽为2h;将给定电流与输出电流进行比较;当电流偏差A i ∆超过h ±时;经滞环控制器HBC 控制逆变器A 相上或下桥臂的功率器件动作..B 、C 两相的控制与A 相相同..电流跟踪PWMCFPWM 控制技术的特点是精度高、响应快;且易于实现;但功率开关器件的开关频率不定..一般可采用具有恒定开关频率的电流控制器来克服..具有电流滞环跟踪控制的PWM型变压变频器用于调速系统时;只需要改变电流给定信号的频率即可实现变频调速;无需再人为地调节逆变器电压..此时;电流控制环只是系统的内环;外环仍应有转速外环;才能视不同负载的需要自动控制给定电流的幅值..3、电压空间矢量PWMSVPWM控制技术交流电动机需要输入三相正弦电流的最终目的是在电动机空间形成圆形旋转磁场;从而产生恒定的电磁转矩..把逆变器和交流电动机视为一体;以圆形旋转磁场为目标来控制逆变器的工作;这种控制方法称作为“磁链跟踪控制”磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的;所以又称为“电压空间矢量PWM控制”..电压空间矢量控制是一种新的控制理论和控制技术;它的基本思想是:按空间矢量的平行四边形合成法则;用相邻的两个有效工作矢量合成期望的输出矢量;设法摸拟直流电动机的控制特点来进行交流电动机的控制..调速的关键问题是转矩控制问题;为使交流电动机得到和直流电动机一样的转矩控制性能;必须通过坐标变换理论;按转子磁链定向把交流电动机的定子电流分解成磁场定向坐标的励磁分量和与之相垂直的坐标转矩分量;把固定坐标系变换为旋转坐标系解耦后;交流量的控制变为直流量的控制便等同于直流电动机..即如果在调速过程中始终维持定子电流的励磁分量不变;而控制转矩分量;它就相当于直流电机中维持励磁不变;而通过控制电枢电流来控制电机的转矩一样;能使系统具有较好的动态特性..SVPWM控制模式的特点:1、逆变器共有8个基本输出矢量;6个有效工作矢量和2个零矢量;在一个旋转周期内;每个有效工作矢量只作用1次的方式;只能生成正六边形的旋转磁链;谐波分量大;将导致转矩脉动..2、用相邻的2个有效工作矢量;可合成任意的期望输出电压矢量;使磁链轨迹接近于圆..开关周期越小;旋转磁场越接近于圆;但功率器件的开关频率提高..3、利用电压空间矢量直接生成三相PWM波;计算方便..4、与一般的SPWM相比较;SVPWM控制方式的输出电压可提高15%..异步电动机按转子磁链定向的矢量控制系统通过坐标变换和按转子磁链定向;可以得到等效的直流电动机模型;在按转子磁链定向坐标系中;用直流机的方法控制电磁转矩与磁链;然后将转子磁链定向坐标系中的控制量经逆变换得到三相坐标系的对应量;以施以控制..由于变换的是矢量;所以坐标变换也可称作矢量变换;相应的控制系统成为矢量控制系统..图 3 矢量控制系统控制原理结构图按转子磁链定向的矢量控制系统的关键是准确定向;也就是说需要获得转子磁链矢量的空间位置;根据转子磁链的实际值进行矢量变换的方法;称作直接定向..转子磁链的直接检测相当困难;实际的系统中;多采用间接计算的方法;即利用容易测得的电压、电流或转速等信号;借助于转子磁链模型;实时计算磁链的幅值与空间位置.. 在计算模型中;由于主要实测信号的不同;分为电流模型和电压模型两种..电压模型更适合于中、高速范围;而电流模型能适应低速..有时为了提高准确度;把两种模型结合起来;在低速时采用电流模型;在中、高速时采用电压模型..矢量控制系统的特点:1、按转子磁链定向;实现了定子电流励磁分量和转矩分量的解耦;需要电流闭环控制..2、转子磁链系统的控制对象是稳定的惯性环节;可以采用磁链闭环控制;也可以是开环控制..3、采用连续的PI 控制;转矩与磁链变化平稳;电流闭环控制可有效地限制启、制动电流..异步电动机按定子磁链控制的直接转矩控制系统矢量控制方法的提出使交流传动系统的动态特性得到了显着的改善;并且具有调速范围宽的特点..但是经典的矢量控制方法比较复杂;它要进行坐标变换;且需精确测算出转子磁链的大小和方向;比较麻烦;且其精度受转子参数变化的影响很大..继而又出现了一种对交流电动机实现直接转矩控制的新方法;它避开了矢量控制中的两次坐标变换及求矢量的模与相角的复杂计算工作量;直接在它的转速环里面;利用转矩反馈直接控制电机的电磁转矩;其基本原理是根据定子磁链幅值偏差和电磁转矩偏差的符号;再根据当前定子磁链矢量所在的位置;直接选取合适的电压空间矢量;减少定子磁链幅值的偏差和电磁转矩的偏差;实现电磁转矩与定子磁链的控制;响应较快;控制性能比矢量控制还好..直接转矩控制系统简称DTC 系统;是继矢量控制系统之后发展起来的另一种高动态性能的交流电动机变压变频调速系统;在它的转速环里面;利用转矩反馈直接控制电机的电磁转矩..图4 直接转矩控制系统原理结构在转速环里面设置了转速内环;可以抑制定子磁链对内环控制对象的扰动;从而实现了转速和磁链子系统之间的近似解耦..根据定子磁链幅值偏差s ϕ∆的符号和电磁转矩e T ∆的符号;再依据当前定子磁链矢量s ψ所在的位置;直接选取合适的电压空间矢量;减小定子磁链幅值的偏差和电磁转矩的偏差;实现电磁转矩与定子磁链的控制..转速双闭环:ASR 的输出作为电磁转矩的给定信号;设置转矩控制内环;它可以抑制磁链变化对转速子系统的影响;从而使转速和磁链子系统实现了近似的解耦..转矩和磁链的控制器:用滞环控制器取代通常的PI 调节器..与VC 系统一样;它也是分别控制异步电动机的转速和磁链;但在具体控制方法上;DTC 系统与VC 系统不同的特点是:1、转矩和磁链的控制采用双位式控制器;并在 PWM 逆变器中直接用这两个控制信号产生电压的SVPWM 波形省去了旋转变换和电流控制;简化了控制器的结构..2、选择定子磁链作为被控量;计算磁链的模型可以不受转子参数变化的影响;提高了控制系统的鲁棒性..如果从数学模型推导按定子磁链控制的规律;显然要比按转子磁链定向时复杂;但是;由于采用了非线性的双位式控制;这种复杂性对控制器并没有影响..3、由于采用了直接转矩控制;在加减速或负载变化的动态过程中;可以获得快速的转矩响应;但必须注意限制过大的冲击电流;以免损坏功率开关器件;因此实际的转矩响应的快速性也是有限的..1、同步电动机的分类与异步电动机相比;在稳态时同步电动机的稳态转速等于同步转速;即1n n =;定子除了定子磁动势外;在转子侧还有独立的直流励磁或者永久磁钢励磁;同步电动机的气隙是不均匀的有凸极和隐极之分;异步电动机要靠加大转差后才能提高转矩;而同步电动机只需加大功率角就能增大转矩;同步电动机比异步电动机对转矩扰动具有更强的承受能力;动态响应快..同步电动机按励磁方式分为可控励磁同步电动机和永久同步电动机..可控励磁同步电动机在转子侧有独立的直流励磁;可以通过调节转子的直流励磁电流;改变输入功率因数;可以滞后也可以超前..永磁同步电动机的转子用永磁材料制成;无需直流励磁;具有体积小、重量轻;运行效率高;结构紧凑和动态性能好的特点..2、同步电动机的特点与异步电动机相比;同步电动机具有以下特点:1、交流电机旋转磁场的同步转速1n 与定子电源频率1f 有确定的关系:异步电动机的稳态转速总是低于同步转速的;而同步电动机的稳态转速等于同步转速..2、异步电动机的磁场仅靠定子供电产生;而同步电动机除定子磁动势外;在转子侧还有对立的直流励磁;或者靠永久磁钢励磁..3、同步电动机转子除直流励磁磁阻外;还可能有自身短路的阻尼绕组..4、异步电动机的气隙是均匀的;而同步电动机则有隐极和凸极之分;隐极式电机气隙均匀;凸极式则不均匀..同步电动机按励磁方式分为可控励磁同步电动机和永磁同步电动机两种..其中;永磁同步电动机按气隙磁场分布分为正弦波永磁同步电动机和梯形波永磁同步电动机无刷直流电动机..分析同步电动机恒频恒压时的稳定运行问题;在20πθ<<的范围内;同步电动机能够稳定运行..在πθπ<<2的范围内;当负载转矩加大时;转子减速使矩角θ增加;但随着θ增加;电磁转矩反而减小;由于电磁转矩的减小;导致θ继续增加;最终;同步电动机转速偏离同步转速;出现失步现象;同步电动机不能稳定运行..当同步电动机在工频电源下起动时;定子磁动势以同步转速旋转;电动机转速具有较大的滞后;不能快速跟上同步转速;在一个周期内;电磁转矩平均值等于零;故同步电动机不能起动..同步电动机中转子有起动绕组;使电动机按异步电动机的方式起动;当转速接近同步转速时再通入励磁电流牵入同步..3、同步电动机的调速方式。

交流调速系统的分类及性能

交流调速系统的分类及性能

交流调速系统的分类及性能由异步电动机转速表达式可知,转变频率、转差率S、磁极对数p均可实现对沟通电动机的速度调整。

有用中,沟通调速方式大致有以下几种:变极调速转子串电阻调速串级调速调压调速电磁调速异步电动机变频调速无换向器电动机调速1.变极调速通过转变异步电动机的绕组极数来转变其同步转速。

该方式为有级调速,异步电动机的转速不能连续变化,只应用于一些特别的场合,只能达到大范围粗调的目的。

变极调速只用于特地生产的变极多速鼠笼型异步电动机,通过转变定子绕组的联接或另设绕组的方法可得到D/YY、Y/YY双速电动机、三速、四速等电动机。

2.转子串电阻调速通过转变串联于转子电路中的电阻阻值来转变电动机的转差率,进而达到调速的目的。

因串联电阻的阻值可多级转变,故可实现多种速度的调速。

这种方式结构简洁,价格廉价,操作便利;但由于转差功率损耗在电阻上,效率随着转差率增加而下降,同时其机械特性比较软,只适合于调速性能要求不高的场合。

这种调速方式只适用于绕线式转子异步电动机。

3.串级调速通过在异步电动机的转子侧接一个二极管或晶闸管整流桥,将转差频率沟通电变为直流电,再用直流电机旋转变流机组或逆变器将转差功率返回电源,或直接将转差功率变为机械能加以利用。

串级调速在风机、泵类等传动系统上广泛采纳。

这种调速方法常用的结构方案有:电气串级方式、电动机串级方式、低同步串级调速方式、超同步串级调速。

该方法适用于绕线式异步电机。

4.调压调速这是将晶闸管反并联连接,构成沟通调速电路,通过调整晶闸管的触发角,转变异步电动机的端电压进行调速(如图6-5所示)。

这种方式也转变转差率S,转差功率消耗在转子回路中,效率较低,仅适用于特别笼型电动机(例如深槽电动机等高转差率电动机)和绕线转子等小容量电动机。

通常这种调速方法应构成转速或电压闭环,才能实际应用。

5.电磁调速异步电动机这种系统是在异步电动机与负载之间通过电磁耦合来传递机械功率,调整电磁耦合器的励磁,可调整转差率S的大小,从而达到调速的目的。

交直流调速系统

交直流调速系统

交直流调速系统•引言•交直流调速系统基本原理•交直流调速系统组成与结构目录•交直流调速系统控制策略•交直流调速系统性能分析•交直流调速系统设计与实践•交直流调速系统应用与展望引言01CATALOGUE调速系统概述调速系统的定义调速系统是一种能够改变电动机转速的控制系统,通过调整电动机的输入电压、频率等参数,实现对电动机转速的精确控制。

调速系统的分类根据电动机类型不同,调速系统可分为直流调速系统和交流调速系统两大类。

其中,直流调速系统具有调速范围广、静差率小等优点,而交流调速系统则具有结构简单、维护方便等特点。

交直流调速系统的发展与应用发展历程交直流调速系统经历了从模拟控制到数字控制的发展历程。

早期的调速系统主要采用模拟控制技术,随着计算机技术的发展,数字控制技术逐渐取代了模拟控制技术,使得调速系统的性能得到了显著提升。

应用领域交直流调速系统广泛应用于工业生产的各个领域,如机械制造、冶金、化工、纺织等。

在现代化生产线中,交直流调速系统是实现自动化生产的关键技术之一,对于提高生产效率、降低能耗具有重要意义。

交直流调速系统基本原理02CATALOGUE直流电机通过电枢电流和磁通量的相互作用产生转矩,实现电机的旋转运动。

直流电机原理调速方式控制策略直流调速系统通过改变电枢电压、电枢电阻或磁通量来调节电机的转速。

直流调速系统常采用PID 控制、模糊控制等策略,实现电机转速的精确控制。

030201交流电机通过定子电流产生的旋转磁场与转子电流的相互作用,实现电机的旋转运动。

交流电机原理交流调速系统通过改变定子电压、频率或改变电机结构等方式来调节电机的转速。

调速方式交流调速系统常采用矢量控制、直接转矩控制等策略,实现电机转速的精确控制。

控制策略交直流混合调速系统原理混合调速原理交直流混合调速系统结合了直流和交流调速系统的优点,通过交直流变换器实现能量的双向流动和转速的精确控制。

能量转换交直流混合调速系统通过交直流变换器将直流电能转换为交流电能,或将交流电能转换为直流电能,以满足不同负载的需求。

第六章 交流调速系统

第六章 交流调速系统
华南理工大学
交流电机的同步转速表达式为:
n1

60 f1 p
异步电动机的转速表达式为:
n1=
60 f1 p
(1
s)
因此,异步电动机的调速方法有改变电动机
定子供电频率,改变转差率及改变极对数等三种。
其中改变转差率又可通过调定子电压、转子电阻、
转差电压及定、转子频率差等方法实现。同步电
动机的调速可用改变供电频率从而改变同步转速
Sm
R2
R12 12 (Ll1 Ll2 )2
Tm
21[R1
3 pU12
R12 12 (Ll1 L'l 2 ) 2 ]
华南理工大学
上式表明,当转速或转差率一定时,电磁转
矩与电压平方成正比。对应不同的定子电压,可 得到一组机械特性曲线,如图6—3 所示,图中
U1N表示定子额定电压。
右图分析: 带恒转矩负载时,普 通笼型异步电动机调 压时的稳定工作点为 A—B—C,转差率在 0—Sm范围内变化,调 速范围很小。如带风 机类负载运行,工作 点为D、E、F,调速范 围稍大些。
电路(e)只用三个晶闸管,它们位于三相绕 组后面可减少电网浪涌电压对它的冲击,即使 三相绕组发生相间短路也不致损坏晶闸管,它 的移相范围为2100。此电路要求定子绕组中性 点能拆开,且只能接成Y形。电路上有偶次谐 波,对电机不利。
华南理工大学
优胜电路:
综上所述,电路(b)、(e)性能 较好,在交流调压调速系统中多采 用这两个方案。
华南理工大学
6.2.2 异步电动机 在调压时的机械特性
根据电机学原理,异步电动机稳态时的简化 等值电络图如图6—2所示。
I1
R1
Ll1

交流伺服电动机调速系统介绍

交流伺服电动机调速系统介绍

交流伺服电动机调速系统介绍概述交流伺服电动机调速系统是一种广泛应用于工业自动化领域的高性能电动机控制系统。

它通过对电机的电流和速度进行精准控制,实现高速度、高精度的电动机调速。

本文将详细介绍交流伺服电动机调速系统的工作原理、组成部分、应用领域以及优势等内容。

工作原理交流伺服电动机调速系统的工作原理基于闭环控制理论。

它通过反馈电机的位置、速度和转矩等信号,与预设值进行比较,并根据比较结果调整电机的控制信号,使电机以预期的速度和转矩运行。

系统主要包含三个部分:电机驱动器、位置反馈装置和控制器。

其中,电机驱动器将控制信号转换为电机驱动所需的电流和电压;位置反馈装置用于实时监测电机的位置和速度;控制器根据反馈信号和预设值进行控制算法运算,并输出控制信号给电机驱动器。

组成部分1. 电机驱动器电机驱动器是交流伺服电动机调速系统的核心组件。

它通过将控制信号转换为电机驱动所需的电流和电压,控制电机的转速和转矩。

通常使用的电机驱动器有两种类型:直流耦合型和速度闭环型。

直流耦合型驱动器适用于要求较低的精度和转速要求较高的应用,而速度闭环型驱动器则适用于对精度和速度要求较高的应用。

2. 位置反馈装置位置反馈装置用于实时监测电机的位置和速度。

常用的位置反馈装置有编码器、光电传感器和霍尔传感器等。

编码器是最常用的位置反馈装置,它通过检测电机轴上的旋转磁场脉冲来计算电机的位置和速度。

光电传感器和霍尔传感器则通过检测旋转齿轮的牙齿或永磁体的磁场变化来实现位置和速度的反馈。

3. 控制器控制器是交流伺服电动机调速系统的智能核心。

它根据反馈信号和预设值进行控制算法运算,并输出控制信号给电机驱动器。

常用的控制器有PID控制器和模糊控制器等。

PID控制器通过比例、积分和微分三个控制参数对反馈信号和预设值进行加权求和,得出控制信号。

模糊控制器则是一种基于模糊逻辑的控制方法,它通过定义模糊集合和规则库来实现对电机的控制。

应用领域交流伺服电动机调速系统广泛应用于以下领域:1.机床工业:用于铣床、车床、磨床等机床设备的高速度、高精度调速。

交流调速系统的应用原理

交流调速系统的应用原理

交流调速系统的应用原理1. 简介交流调速系统是一种用于调节电机转速的系统,广泛应用于各种机械设备中。

它通过改变电机输入的电压和频率来控制电机的转速,从而实现对设备的精准控制。

本文将介绍交流调速系统的应用原理,并对其工作流程进行详细解析。

2. 应用原理交流调速系统主要由四个部分组成:输入电源、频率变换器、转速反馈器和控制器。

下面将逐一介绍各个部分的作用和原理。

2.1 输入电源输入电源是整个交流调速系统的能量来源,通常为市电或发电机提供的交流电。

输入电源的电压和频率决定了交流调速系统的工作状态,对于不同的设备,需要选择合适的输入电源参数。

2.2 频率变换器频率变换器是交流调速系统的核心组件之一,它负责接收输入电源的电压和频率,并将其转换为适合电机工作的电压和频率。

频率变换器采用电子元器件来实现,内部含有逆变器、滤波器等电路,通过调整电路中的元器件参数,可以实现对输出电压和频率的控制。

2.3 转速反馈器转速反馈器用于监测电机的转速,并将转速信息反馈给控制器。

转速反馈器通常采用传感器或编码器等设备,将转速信号转换为电信号,并传递给控制器进行处理。

2.4 控制器控制器是交流调速系统的大脑,它接收转速反馈器传来的信号,并根据设定的目标转速进行处理。

控制器包含了一些计算和调节算法,根据转速反馈信号和设定值之间的差异,调整频率变换器的输出,使电机的转速逐渐接近目标转速。

3. 工作流程交流调速系统的工作流程如下:1.输入电源供电,提供工作所需的电压和频率。

2.频率变换器接收输入电源的电压和频率信号,并将其转换为适合电机工作的电压和频率。

3.转速反馈器监测电机的实际转速,并将转速信号传递给控制器。

4.控制器根据设定的目标转速和转速反馈信号之间的差异,计算出需要调整的频率变换器输出。

5.控制器将调整后的频率变换器输出信号发送给频率变换器,调整电机的电压和频率。

6.电机根据调整后的电压和频率工作,逐渐接近设定的目标转速。

电力拖动自动控制系统第7章 交流调压调速系统

电力拖动自动控制系统第7章 交流调压调速系统
第7章 异步电动机调压调速系统
7.1 交流调速系统概述
7.1.1 交流调速的发展概况
交流调速系统:由交流电动机拖动、电机转速为控制目标的电力拖动自动控制系统 直流电动机优点:调速性能好 直流电动机缺点:体积大、容量小、制造成本高、有机械换向装置,维护困难 交流电动机优点 :结构简单可靠,维护少,无机械换向火花,制造成本低 20世纪70年代,研究开发高性能的交流调速系统,期望用它来节约能源。 同期,电力电子技术、大规模集成电路、各种控制理论、计算机控制技术的 飞速发展,为交流调速电力拖动的发展创造了有利条件。 20世纪80年代,原有的交直流调速拖动系统的分工格局被逐渐打破。 20世纪90年代,交流调速系统已经占到了调速系统的主导地位。 目前的许多交流调速系统在装置容量上、动静态性能上、可四象限运 行的要求上,以至在系统制造成本上都可以与直流调速系统相媲美。
只要改变转速给定信号就可 以使静特性平行地上下移动, 达到调速的目的。
该系统与直流 V-M系统有许多 本质上的不同之处
Ks
不但与 α 角的大小有关,还与负载的功率因数角有关。
n f ( U 1 ,T ) 是一个复杂的非线性函数,且 R2 X2 、
也不是一个定值,随电机转速变化而大幅度变化
当电机转子的转速与 定子电流的频率有严格 比例关系的电动机称同 步电动机,无严格比例 关系的电动机称异步电 动机。
无刷直流电动机及 开关磁阻电动机都满足 “定子电流的频率与转 速有严格比例关系”的 条件,所以也把它归入 同步电动机。
7.1.3 异步电动机的机械特性
1.固有机械特性
转矩的物理表达式
xK r1 I 1 U 1 x1 x2


r2
2 r1 ( x1 x ) 2 2

交流调速简答 (1)

交流调速简答 (1)

直流调速系统:控制简单、调速平滑、性能良好。

但换向器存在,维护工作量加大,单机容量、最高转速以及使用环境都受到限制交流调速系统:交流调速系统,励磁电流和转矩电流互相耦合,调速困难。

现代交流调速系统由交流电动机、电力电子功率变换器、控制器及电量检测器组成,称为变频器。

课后习题1.交流调速的主要应用领域:1.冶金机械2.电气牵引3.数控机床4.矿井提升机械5.起重、装卸机械6.原子能及化工设备7.建筑电气设备8.纺织、食品机械2.异步电动机的优点:结构简单,运行可靠,便于维护,价格低廉。

3.异步电动的调速方法:改变电源频率、改变极对数以及改变转差率。

4.变频调速的基本要求:1.保持磁通为额定值 2.保持电压为额定值5.交-直-交变频器与交-交变频器的主要特点比较:比较项目类型交-直-交变频器交-交变频器换能方式两次换能,效率略低一次换能,效率高晶闸管换向方式强迫换向或负载换向电网换向所用器件数量较少较多调频范围频率调节范围宽一般情况下,输出最高频率为电网频率的1/3~1/2电网功率因素采用晶闸管可控整流调压,低频低压时功率因数较低,采用斩波器或PWM方式调压,功率因数高较低适用场所可用于各种电力拖动装置,稳频稳压电源和不间断电源适用于低速大功率拖动6.同步电动机变频调速方法:他控式变频调速、自控式变频调速。

不同:他控式变频调速采用独立的变频器(即输出频率由外部振荡器控制)作为同步电机的变压变频电源。

自控式变频器调速由电动机轴上所带的转子位置检测器发出信号来控制逆变器的触发换相,即采用输出频率由转子位置来控制的变压变频电源为同步电机供电。

这样就从内部结构和原理上保证了频率与转速必然同步,构成“自控式”。

7.各种变频调速的基本原理:按结构分为交-直-交变频器与交-交变频器;按电源性质分电压型变频器:变频器主电路中的中间直流环节采用大电容滤波,使直流电压波形比较平直,对于负载来说,是一个内阻抗为零的恒压源,这类变频调速装置叫做电压源变频器。

交流调速系统..课件

交流调速系统..课件

VS
详细描述
模糊控制策略通过将专家的知识和经验转 化为模糊规则,对系统的输入和输出进行 模糊化处理,并根据模糊逻辑进行决策。 这种控制策略能够处理不确定性和非线性 问题,但可能存在计算量大和鲁棒性不足 的问题。
控制策略的比较与选择
总结词
根据系统特性和应用需求,选择合适的控制 策略。
详细描述
在交流调速系统的实际应用中,需要根据电 机的类型、系统的性能要求、控制精度和动 态响应等要求,选择合适的控制策略。同时 ,需要对各种控制策略的优缺点进行比较, 以实现最佳的控制效果。
系统维护保养与故障排除
故障诊断
根据故障现象,分析可能的原因。
故障排除
根据诊断结果,采取相应措施排除故障。
预防措施
对故障进行分析,采取预防措施,避免类似故障再次发生。
系统性能测试与评估
要点一
转速控制精度
测试系统转速控制的准确性。
要点二
调速范围
测试系统调速范围是否满足要求。
系统性能测试与评估
• 稳定性:测试系统在各种工况下的稳定性。
02
交流调速系统的种类与特点
变频器调速系统
01
02
03
种类
交-直-交变频器、交-交变 频器
特点
调速范围宽、动态响应快 、运行效率高、节能效果 好、易于实现自动控制和 过程控制
应用领域
广泛应用于各行业的风机 、水泵、压缩机等通用机 械的调速和节能运行
串级调速系统
工作原理
通过改变电机转子回路电 阻来调节电机转子电流, 进而改变电机转速
行。
系统软件设计
控制算法选择
选择适合的控制系统算法,如PID控制、模 糊控制等。
软件架构设计

交流调速系统设计报告

交流调速系统设计报告

交流调速系统设计报告1. 引言交流调速系统是一种应用广泛的电力传动系统,可以实现电动机的无级调速和自动控制。

本文将对交流调速系统的设计进行详细的说明和分析,包括系统的组成、工作原理、设计步骤及成果展示。

2. 系统组成交流调速系统主要由电动机、变频器、传感器、控制器和用户界面组成。

其中,电动机是系统的执行机构,变频器是控制电机转速的核心设备,传感器用于获取电机运行状态的反馈信号,控制器用于对变频器进行指令控制,用户界面则是系统的操作界面,用于用户的交互操作。

3. 工作原理交流调速系统的工作原理基于变频器的调速技术。

其核心思想是通过控制变频器的输出电压和频率,来控制电动机的转速。

具体而言,系统通过传感器获取电动机转速和负载变化的反馈信号,并将信号传递给控制器。

控制器根据反馈信号及用户的设定值,计算出控制信号并发送给变频器。

变频器根据接收到的控制信号,改变输出电压和频率,从而实现对电动机转速的精确控制。

4. 设计步骤设计交流调速系统的步骤如下:4.1 确定系统需求根据用户的实际需求,确定系统的调速范围、精度要求、工作环境等参数。

4.2 选择电动机和传感器根据系统需求,选择合适的电动机和传感器。

电动机的功率和转速范围应满足系统的输出要求,传感器应能够准确获取电动机的转速和负载变化。

4.3 选择变频器和控制器根据电动机和传感器的特性,选择合适的变频器和控制器。

变频器的额定功率和频率范围应满足系统的要求,控制器应具备良好的信号处理和计算能力。

4.4 连接和调试系统将电动机、传感器、变频器和控制器按系统设计连接,并进行调试和测试。

确保系统能够正常工作并达到预期的调速效果。

4.5 用户界面设计根据用户需求,设计用户界面,实现用户与系统之间的交互操作。

用户界面应友好易懂,功能完善。

5. 成果展示经过上述设计步骤,我们成功实现了一套交流调速系统。

系统具备以下特点:- 调速范围广,可满足不同工况的调速需求;- 调速精度高,可实现电动机的无级调速;- 响应速度快,能够在瞬间完成转速调整;- 操作界面友好,操作简便,用户体验良好。

交流调压调速系统

交流调压调速系统

一、调压调速措施 获取交流调压电源旳措施:
(1)调压器调压 如图(a)所示。
~
~
LS
TU
+-
M
M
3~
3~
(a)
(b)
图5-2 异步电动机调压调速原理
~ VVC
M
3~ (c)
23
(2)饱和电抗器调压 如图(b)所示,饱和电抗器LS是带有直流励磁绕组旳
交流电抗器。
(3)晶闸管交流调压器调压 如图(c)所示。单相调压电路如图所示,其控制措施
31
1. 系统构成
~
+
U*n +
GT ASR Uc
Un
M 3~
n
T-G-
a)原理图
图5-6 带转速负反馈闭环控制旳交流变压调速系统
32
2. 系统静特征
nห้องสมุดไป่ตู้
n0
恒转矩负载特征
U*n1
A
A A’U*n2
’’
U*n3
Us min
UsN
O
TL
Te
图5-6b 闭环控制变压调速系统旳静特征
33
当系统带负载在 A 点运营时,假如负载增大 引起转速下降,反馈控制作用能提升定子电压,
25
2)开关控制方式 把晶闸管作为开关,将负载与电源完全接通几种半波, 然后再完全断开几种半波。交流电压旳大小靠变化通断时 间比t0/ tp来调整。输出电压波形如图所示。
U
0
t
通t0
断tp
图5-5 晶闸管开关控制下的负载电压波形
晶闸管开关控制下旳负载电压波形
特点:采用“过零”触发,谐波污染小;转速脉动较大。26

交流调速系统第二版教学设计

交流调速系统第二版教学设计

交流调速系统第二版教学设计
介绍
交流调速系统是一个被广泛应用于工业和电气控制的系统,其主要功能是控制交流电动机运转的速度。

本教学设计将介绍关于交流调速系统的相关知识和技术,并提供实际应用案例进行演示和练习。

教学目标
1.掌握交流调速系统运行原理及其应用;
2.学习基本的调速技术以及其在实际应用中的使用方法;
3.了解交流调速系统的实际应用案例。

教学内容
第一部分:交流调速系统基础知识
1.交流电机基础知识
2.交流调速系统分类及其特点
3.交流调速系统组成部分及其功能
4.交流调速系统工作原理
第二部分:交流调速系统调速技术
1.电压调速技术
2.变频调速技术
3.矢量控制调速技术
4.电流调速技术
第三部分:交流调速系统实际应用案例
1.水泵调速控制系统
2.风机调速控制系统
3.中央空调调速控制系统
教学方法
1.线上视频授课;
2.实验演示;
3.问题解答。

评估方式
1.考试(50%);
2.实验报告(20%);
3.作业(30%)。

教学材料
1.教材:《交流调速系统教程》;
2.实验器材:交流电机、变频器、矢量控制器等;
3.代码和案例实验材料。

结束语
本教学设计目的在于提供对交流调速系统的了解和理解,并且运用实践进行演示和练习。

在实际生活和工作中,交流调速系统的应用非常广泛,掌握相关知识和技术,对于工程师和技术人员来说十分重要。

希望本教学设计能够帮助大家更好地理解和掌握交流调速系统相关的知识和实践技能。

绪论交流调速概述

绪论交流调速概述
(1)新型开关元件和储能元件的研制。 (2)最新控制思想、控制算法、控制技术不断应用 于交流调速产品。 (3)控制装置设计可靠性越来越高性能,不断解决 瞬时停电后的装置安全及恢复正常问题。 (4)高运算速度、高控制性能的微型计算机产品在 现代交流调速装置中不断应用,充分显示了现代控制手 段的优越性。 (5)进行大容量、特大容量等级的新型交流调速 动机技术研究。同时也在进行结构精巧的高效能、高精 度交流控制电机技术研究。
6
交流调速系统概述
交流电动机调速系统的技术应用:
(1)风机、水泵、压缩机耗能占工业用电的40%,进 行变频、串级调速,可以节能。
(2)对电梯等垂直升降装置调速实现无级调速,运 行平稳、档次提高。
(3)纺织、造纸、印刷、烟草等各种生产机械,采 用交流无级变速,提高产品的质量和效率。
(4)钢铁企业在轧钢、输料、通风等多种电气传动 设备上使用交流变频传动。
(5)有色冶金行业如冶炼厂对回转炉、培烧炉、球 磨机、给料等进行变频无级调速控制。
(6)油田利用变频器拖动输油泵控制输油管线输油。 此外,在炼油行业变频器还被应用于锅炉引风、送风、 输煤等控制系统。
7
交流调速系统概述
(7)变频器用于供水企业、高层建筑的恒压供水。 (8)变频器在食品、饮料、包装生产线上被广泛使用, 提高调速性能和产品质量。 (9)变频器在建材、陶瓷行业也获得大量应用。如水 泥厂的回转窑、给料机、风机均可采用交流无级变速。 (10)机械行业。是企业最多、分布最广的基础行业。 从电线电缆的制造到数控机床的制造。电线电缆的拉制需 要大量的交流调速系统。一台高档数控机床上就需要多台 交流调速甚至精确定位传动系统,主轴一般采用变频器调 速(只调节转速)或交流伺服主轴系统(既无级变速又使 刀具准确定位停止),各伺服轴均使用交流伺服系统,各 轴联动完成指定坐标位置移动。

《交流调速系统》PPT课件

《交流调速系统》PPT课件
交流调速系统
第15讲
5.1 引言
1、交直流调速系统的格局
20世纪60年代以前 80% —— 交流定速运行 18% —— 直流可调速运行 2% —— 交流可调速运行
70年代以前直流占统治地位。
70年代开始电力电子技术的应用开创了交流可调速传的新纪元 。
▪ 目前,交流调速是调速领域的主要发展方向。
VT1
U
R
VT4
VT3
R
V
VT6
VT5 R
W
VT2
图5-6 三 三相相全全波波 星形星联形结的联调结压的电路调压电路
电路正常工作的条件: (1) 要求采用宽脉冲或双窄脉冲触发电路,与电源电压同步。 (2)要求U、V、W三相电路中正向晶闸管的触发信号相位互差120°,三相 电路中反向晶闸管的触发信号相位也互差120°。 (3)同一相中反并联的两个正、反向晶闸管的触发脉冲相位应互差 180°。 根据上面的结论,可得出三相调压电路中各晶闸管触发的次序为VT1 、VT2、 VT3、VT4、VT5、VT6、VT1……,相邻两个晶闸管的触发信号相位差为60°。
特点:系统的效率低,结构简单。调压调速、绕线式异步电动机转子串电阻调 速、电磁转差离合器调速系统属于此类。 (2)转差功率回馈型调速系统——转差功率的少部分被消耗掉,大部分通过变 流装置回馈给电网或者转化为机械能予以利用。
特点:效率高。串级调速属该类系统。 (3)转差功率不变型调速系统——调速过程中,转差功率基本不变。
2、交流调速的特点
直流调速系统特点: 控制对象:直流电动机 控制原理简单,一种调速方式 性能优良,对硬件要求不高 电机有换向电刷(换向火化) 电机设计功率受限 电机易损坏,不适应恶劣现场 需定期维护
交流调速系统特点: 控制对象:交流电动机 控制原理复杂,有多种调速方式 电机无电刷,无换向火化问题 转速高、耐压高 容量大(交流电机本身容量大) 电机不易损坏,适应恶劣现场 体积小、重量轻,基本免维护 节能显著

交流调速系统第3章

交流调速系统第3章

在电压空间矢量按磁链控制的同时,也接受转矩的砰-砰控制。 例如:以正转(T*e > 0)的情况为例 当实际转矩低于T*e 的允许偏差下限时,按磁链控制得到相应的电压空间矢量,使定子磁链向前旋转,转矩上升。
稳态时,上述情况不断重复,使转矩波动被控制在允许范围之内。
当实际转矩达到 T*e 允许偏差上限时,不论磁链如何,立即切换到零电压矢量,使定子磁链静止不动,转矩下降。
DTC系统和VC系统都是已获实际应用的高性能交流调速系统。两者都采用转矩(转速)和磁链分别控制,这是符合异步电动机动态数学模型的需要的。但两者在控制性能上却各有千秋。
矢量控制系统特点
VC系统强调 Te 与Ψr的解耦,有利于分别设计转速与磁链调节器;实行连续控制,可获得较宽的调速范围;但按Ψr 定向受电动机转子参数变化的影响,降低了系统的鲁棒性。
第3章 基于动态模型按定子磁链控制的 直接转矩控制系统
直接转矩控制系统简称 DTC ( Direct Torque Control) 系统,是另一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面,利用转矩反馈直接控制电机的电磁转矩,因而得名。
概 述
3.1 直接转矩控制系统的原理和特点
The End
FOR WATCHING
由于采用了直接转矩控制,在加减速或负载变化的动态过程中,可以获得快速的转矩响应,但必须注意限制过大的冲击电流,以免损坏功率开关器件,因此实际的转矩响应的快速性也是有限的。
性能比较
从总体控制结构上看,直接转矩控制(DTC)系统和矢量控制(VC)系统是一致的,都能获得较高的静、动态性能。
直接转矩控制系统的控制规律和反馈 模型
02
5. 主要的改进方案
基本框架不变,改进具体的控制方法

交流调速控制系统课程设计

交流调速控制系统课程设计

交流调速控制系统课程设计一、实验目的本实验旨在让学生掌握交流调速控制系统的工作原理与设计方法,理解交流电机的调速特性及其应用。

二、实验内容1.交流调速控制系统的设计及组装;2.交流电机的调速特性实验;3.利用交流调速控制系统控制交流电机的转速;4.测试交流电机在不同转速下的性能参数。

三、实验原理交流调速控制系统是通过改变电机绕组施加电压的方式来控制电机转速的。

主要包括三种类型:电压型、频率型和 PWM 型。

实验中采用电压型交流调速控制系统。

电路主要由三部分组成:晶闸管控制器、变压器、电机。

控制器可以调整交流电源输入电压的大小,从而改变电机的转速。

交流电机的调速特性取决于电压和负载。

一般情况下,电机的转速与电压呈线性关系。

在负载变化时,电机转速的变化主要取决于负载对电机的转矩要求。

四、实验设计实验器材和材料•交流电机•电压型交流调速控制系统•三相变压器•电压表•电流表•多用表实验步骤1.搭建交流调速控制系统,将三相变压器接在电机上;2.将电压表、电流表和多用表依次接在控制器输出端、变压器输入端和电机端;3.将控制器接入电源,打开电源开关,开始进行实验。

实验流程1.逐步调整交流电机转速,记下不同转速下的电压、电流、功率及效率等数据;2.根据数据绘制出交流电机的调速特性曲线(电压 - 转速曲线、效率- 转速曲线等);3.讨论曲线所反映的电机性能特点、调速控制器的作用及其优化方法等。

五、实验结果通过实验可以得到电压 - 转速曲线、效率 - 转速曲线等数据,进而分析交流电机的调速特性。

针对不同的调速要求,可以调整控制器的输出电压,以达到最佳调速效果。

六、实验总结交流调速控制系统在现代工业中有着广泛的应用。

本实验让学生深入理解交流调速控制系统的设计原理、系统组成、性能特点及优化方法等,培养学生的实验技能、动手能力和解决问题的能力。

交流调速系统 (1)

交流调速系统 (1)

调压调速
转差功率消耗型: 串电阻调速
异步电机
电磁离合器调速
调速系统 转差功率回馈型: 串级调速
变磁极对数调速 转差功率不变型:
变频调速
6.2 闭环控制的交流变压调速系统
交流电机几种调压方式 异步电动机改变电压的机械特性曲线
(开环) 闭环控制的调压调速系统 近似的动态结构图
6.2 闭环控制的交流变压调速系统
1、系统组成
~
+
U*n + Un
GT
Uc ASR
M 3~
n
TG
a)原理图
图6-5 带转速负反馈闭环控制的交流变压调速系统
2、系统静特性
n n0
B
n*2
A
A’’
A’
U1min
C UN
0
TL
Te
图6-5b 闭环控制变压调速系统的静特性
按照反馈控制规律,将A´ 、A、A”连 接起来便是闭环系统的静特性。尽管异步 电机的开环机械特性和直流电机的开环特 性差别很大,但是在不同电压的开环机械 特性上各取一个相应的工作点,连接起来 便得到闭环系统静特性,这样的分析方法 对两种电机是完全一致的。
A
A’
n*3 U1min
UN
0
TL
Te
图6-5b 闭环控制变压调速系统的静特性
3、系统静态结构框图
~
+
U*n +
U*n
-
-
Un Un
GT
ASR ASR
Uc
Uc
U1
Ks
-TL n=f(U1,Te)
n
M 3~
n
TG
图6-6 异步电机闭环变压调速系统的稳态结构框图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

串电阻调速——绕线式异步机 调压调速 串级调速——绕线式异步机 电磁转差离合器调速
变极对数调速 鼠笼型转子
变频调速 交—交变频调速
交—直—交变频调速
1. 变级对数调速 n = 60 f1 (1-S ) / np
基本原理:在定子频率一定时,改变定子的极对 数即可改变同步转速n0,从而达到调速的目的。
要求高
要求低
较多
较少
简单且性能好
复杂
交流调速系统在应用上的优势
① 大功率负载时的性能价格比高; ② 高速运行时的转动惯量小; ③ 可应用于易燃、易爆、多尘的场合; ④ 大功率器件的发展使交流调速系统的成本
不断降低; ⑤ 采用中压变频装置可节省变电站容量。
3.1.2 交流调速系统的难点和复杂性
(1) 交流电机转矩控制的难点 Md = KmΦm Ir cosθr
极对数必须是整数(np=1,n0=3000r/min; np=2, n0=1500r/min; np=3,n0=1000r/min),因此,变 级调速只能是有级调速。
变级调速只适用于鼠笼型异步电机。
1. 变级对数调速
n
3000
目前,传动系统中的新格局已经形成: 交流调速系统上升到主导地位,并逐渐取代 直流调速系统。
3.1.1 交流调速系统与直流调速系统的比较
直流电机自身固有的缺点: ① 直流电机的换向器工艺复杂、成本高; ② 换向器限制了直流电机的容量和速度; ③ 电刷火化和环火限制了直流电机的应用; ④ 转子发热多,电机效率低; ⑤ 换向器和电刷磨损快,维修工作量大。
交流电机与直流电机的比较
结构特点 重量/功率 体积/功率 价格/功率 最大容量 最大转速 最高电枢电压 安装环境
维护量 调速方式及性能
直流电机
交流电机
有电刷、工艺复杂 无电刷、工艺简单
约2倍
1倍
约2倍
1倍
几倍
ቤተ መጻሕፍቲ ባይዱ
1倍
12MW~14MW
几十MW
1000r/min左右
数千r/min
1kV
6kV~10kV
3.1.2 交流调速系统的难点和复杂性
(2) 调速装置中器件的发展阶段限制 交流调速装置中两大组成部件:变频器
的主要器件——大功率电力电子装置在近五 十年更新了五代;控制器的主要器件——微 处理器的运算速度在近二十年提高了数倍。 因此直到20世纪90年代,这些器件才基本上 满足了高性能调速系统的需要。
3.1.3 交流调速系统的技术突破 (2) 微机及数字信号处理技术的发展 运算位数:8位16位32位; 执行时间:微秒级纳秒级 控制器的综合性能大幅度提高。
3.1.3 交流调速系统的技术突破 (3) 现代控制理论的应用及交流调速原理的
发展和成熟 标量控制矢量控制变结构控制 直接转矩控制智能控制(模糊、神经网络)
以前广泛采用的交流电机不调速系统采 用直接启动方式,启动电流可达额定电流的 6倍,不仅产生很大的电能损耗,而且影响 电网的稳定。特别是大功率系统对电网的扰 动更为明显。另外,由交流不可调速电机与 风机、水泵、压缩机等组成的机组,需要调 节流量时,只能采用挡板、阀门、回流、放 空等措施,造成大量的能量损失。
直到20世纪60~70年代,随着电力电子技 术的发展,采用电力电子变换器的交流拖动 系统得以实现,特别是大规模集成电路和计 算机控制的出现,使高性能交流调速系统应 运而生,一直被认为是天经地义的交直流拖 动按调速性能分工的格局终于被打破了。
交流调速系统逐步实现了宽的调速范围、 高的稳速精度、快的动态响应以及四象限可 逆运行等良好的控制性能。
3.1.4 交流调速系统的主要应用领域
(3) 直流调速难以实现的领域
直流电机的换向能力限制了它的容量转速 积不超过106 kW ·r /min,超过这一数值时,其 设计与制造就非常困难了。
交流电机没有换向器,不受这种限制,因 此,特大容量的电力拖动设备,如厚板轧机、 矿井卷扬机等,以及极高转速的拖动,如高速 磨头、离心机等,都以采用交流调速为宜。
式中: Km— 转矩系数; Φm— 气隙磁通; Ir — 转子电流; θr— 转子功率因数角。
3.1.2 交流调速系统的难点和复杂性
Md = KmΦm Ir cosθr ① Φm是由定子电流 Is 和转子电流 Ir 共同产
生的; ② Φm与 Ir 耦合,且 Ir 通常无法直接测量 ; ③ θr是与转速相关的时变量; ④ Md仅代表平均转矩,控制瞬时转矩更难。
3.1.2 交流调速系统的难点和复杂性
(3) 调速系统精度和成本的限制 针对如此复杂的控制对象,新的控制方
法和控制器件要达到一定的控制精度,必须 要经过反复、大量的研制工作,并接受长期 的、各种工况的实际考验。因此在应用初期 价格较高。
3.1.3 交流调速系统的技术突破 (1) 电力电子技术的发展 半控器件全控器件;电流控制电压控制 低频开关高频开关;小功率大功率 单个器件模块化、集成化 变频器的性能、体积、价格不断优化。
运动控制系统
第3章
交流调速系统
3.1 概 述
直流电力传动和交流电力传动在19世纪 先后诞生。在20世纪的大部分年代里,鉴于 直流传动具有优越的调速性能:高性能可调 速传动都采用直流电机,而约占电力传动总 容量80%以上的不变速传动系统则采用交流 电机,这种分工在一段时期内已成为一种举 世公认的格局。交流调速系统的多种方案虽 然早已问世,并已获得实际应用,但其性能 却始终无法与直流调速系统相匹敌。
3.1.4 交流调速系统的主要应用领域
(1) 交流恒速交流调速 在原来大量的交流不调速领域(如风机、
水泵、压缩机等)改恒速运行为可调速运行。 仅以泵的控制改造为例,节电率高达20%。
3.1.4 交流调速系统的主要应用领域
(2) 直流调速交流调速 为减少维护量、提高运行可靠性,将一些
直接关系生产和人身安全的直流调速系统改为 交流调速系统。
3.1.5 交流调速的基本方法
交流异步电机的转速公式:
n = 60 f1 (1-S ) / np= n0 (1-S ) 式中: f1 — 定子供电频率;
np — 极对数; S — 转差率, S = (n0 -n ) / n0 ; n0 — 同步转速, n0 = 60 f1 / np 。
变转差率调速
相关文档
最新文档