车用发动机配气机构运动学和动力学分析
发动机配气机构动力学分析
发 动机 配气机构动力学分析
刘 晓 勇 ,董 小瑞
( 中北 大 学 机 电 工程 学 院 , 山 西 太 原 005) 30 1
擒要 :建立了配气机构单 自由度 动力 学模型 ,并用 Ⅳ 次谐波凸轮法拟合 了凸轮升程 ,采用龙格一库塔求解动 力学微分方程 , 并进行 了实例验证 , 得到 了某型号 配气 机构气 门的升程 、速度 、加速度 ,计算结果表明该 机构
由当量 凸轮控 制 , 刚度 K 以通过 试 验测定 , 可 以 可 也 通过 有 限元 软 件建 立系统 的实 体模 型 , 出理 论刚 度 ; 算 h r是机构 为 刚性 时气 门的升 程 ,当系统摇 臂 比为 常数 时 ,h r就是 凸轮 升程 与摇臂 比的乘积 ; h 为气 门实 际
图 1为典 型 的配气 机构 动力学 模型 , 1b 中把 图 ()
My—— 推 杆质 量 。
臂
气 门弹
气门
气 门 的运 动 用一 个 当量质 量 M 的运 动来 Kz 的气 门弹 簧与气 缸 盖 连接 ,而 另 端连 接 ・假 想 的刚 度 为 K 的弹 簧 ,弹簧 的另一 端
维普资讯
第 6期 ( 第 1 5 ) 总 4期
20 0 7年 1 2月
机 械 工 程 与 自 动 化
MECHANI CAL ENGI NEERI NG & AUTOMATI ON
No.6 Dec .
文章 编 号 :6 26 1 (0 70 —0 80 1 7 —4 32 0 )60 6 —3
收稿 日期 l 0 70 -2 2 0 -52 ,修回 日期 l 0 70—2 2 0— 62
作 者 简 介 t刘 晓 勇 (9 0) 男 , 西 平遥 人 , 教 , 士 研 究 生 。 1 8- , 山 助 硕
发动机配气机构运动学及动力学分析
重庆大学本科学生毕业设计(论文)发动机配气机构运动学及动力学分析学生:黎明学号:********指导教师:阮登芳(教授)专业:车辆工程重庆大学车辆工程学院二零一七年五月Graduation Design(Thesis) of Chongqing UniversityKinematics and dynamics analysis forengine valve trainUndergraduate: Li MingSupervisor: Prof. Ruan DengfangMajor: Vehicle EngineeringCollege of Vehicle EngineeringChongqing UniversityMay 2017摘要配气机构是发动机的重要组成部分,其设计的合理与否直接影响到发动机的充气效率以及换气质量,因此对发动机的动力性、燃油经济性、可靠性、有害物质排放、发动机噪声和振动有较大的影响[1]。
而顶置凸轮轴式配气机构由于能适应更高的转速而在许多小型汽油机中广泛使用。
但是顶置凸轮轴由于摇臂传动比是变值,所以其几何关系要复杂很多[2]。
本文在已知凸轮对摇臂的运动规律的条件下,针对某125发动机的配气机构,经理论分析运动学规律,并用matlab计算出其气门对转角的理论升程、速度、加速度。
在考虑气门间隙及传动机构变形的影响下,建立配气机构运动的单自由度模型,得出运动二阶微分方程。
利用matlab采用龙格——库塔法计算出气门的实际运动规律,对比气门实际升程和理论升程,对该发动机配气机构的“飞脱”、“反跳”以及运转的平稳性进行动力学特性评价。
从而完成了整个配气机构的运动学及动力学计算。
关键词:运动学,动力学,配气机构,matlab,龙格库塔法ABSTRACTValve train is an important part of the engine, which has directly affect to the engine's volumetric efficiency and the quality of ventilation, so there is also a greater influence to the engine power, fuel economy, reliability, emissions of harmful substances, engine noise and vibration. Because the overhead camshaft valve train can adapt to the higher speed, it is widely used in many small gasoline engine. But for the overhead camshaft, the drive ratio of the rocker is changed by the time, so it has a more complex geometry realationship. With knowing the law of motion of cam on the rocker's condition, in the article, the displacement of the valve is calculated. In considering the valve clearance and the drive mechanism under the influence of deformation, the actual valve movement rule is calculated by using the Runge - Kutta method, and the running speed is calculated with the conditions that the transmission chain is flying off and rebound which are not in the normal conditions. Then the kinematics and dynamics calculations of the valve train are completed. And on this basis, with joining the modal analysis of the valve, the theoretical basis for the valve train design are provided.A valve train of a 125 motorcycle engine is chosen for the object of study in this subject.Key words:Valve train, Kinematics, Dynamics,Matlab目录摘要 (I)ABSTRACT .......................................................................................................................... I I一、绪论 (1)1.1课题研究意义 (1)1.2课题国内外研究状况 (2)1.2.1国外研究现状 (2)1.2.2国内研究现状 (3)1.3课题研究背景 (3)1.4课题研究内容 (4)二、气门机构的主要设计要求 (6)三、运动学分析 (8)3.1凸轮廓线预处理 (8)3.2气门理论运动规律与凸轮轮廓的关系 (9)3.3运动学理论分析后的计算结果 (11)四、动力学分析 (13)4.1动力学理论分析 (13)4.2摇臂比i (15)4.3摇臂刚度计算 (16)4.4解动力学微分方程 (17)4.5动力学分析结果 (19)五、动力学特性评价 (24)5.1“飞脱”和“反跳” (24)5.2各参数对配气系统的影响 (24)六、结论 (26)七、展望 (27)致谢 (28)附录A:matlab运动学分析程序 (29)附录B:动力学分析计算基本程序 (30)参考文献 (31)一、绪论本课题以某125型摩托车发动机的顶置凸轮式配气机构为研究对象,分别对其进行了运动学分析、刚度计算、以及动力学分析,并由所得到的数据对该机构进行动力学评估,为该发动机配气机构的合理设计奠定基础。
基于ADAMS的发动机配气机构动力学分析
《装备制造技术》2010年第9期配气机构作为内燃机三大机构之一,其主要功能是实现发动机的换气过程,根据气缸的工作次序,定时地开启和关闭进排气门,以保证气缸吸入新鲜空气和排出燃烧废气。
现今对于发动机配气机构的设计,一方面希望气门加速度越大,以使气门迅速开关,从而达到最好的换气效果,以提高动力性和经济性;另一方面,希望载荷保持相对较小,以减小加速度,从而减小振动和噪音,并延长使用寿命。
这样的矛盾要求,给配气机构的设计带来困难,因此需要精心设计进排气门的升程曲线,以达到最优设计。
内燃机配气机构的传统开发方法,往往是多方案的比较和试凑过程,在无物理样机的初始开发阶段,不但难以满足这样复杂的设计要求,而且反复进行实物试验,会延长研发周期和增加开发成本,同时对进行频繁的试验,也是不现实的。
而通常配气机构的运动学、动力学计算,仅是把机构当作一个弹性振动系统,模型可以是单质量模型或多质量模型,虽然大体上能满足描述气门运动规律的要求,但是这种方法可视化较差,无法直观地反映出各构件的运动情况,并且某些机构的刚度和阻尼参数,必须通过实测或分析计算才能得到,质量也需要经过折算,这不仅增加了建模的难度,而且也影响分析的精度,其应用范围受到限制。
为此,人们相继把多体动力学和虚拟样机技术,应用到配气机构的动力学分析中。
本文就是在这样的背景下,以多体动力学为理论基础,采用虚拟样机技术,应用ADAMS软件,进行了发动机配气机构的建模与仿真,从而得到整个系统协调下的运动规律和动力学特性。
利用该种方法建立的配气机构多体动力学模型,不但能很好地描述配气机构动力学特性,而且具有极佳的可视化效果,为提高今后产品自主开发能力起到积极的作用。
1配气机构多体动力学方程以多体动力学理论中的拉格朗日方程为理论基础,建立配气系统的动力学方程。
对于机构中的刚体i ,采用质心在惯性参考系中的笛卡儿坐标和反映刚体方位的欧拉角或广义欧拉角作为广义坐标,即q i =[x ,y ,z ,准,θ,φ]Ti ,q =[q 1T,q 2T,q n T ]T(1)接着建立这个系统的约束方程和作用力方程,并将它们也都写成广义坐标的表达式,最后应用拉格朗日乘子法,建立系统的运动微分方程,如下所示。
4105QB柴油机配气机构的机理分析及优化设计
它 与 气 门之
气 门的运 动规律 和 发动机 的配 气相 位
收 稿 日期
:
。
配 气机 13
雌 蝮
动机 配 气 的精度 排放水平 等
一
囝
,
影 响 到 发 动 机 的动 力 性 能
。
、
燃 油 消耗 和
系列 经 济技术 指标
5 原 4 1 0 5 QB 型 柴 油 机 外 特 性
,
影 响可 靠性
析
,
耐 久 性 的 因 素 十分 复 杂
因而 对 配 气 凸 轮及 机 构 的综合优
多
化研 究非常重 要
口]
。
数样 机 凸 轮 型 线 设 计 采 用 的 是 高 次 方 型 线
一
。
进 气 门下 降段
以 往 的设 计 方 法 是 凭 经 验 提 出
个 设 计方 案
,
,
然后 进
,
缓 冲 段 升 程 为 0 2 14 m
,
,
建立 了 可 行 的气 门数学 模 型
。
多元 影 响 因 素
凸轮型线
;
采用 非线性 规划 法
对 配 气 凸 轮 型 线 及 摇 臂 机 构提 出 了新 的优 化 设 计 措 施
摇 臂 结 构 ; 优 化设 计
:
中图分 类号
:
Tk4 2 3 4
.
文 献标识 码
A
文章编号
:
10 0 9
-
9492
(2 0 0 8 )
,
造 成 气 门在 工 作 段 落 座
,
由于 落座 力 大
,
端
,
机 械 设 计 中使 用 的 优 化 设 计 方 法 很 多
汽车发动机配气机构设计思路分析
汽车发动机配气机构设计思路分析摘要:随着我国汽车工业的不断发展,汽车在使用过程中可能遇到的问题种类也在不断增加。
本文重点描述了汽车发动机配气机构的故障,并简要列举了处理和分析方法。
关键词:发动机;配气机构;故障;处理分析;积炭;气门间隙0引言随着汽车数量的不断增加,人们对汽车的质量提出了更高的要求。
配气机构在汽车零部件中非常重要。
配气机构主要通过控制进气量来影响发动机功率。
随着汽车自身油路、温度环境和压力环境的日益复杂,配气机构的安全系数面临着巨大的挑战。
配气机构主要是按照一定的时限自动开启和关闭各缸的进排气门。
空气通过进气阀提供可燃气体混合物,燃烧做功后形成的废气从排气阀排出,实现气缸通风。
在实际使用中,由于多种因素的影响,汽车的配气机构变得脆弱,精密的配气机构受到影响后非常容易发生故障,其故障将直接影响发动机的性能。
1汽车发动机配气机构对发动机性能的影响为了让发动机获得更好的性能,就需要发动机有更高的充电效率。
为了提高发动机的充气效率,有必要降低进气通道的阻力。
通过扩大空气过滤器,加厚化油器,拉直进气管,并将其增加到进气阀的直径。
增大进气阀的直径,使进气口平直,可以大大提高充气效率。
随着汽车工业的发展,近年来双顶置凸轮轴四气门配气机构受到广泛关注,大大提高了汽车发动机的性能。
这种气门机构可以大大增加进气的有效流通面积,从而提高充气效率。
阀门的流通面积与进气口的直径成正比,而与阀头的面积不成正比。
对于每个气缸都有进气门和排气门的双气门发动机,当直径增加时,上限是进气门和排气门的直径之和低于气缸直径,因此不可能在尺寸上安装更大的气门。
在四气门发动机中,两个进气门直径之和可能大于两个气门的一个进气门直径。
当采用每缸4个气门的结构时,每个排气门的直径越小,气门受热面积就会越小,其机械负荷和热负荷也会相应降低,从而改善配气机构的动态性能,提高转速。
采用DOHC四气门机构可以有效提高发动机的充气效率、压缩比和功率。
14_奇瑞_崔英杰_利用AVL EXCITE Timing Drive进行配气机构动力学分析
利用AVL EXCITE Timing Drive进行配气机构动力学分析崔英杰刘波张璐(奇瑞发动机工程研究二院试验与分析部,安徽芜湖, 241009)摘要:利用A VL Timing Drive建立某机型配气机构的单阀系模型,评价凸轮型线和配气机构各零件的动力学表现。
首先分析凸轮型线运动学,然后判断该配气机构是否会出现气门飞脱、反跳、弹簧并圈、液力挺柱失效、凸轮磨损等现象,评价气门动力学特性及本组型线的可行性。
关键词:发动机;配气机构;运动学;动力学主要软件:A VL EXCITE Timing Drive1. 前言本文通过A VL EXCITE Timing Drive建立配气机构的单阀系仿真模型,继而对一组凸轮型线进行动力学分析,考察是否会出现气门飞脱、反跳、弹簧并圈、液力挺柱失效、凸轮磨损等现象,评价气门动力学特性及本组型线的可行性。
2.模型搭建2.1 配气机构布置图该机型采用双顶置凸轮轴,配气机构主要由凸轮、液力挺柱、指型摇臂、气门及气门弹簧等零件组成,摇臂几何尺寸由机构布置如图1确定。
图1 配气机构布置图2.2 零件质量、刚度、阻尼参数值确定各零件质量、转动惯量均从Pro/E三维数模中分析所得。
指型摇臂、气门杆、气门阀面的刚度按照培训教材推荐采用有限元方法计算,弹簧的刚度则由弹簧测力曲线用曲线拟合方法得到变刚度值。
零件相互之间相对阻尼,都采用培训教材中所推荐的值。
2.3 其他参数缸内压力曲线、排气道压力曲线由BOOST提供,如图2、3。
图2 缸内压力曲线图3 排气道压力曲线2.3 EXCITE Timing Drive模型建立采用以上数据,建立A VL EXCITE Timing Drive单阀系分析模型,如图4。
图4 TYCON分析模型3.计算结果分析3.1 型线运动学分析以该发动机超速转速,分析这组凸轮型线。
图5、6分别为进、排气气门的升程、速度、加速度曲线。
图5 进气运动学分析图6 排气运动学分析1) 凸轮最小曲率半径,均满足运动学和机械加工要求。
发动机配气机构系统动力学研究
发动机配气机构系统动力学研究申报人:周海指导老师:刘鹏文摘:配气机构是发动机中的一个重要组成部分,其工作性能的好坏直接关系到整机的运行状况,虽然配气机构的主要功能是满足发动机进排气量的需求,但其对整机的影响不仅限于此,配气机构的动力学及其零部件可靠性也是要急需关注的问题,在设计中,配气机构的动力学性能和各零部件强度都要符合相关要求。
1.研究模型概述本文是以一单缸机凸轮轴下置式、双摇臂四气门、带阀桥配气机构为研究对象,本单缸机的主要参数如表1所示:表1发动机主要技术参数表本文工作主要集中在运用专业软件TYCON进行配气机构模型的建立和仿真,从动力学角度分析研究配气机构的特性。
虽然现今出现了很多配气机构的新技术,像可变配气机构,其可变的范围包括气门正时可变、气门升程可变、气门开启延续时间可变等,一些汽车公司研究的对象也各有侧重点。
但在配气机构的研究上,都离不开运动学和动力学的研究,运动学仅仅考虑理想的状况,把零部件都看成刚性体,整个系统没有变形和弹性,忽略系统摩擦和阻尼能量损耗,其分析的结果仅能得到一些基本的位移、速度、加速度和力参数,一般以凸轮型线的正加速度宽度、阀系的自振频率、凸轮与从动件的接触应力、凸轮的曲率半径、弹簧裕度、丰满度、润滑系数等为运动学评价指标,而动力学模型考虑的因素更多,把物体都简化成有集中质量、刚度和相对阻尼的弹性质点,考虑了各零部件的接触和变形,动力学分析的结果可以得到很多更符合实际情况的一些信息,可以考察凸轮从动件的脱离接触、弹簧各有效圈动力特性、阀面落座反跳和冲击等情况。
运动学中要输入的参数也较少,工作量小,但动力学中要考虑的因素较多,输入的参数也多,工作量大。
对于低速或低载发动机的配气机构,其运动学和动力学分析的结果差异不是很大,气阀升程、速度和加速度曲线的整体趋势相差无几,两者吻合较好,但在高速或重载发动机中,由于必须考虑配气机构系统零部件的相互影响问题,其动力学和运动学分析结果有很大差异。
05-轿车柴油机配气机构运动学和动力学仿真与分析-昆明理工牛彩云等
轿车柴油机配气机构运动学和动力学仿真与分析牛彩云*1 毕玉华 申立中 雷基林(昆明理工大学交通工程学院内燃机重点实验室 650224)摘要:针对某轿车柴油机配气机构,应用A VL EXCITE Timing Drive软件建立了运动学与动力学仿真模型并对其进行了分析。
凸轮型线优化后,开启侧和关闭侧丰满度系数都提高到了0.56,提高了换气质量;接触应力和跃度分别降低到585.4 N/mm^2和724.8 mm/rad^3,降低了磨损和冲击。
通过动力学仿真分析,液压间隙调节器(HLA)柱塞能够正常的建立起机油压力,无速度不适应;单向球阀能够正常而果断的开启并且正常的补油。
整个配气机构在工作过程中未出现飞脱、反跳和弹簧并圈等现象。
关键词:轿车柴油机液压间隙调节器配气机构仿真主要软件:A VL EXCITE Timing Drive1. 前言配气机构是内燃机的重要组成部分,其设计优良与否直接影响内燃机的动力性、经济性和可靠性[4]。
因而开展配气机构运动学和系统动力学研究具有重要意义。
传统机械挺柱式配气机构需预留气门间隙,气门间隙异常会影响气缸内的换气质量,严重时会导致燃烧恶化,并产生冲击噪声,影响其使用寿命[2]。
为降低配气机构的振动和噪声,液压间隙调节器(HLA)(如图1)在轿车柴油机上的应用越来越广泛。
采用HLA无需定期调整气门间隙,气门机构处于零间隙状态,消除了气门间隙引起的冲击和噪声。
图1 液压间隙调节器(HLA) 图2 HLA配气机构为分析HLA配气机构的动力特性,应用A VL EXCITE Timing Drive软件建立某双缸轿车柴油机配气机构的运动学与动力学仿真计算模型并对其进行了性能分析和评价。
1 HLA配气机构工作原理HLA配气机构的运动是从凸轮开始,经过指形摇臂、HLA、气门弹簧、气门弹簧座以及气门锁夹等才把运动传递给气门(如图2)。
所以发动机配气机构属于一个弹性而非刚性系统。
在这个传动链中,各个零件几何形状不同、质量和刚度也不相同,因此在运动过程中1作者简介:牛彩云,女,硕士研究生;研究方向:内燃机结构设计与优化;E-mail:niuniu1670@可能产生各种各样的问题。
单元三任务三 汽车发动机配气机构分析
1、按照凸轮的形状分类 (1)盘形凸轮
盘形凸轮是凸轮的最基本的形式。绕 固定轴线转动并具有一定变化向径的盘 形构件,机构的从动件在垂直于凸轮轴 的平面内运动。这种凸轮机构结构简单 ,易于加工,应用最为广泛,但从动件 的行程不能太长。
图 3-3 盘形凸轮
学习单元三 汽车常用机构
一、汽车发动机配气机构分析
2、按照从动件的形状分类
(1)尖顶从动件
(2)滚子从动件
学习单元三 汽车常用机构
一、汽车发动机配气机构分析
(3)平底从动件
凸轮机构结构紧凑、润滑性能和动
力性能好、效率高,故适用于高速的场 合,但是凸轮轮廓线不能呈凹形,因此 运动规律受到限制。
(3)平底从动件
学习单元三 汽车常用机构
一、汽车发动机配气机构分析
(2)平板移动凸轮 凸轮相对于机架做直线运动的平板状零件,当盘形凸轮的回转中 心趋于无穷大时,即为平板移动凸轮。 (2)圆柱凸轮 凸轮的轮廓曲线位于圆柱面上,可视为将移动凸轮卷成圆柱体而 得。圆柱凸轮绕固定轴线转动,从动轮的运动平面与凸轮轴平行。
(2)平板移动凸轮
(3)圆柱凸轮
学习单元三 汽车常用机构
一、汽车发动机配气机构分析
(1)尖顶从动件 凸轮机构的尖顶能与各种形状的凸轮轮廓保持接触,可实现任意 的运动规律,结构最为简单,但尖顶易磨损,所以适用于低速、轻 载的场合。 (2)滚子从动件 凸轮机构的滚子与凸轮为滚动摩擦,磨损小,承载能力大,但是 运动规律有一定的限制,且滚子和转轴之间有间隙,所以不适合于 高速的应用场合。
学习单元三 汽车常用机构
一、汽车发动机配气机构分析
四、凸轮轴
在汽车发动机配气机构中,凸轮尺寸小而且紧接轴径时,凸轮 与轴做成一体,称为凸轮轴,如图3-34所示。凸轮轴的作用是按照 发动机的工作顺序、配气相位及气门开度的变化规律驱动和控制气 门的开起和关闭。
发动机配气机构的动力学模型及计算分析
c d s h e u t s o h tt i mo e c n c re t e e tt e mo in lw a d d n mi e a a trs o e .T e r s l h w t a h s d l a o r cl r f c h t a n y a c h r ee i- s y l o
动和噪声 。随着工作转速的提高 , 配气机 构的工
作 条件变 得 更 为 恶 劣 , 其 动 力 性 能 提 出 了更 高 对 的要 求 , 因此 , 用 动 力 学 计 算 法 设 计 配 气 机 构 , 运
模型等。单质量模型着重研究气 门的运动 , 本文
建立 了单 质量 模型 , 析 动力 学 微 分方 程 , 过 编 分 通 程计 算 , 获得 排气 门 的升程 曲线 、 度 曲线 和 加 速 速
单质 量模 型及 动 力学微 分方程 。通 过 编程 计 算 , 获得 某发 动 机排 气 门的 气 门升 程 、 度和 加 速 速 度 曲线 。 由分析 结 果可 以看 到 : 动 力 学模 型 能够 正 确 反 映 配 气机 构 的运 动 规 律 和 动 力 学特 该
性, 简单 实用 , 于理 论 分析 。 便 关 键 词: 配气机 构 ; 气 门 ; 力学分 析 排 动
中图分 类号 :42 1 U 6 .
文献标 识 码 : A
文章 编 号 :6 4—82 (00 0 0 1 0 17 4 5 2 1 )8— 07— 4
Co p t to lAnay i fDy m i o lo m u a i na l sso na c M de fEngne Vav a n i l e Tr i
度 曲线 。
对于近代高速汽车发动机来说尤为必要 。针对配
发动机配气机构的动力学模型及计算分析
C o mp u t a t i o n a l A n a l y s i s o f D y n a mi cMo d e l o f E n g i n eV a l v eT r a i n
L I NP i n g
( D e p a r t m e n t o f A u t o m o t i v eE n g i n e e r i n g&C o n s t r u c t i o nM a c h i n e r y , F u j i a nC o m m u n i c a t i o n s T e c h n o l o g yC o l l e g e ,F u z h o u3 5 0 0 0 7 ,C h i n a )
第2 4卷 第 8期
重 庆 理 工 大 学 学 报( 自然科学)
2 0 1 0年 8月
J o u r n a l o f C h o n g q i n gU n i v e r s i t yo f T e c h n o l o g y ( N a t u r a l S c i e n c e ) V o l . 2 4 N o . 8 A u g . 2 0 1 0
J=
x ( )-y ( ) ,x ( )-y ( ) >0 α α α α ( 3 ) {0 ,x ( )-y ( )≤ 0 α α
之所以出现这种形式, 是因为当 x ( ) ( ) 时, α ≤y α 机构手拉立即脱开, 弹性恢复力消失。 2 )气门弹簧预紧力 - F ( ) 。 α g 3 )气缸内燃气对气门的作用力为 -F ( ) , α g 这项力在计算进气机构时可取为零, 而对排气机 构则不应忽略。为了将计算公式统一, 将其记为 - R ·F ( ) , 其中 R称为进排气指示数, R= 0表 α g 示进气, R= 1表示排气。 4 )内阻尼力为 b ·ω ·J , 其中 v
汽车发动机教案配气机构
汽车发动机教案配气机构一、教学目标:1. 了解配气机构的组成及作用2. 掌握配气机构的工作原理3. 能够分析配气机构的故障原因及解决方法4. 培养学生的动手操作能力和团队协作能力二、教学内容:1. 配气机构的组成:气门、气门座、气门导管、凸轮轴、正时链条等2. 配气机构的作用:控制发动机的吸气、压缩、爆发和排气四个过程3. 配气机构的工作原理:通过凸轮轴的转动,控制气门的开启和关闭4. 配气机构的故障原因及解决方法:气门损坏、气门座磨损、气门导管堵塞等,需更换气门、气门座、清理气门导管等5. 配气机构的维护与保养:定期更换机油、检查气门间隙、清洁气门导管等三、教学过程:1. 导入:通过展示汽车发动机工作视频,引导学生关注配气机构的作用和工作原理2. 讲解:详细讲解配气机构的组成、作用和工作原理,结合实际案例分析故障原因及解决方法3. 互动:学生提问,教师解答;学生分组讨论配气机构的维护与保养方法4. 实操:学生分组进行配气机构的拆卸和组装,教师指导并检查四、教学评价:1. 学生能熟练说出配气机构的组成及作用2. 学生能理解配气机构的工作原理,并能分析故障原因及解决方法3. 学生能够正确进行配气机构的拆卸和组装4. 学生能够制定配气机构的维护保养计划五、教学资源:1. 教学PPT2. 汽车发动机模型3. 配气机构零部件4. 工具箱及工具5. 相关视频资料六、教学活动:1. 小组讨论:学生分组讨论配气机构在实际发动机中的作用和重要性。
2. 问题解决:学生分组解决配气机构可能遇到的问题,如气门损坏、气门座磨损等。
3. 角色扮演:学生扮演汽车维修技术人员,模拟配气机构的故障诊断和维修过程。
七、教学拓展:1. 介绍其他类型的配气机构:如顶置凸轮轴、底置凸轮轴等。
2. 比较不同类型配气机构的优缺点。
3. 探讨配气机构在新能源汽车中的应用。
八、教学评估:1. 课堂问答:教师提问,学生回答,评估学生对配气机构知识的掌握。
配气机构动力学性能分析与优化设计
配气机构动力学性能分析与优化设计在机械工程领域,配气机构是内燃机中至关重要的组成部分。
它决定了内燃机的性能和效率。
因此,对配气机构的动力学性能进行分析和优化设计是非常重要的。
本文将探讨配气机构的动力学性能分析与优化设计的相关内容。
一、配气机构的基本原理和构成配气机构是指控制气缸进、排气门开启和关闭的机构。
它由凸轮轴、凸轮、从动件等组成。
在发动机工作过程中,凸轮轴转动带动凸轮,凸轮与从动件之间的接触和分离来控制气缸的进、排气门的开关。
配气机构的设计和调整直接影响了发动机的性能。
二、配气机构的动力学性能分析1. 运动学分析运动学分析主要研究配气机构各零件的运动规律。
通过分析凸轮轴的转动、凸轮的摆动以及从动件的运动,可以得到气缸的进、排气门的开启和关闭时间、行程以及过程的加速度等关键参数。
运动学分析为动力学分析提供了基础数据。
2. 动力学分析动力学分析研究的是配气机构各零件在运动过程中所受到的力和力矩的大小和方向。
动力学分析包括配气机构的加速、惯性力、冲击力等。
通过分析配气机构的动力学性能,可以评估其工作状态和负载情况,从而为优化设计提供依据。
三、配气机构的优化设计1. 减小惯性力减小惯性力可以降低机械的负荷和损耗,提高机械的运行效率。
通过优化凸轮的轮廓和材料选择,可以减小凸轮的质量和惯性力。
2. 提高精度配气机构的精度直接关系到发动机工作的稳定性和可靠性。
通过优化配气机构的加工工艺和装配工艺,可以提高其加工精度和动作精度。
另外,合理选择材料和热处理工艺也可以提高配气机构的抗疲劳性能和使用寿命。
3. 降低噪音和振动优化设计可以减小配气机构的噪音和振动。
采用减震装置、降低配气机构的质量和惯性矩等措施可以有效地降低噪音和振动。
4. 环境友好优化设计还应考虑环境保护因素。
选择环保材料和采用低能耗加工工艺是提高配气机构环境友好性的有效手段。
结论配气机构的动力学性能分析与优化设计可以提高内燃机的工作效率和可靠性,降低噪音和振动,保护环境。
配气机构的动力学分析
配气机构动力学分析课程设计目录一、配气机构的机构简图 ........................................ 错误!未定义书签。
二、配气机构运动学计算分析 (1)1)配气机构中间参数法的代数分析 (1)2)运初始值的设定及简化计算 (3)三、配气机构动力学计算分析 (8)1)受力分析及微分方程的建立 (8)2)配气机构质量的换算及方程参数的计算 (10)3)动力学微分方程的求解 (12)四、配气机构动力学优化比较 (16)参考文献: (23)附件: (24)配气机构的运动学和动力学分析一、配气机构的机构简图其自由度为5432352621F n p p =--=⨯-⨯-= 主动件为凸轮轴,输出件为气门。
二、配气机构的运动学计算分析1、配气机构中间参数法的代数分析由上面的机构简图可以得到,摇臂轴与凸轮轴的竖直位移为: 000cos cos cos cos T T T T y l l h l l h H αγαγ++=++=化简得到:000(cos cos )(cos cos )T T T l l h h ααγγ-+-=- (1)摇臂轴与凸轮轴的水平位移:00sin sin sin sin T T x l l l l H αγαγ+=+=化简得到:00(sin sin )(sin sin )0T l l ααγγ-+-= (2)上面(1)(2)两式对时间求导得到sin sin cos cos 0T T T T dh dh l l dt d l l αγαγωαωγωϕωαωγ⎧+==⋅⎪⎨⎪--=⎩ 解得cos sin()T T h l αωγωαγ'=- cos sin()T h l γωαωαγ'=--其中αω,γω分别为摇臂和推杆的角速度,两式对时间求导得到摇臂和推杆的角加速度为:2222(cos sin )sin()cos()()cos [sin()]cos sin []sin()cos sin()sin()[sin()]cos cos cos()[]sin()sin()T T T T T T T T T T T T T T T T h h l l h l h h l h l l l h h l l l γαγαωγωγωαγαγωωωγεαγωαωγαγωγαγαγαγωγωααγαγαγ''''-⋅----=-''--''-=---''-+---222223cos [sin()]cos cos cos()cos ()sin()sin ()T T T T T T h l h h l l ωγαγωγωγαγλααγαγ'-'''-+=---同理,得到推杆的角加速度为22223cos cos cos cos()()sin()sin ()T T T h h l l γωαωγλααγελαγαγ'''+-=-+-- 其中Tl lλ=即为挺柱和推杆长度比 根据机构简图上的几何关系,00ββαα-=- 0(cos cos )V V l h ββ-=对时间求导可以得到sin sin VV V dh l l dtβαβωβω=⋅=⋅ 222(cos sin )V V d h l dtααβωβε=⋅+⋅ 将摇臂的角速度,角加速度带入可以得到:cos cos sin sin sin()sin()V V T V T T T dh l h l h dt l l ωγγββωαγαγ''=⋅=--2222222322223cos cos cos cos()cos {cos []sin [()]}sin()sin()sin ()cos sin ()[cos sin()cos sin ]sin()sin ()V T T T V T T T V V T T T T d h h h h l dt l l l l l h h l l ωγωγωγαγλαββαγαγαγωγβωγαγβλαβαγαγ''''-+=⋅+⋅----'''=+-----气门传动机构的传动比00sin sin 1sin()sin()V VV V T T T T T T dh dh l l dt dt i h dh l l h h dtββωαγαγωω'==≈=--'' 对中间参数进行线性近似可以得到00000020000000000020000sin cos sin cos()()[]sin()sin()sin ()sin sin()()sin()sin ()V V T T V VT T l l i l l l l l l βββαγαααγαγαγβαγβαααγαγ-=+-------≈+---2、运动初始值的设定及运动学计算的简化计算初始参数的设定:凸轮轴转速:1000r/min 故2104.72/60nrad s πω== 运动开始时推杆与竖直位置成5度角,摇臂水平且摇臂轴两端摇臂成一条直线(即机构简图中所示1OO 和2OO 在一条直线上),故05γ= 0090αβ==,αβ=。
175F配气机构动力学分析
基于175F柴油机配气机构动力学仿真分析朱海锋,陈聪,谭杨,谢亚军,王泽湘(长沙理工大学汽车与机械学院,长沙410004)摘要:本文建立了175F柴油机配气机构的动力学分析模型,以ADAMS/Engine模块对其进行动态特性分析,获得了仿真分析数据,以此验证设计的合理性,并为进一步的优化奠定基础。
关键词:175柴油机配气机构;动力学计算;仿真分析;ADAMSBased on Dynamic simulation analysis 175F Diesel Engine Valve ZHU Hai-feng,CHEN-cong, TAN-yang,XIE-yajun,WANG-zexiang(Changsha University Of Science&Technology,Chngsha 410004,China) Abstract:A dynamic analysis model of 175F Diesel Engine’s valve train has been built, then by ADAMS/Engine software the dynamic characteristics of the system were simulated, and the data acquired, it could verify the rationality of the present design, the results also lay a foundation for further optimum.Keywords: 175enginevalve train; computing of kinematics; simulation analysis; ADAMS0前言175F型柴油机作为一种通用动力源在湖南地区的农业生产中广泛应用,但对其配气机构进行的动力学研究较少。
此型柴油机采用底置凸轮轴式配气机构,内燃机的配气机构决定了其进排气特性,继而影响发动机燃烧过程,它的设计是否优良最终影响了内燃机的各项性能。
《发动机配气机构动力学分析及优化》硕士学位论文
《发动机配气机构动力学分析及优化》硕士学位论文结论内燃机配气机构是内燃机的重要组成部分,由于受高温、高压、高速的影响,使其有别于一般的凸轮机构,设计起来要复杂得多。
为提高配气机构的性能,需要对配气机构每个部分做全面、细致、深入的研究,本文正是在这一宗旨指导下,采用多质量模型对内燃机配气机构进行了动力学分析。
与单质量模型相比,多质量模型不仅可以对气门的动态响应情况进行分析,而且可以对气门系各个部件如凸轮轴、摇臂轴、气门座、气门杆的运动情况及受力情况进行分析,从而对各个部件的强度进行校核,对气门系传动链的薄弱环节进行强化。
为了分析配气机构运动过程中产生的各种动力学现象,并用来解决工程中的实际问题,针对类似于CA488发动机结构的配气机构建立了四质量模型。
研制了气门摩擦磨损试验台,可以用来分析488、6102、6110三种发动机配气机构的运动状态。
落座冲击力是影响气门摩擦磨损的主要因素,本文分析了影响落座冲击力的主要因素,并通过理论计算给出了落座冲击力与凸轮轴转速、气门间隙之间的关系。
论文完成的工作有如下几个方面:1.本文根据气门与气门座之间的冲击力作用,设计了一种可用来测量气门副冲击疲劳磨损的动力学模型,可测量CA488、6102、6110三种机型配气机构的疲劳磨损状况。
采用该模型对6102配气机构进行测试,测试结果验证了理论计算结果的准确性。
2.参考已有的配气机构动力学计算模型,建立了一种合适的动力学模型,对运动质量进行了合理的划分,使计算出的数值更加符合实际的配气机构运动情况。
能够计算出气门与气门座动态接触过程的状态参数,即接触力和接触变形。
将本模型应用于测试6102发动机配气机构的试验台进行了实际模拟计算,得出了气门加速度的变化规律,在各种转速下的气门落座冲击力随凸轮轴转速的变化,以及落座冲击力随凸轮轴转速与气门间隙的变化规律。
3.理论计算与实测结果都表明,发动机转速存在一理论上限值,当转速超过这一数值后,不仅落座冲击力急剧增大,而且气门还会发生反跳现象,这对配气机构的正常工作是不利的,因而在工作过程中,应尽量避免在极限转速附近工作,而且在发动机设计过程中就应考虑到这一问题,使设计转速38低于极限转速。
配气机构实训结论报告总结
配气机构是汽车发动机的重要组成部分,其主要作用是根据发动机的工作循环顺序,定时地开启和关闭各气缸的进、排气门,以保证新鲜可燃混合气得以及时进入气缸,并将燃烧后的废气排出。
为了提高学生的实际操作能力和对发动机配气机构的认识,我们组织了一次配气机构的实训活动。
以下是对本次实训的总结报告。
二、实训目的1. 熟悉发动机配气机构的组成和结构;2. 掌握配气机构的拆卸、安装和调整方法;3. 培养学生的实际操作能力和团队协作精神;4. 提高学生对发动机工作原理的理解。
三、实训内容1. 配气机构的组成及结构(1)气门组:包括进气门、排气门、气门弹簧、气门导管、气门锁片等。
(2)活塞连杆组:包括活塞、活塞环、活塞销、连杆、连杆轴承等。
(3)传动组:包括正时皮带、正时链条、凸轮轴、曲轴等。
2. 配气机构的拆卸、安装和调整(1)拆卸首先,将发动机熄火,待发动机冷却后,拆下正时皮带或链条,使曲轴处于上止点位置。
然后,拆卸气门组、活塞连杆组和传动组。
在拆卸过程中,要注意保护零件,避免损坏。
(2)安装安装顺序与拆卸相反。
在安装过程中,要注意以下事项:①检查各部件是否有损坏,如有损坏,应及时更换;②安装气门弹簧时,要确保气门弹簧的弹力均匀;③安装正时皮带或链条时,要确保其与凸轮轴、曲轴的齿对齐。
①气门间隙调整:根据发动机型号和厂家要求,调整进气门和排气门的间隙;②气门挺杆调整:调整气门挺杆的高度,使其与凸轮轴的凸轮接触良好。
3. 实训过程中的注意事项(1)安全第一:在实训过程中,要注意安全,避免发生意外伤害;(2)保护环境:实训过程中,要妥善处理废弃物,避免污染环境;(3)爱护设备:在实训过程中,要爱护设备,避免损坏。
四、实训成果1. 学生对发动机配气机构的组成和结构有了更加深入的了解;2. 学生掌握了配气机构的拆卸、安装和调整方法;3. 学生的实际操作能力得到了提高;4. 学生之间的团队协作精神得到了加强。
五、实训总结1. 通过本次配气机构的实训,使学生掌握了发动机配气机构的基本知识和操作技能;2. 实训过程中,学生积极参与,表现出较强的学习兴趣和实践能力;3. 实训内容丰富,理论与实践相结合,有助于提高学生的综合素质;4. 实训过程中,教师注重对学生进行指导,确保实训质量。
配气机构的动力学分析
配气机构动力学分析课程设计目录一、配气机构的机构简图 ........................................ 错误!未定义书签。
二、配气机构运动学计算分析 (1)1)配气机构中间参数法的代数分析 (1)2)运初始值的设定及简化计算 (3)三、配气机构动力学计算分析 (8)1)受力分析及微分方程的建立 (8)2)配气机构质量的换算及方程参数的计算 (10)3)动力学微分方程的求解 (12)四、配气机构动力学优化比较 (16)参考文献: (23)附件: (24)配气机构的运动学和动力学分析一、配气机构的机构简图其自由度为5432352621F n p p =--=⨯-⨯-= 主动件为凸轮轴,输出件为气门。
二、配气机构的运动学计算分析1、配气机构中间参数法的代数分析由上面的机构简图可以得到,摇臂轴与凸轮轴的竖直位移为: 000cos cos cos cos T T T T y l l h l l h H αγαγ++=++=化简得到:000(cos cos )(cos cos )T T T l l h h ααγγ-+-=- (1)摇臂轴与凸轮轴的水平位移:00sin sin sin sin T T x l l l l H αγαγ+=+=化简得到:00(sin sin )(sin sin )0T l l ααγγ-+-= (2)上面(1)(2)两式对时间求导得到sin sin cos cos 0T T T T dh dh l l dt d l l αγαγωαωγωϕωαωγ⎧+==⋅⎪⎨⎪--=⎩ 解得cos sin()T T h l αωγωαγ'=- cos sin()T h l γωαωαγ'=--其中αω,γω分别为摇臂和推杆的角速度,两式对时间求导得到摇臂和推杆的角加速度为:2222(cos sin )sin()cos()()cos [sin()]cos sin []sin()cos sin()sin()[sin()]cos cos cos()[]sin()sin()T T T T T T T T T T T T T T T T h h l l h l h h l h l l l h h l l l γαγαωγωγωαγαγωωωγεαγωαωγαγωγαγαγαγωγωααγαγαγ''''-⋅----=-''--''-=---''-+---222223cos [sin()]cos cos cos()cos ()sin()sin ()T T T T T T h l h h l l ωγαγωγωγαγλααγαγ'-'''-+=---同理,得到推杆的角加速度为22223cos cos cos cos()()sin()sin ()T T T h h l l γωαωγλααγελαγαγ'''+-=-+-- 其中Tl lλ=即为挺柱和推杆长度比 根据机构简图上的几何关系,00ββαα-=- 0(cos cos )V V l h ββ-=对时间求导可以得到sin sin VV V dh l l dtβαβωβω=⋅=⋅ 222(cos sin )V V d h l dtααβωβε=⋅+⋅ 将摇臂的角速度,角加速度带入可以得到:cos cos sin sin sin()sin()V V T V T T T dh l h l h dt l l ωγγββωαγαγ''=⋅=--2222222322223cos cos cos cos()cos {cos []sin [()]}sin()sin()sin ()cos sin ()[cos sin()cos sin ]sin()sin ()V T T T V T T T V V T T T T d h h h h l dt l l l l l h h l l ωγωγωγαγλαββαγαγαγωγβωγαγβλαβαγαγ''''-+=⋅+⋅----'''=+-----气门传动机构的传动比00sin sin 1sin()sin()V VV V T T T T T T dh dh l l dt dt i h dh l l h h dtββωαγαγωω'==≈=--'' 对中间参数进行线性近似可以得到00000020000000000020000sin cos sin cos()()[]sin()sin()sin ()sin sin()()sin()sin ()V V T T V VT T l l i l l l l l l βββαγαααγαγαγβαγβαααγαγ-=+-------≈+---2、运动初始值的设定及运动学计算的简化计算初始参数的设定:凸轮轴转速:1000r/min 故2104.72/60nrad s πω== 运动开始时推杆与竖直位置成5度角,摇臂水平且摇臂轴两端摇臂成一条直线(即机构简图中所示1OO 和2OO 在一条直线上),故05γ= 0090αβ==,αβ=。
实训报告发动机总体结构
一、引言发动机是汽车的核心部件,它将燃料的化学能转化为机械能,为汽车提供动力。
本实训报告主要介绍了发动机的总体结构,包括机体、曲柄连杆机构、配气机构、润滑系统和冷却系统等部分,并对其工作原理进行了简要分析。
二、发动机总体结构1. 机体机体是发动机的基础,主要由气缸体、气缸盖、曲轴箱和油底壳等组成。
气缸体是发动机的骨架,其内部设有若干气缸,用于容纳活塞及其运动。
气缸盖安装在气缸体顶部,用于密封气缸,并安装进排气门、喷油器等部件。
曲轴箱位于气缸体下方,用于容纳曲轴、轴承等部件。
油底壳位于曲轴箱下方,用于储存润滑油。
2. 曲柄连杆机构曲柄连杆机构是发动机的动力输出部分,主要由活塞、连杆、曲轴和轴承等组成。
活塞在气缸内做往复运动,通过连杆将活塞的往复运动转换为曲轴的旋转运动,从而输出动力。
3. 配气机构配气机构负责控制进气和排气过程,主要由气门、气门弹簧、气门导管、凸轮轴、挺柱、摇臂等组成。
进气门在凸轮轴的驱动下打开,使新鲜空气进入气缸;排气门在凸轮轴的驱动下打开,将废气排出气缸。
4. 润滑系统润滑系统负责为发动机各运动部件提供润滑油,降低磨损,延长使用寿命。
润滑系统主要由机油泵、机油滤清器、机油冷却器、油底壳等组成。
机油泵将机油从油底壳抽出,经过机油滤清器过滤后,通过机油道输送到各运动部件。
5. 冷却系统冷却系统负责为发动机散热,防止发动机过热。
冷却系统主要由散热器、水泵、节温器、风扇、冷却液等组成。
冷却液在冷却系统中循环流动,吸收发动机产生的热量,通过散热器散热。
三、发动机工作原理1. 进气过程:进气门打开,活塞向下运动,气缸内部形成负压,新鲜空气通过进气门进入气缸。
2. 压缩过程:进气门关闭,活塞向上运动,将气缸内的空气压缩。
3. 燃烧过程:压缩后的空气与燃油混合,在火花塞的点火作用下燃烧,产生高温高压气体。
4. 排气过程:排气门打开,活塞向下运动,将气缸内的废气排出。
5. 循环过程:完成一个工作循环后,活塞回到起始位置,准备进行下一个工作循环。