微波技术与天线实验指导书
微波技术与天线实验三
微波技术与天线实验报告图1.新建HFSS工程图2. 设置求解类型2.创建微带天线模型2.1设置默认的长度单位为mm图3. 设置默认的长度单位为mm 2.2建模相关选项设置图4. 建模相关选项设置2.3 创建参考地在Z=0的XOY面上创建一个顶点位于(-45mm, -45mm),大小为90mm×90mm 的矩形面作为参考地,命名为GND,并为其分配为理想导体边界条件。
2.4 创建介质板模型创建一个长、宽、高为80mm×80mm×5mm的长方体作为介质板层,介质板层的底部位于参考地上,其顶点坐标为(-40,-40, 0),介质板的材料为R04003,介质板层命名为Substrate2.5 创建微带贴片在Z=5的XOY面上创建一个顶点坐标为(-15.5mm,-20.7mm,5mm),大小为30.0mm×41.4mm的矩形面作为微带贴片,命名为Patch,并为其分配理想导体边界条件。
2.6 创建同轴馈线的内芯创建一个圆柱体作为同轴馈线的内芯,圆柱体的半径为0.5mm,长度为5mm,圆柱体底部圆心坐标为(9.5mm,0,0),材质为理想导体,同轴馈线命名为Feed。
2.7 创建信号传输端口面同轴馈线需要穿过参考地面,传输信号能量,因此需要在参考地面GND上开一个圆孔允许能量传输。
圆孔的半径为 1.5mm,圆心坐标为(9.5mm,0,0),并将其命名为port.2.8 创辐射边界表面创建一个长方体,其顶点坐标为(-80,-80,-35),长方体的长宽高为160mm ×160mm×75mm,长方体模拟自由空间,因此材质为真空,长方体命名为Air,创建好这样一个长方体之后,设置其四周表面为辐射边界条件。
、图5 微带贴片天线模型3.设置激励端口设置同轴信号端口面的激励方式为集总端口激励。
4.添加和使用变量添加设计变量Length,初始值为30.0mm,用以表示微带贴片天线的长度,添加设计变量Width,初始值为41.4mm, 用以表示微带贴片天线的宽度,添加设计变量Xf, 用以表示同轴馈线的圆心点的X轴坐标。
微波实验-123
第一部分微波技术与天线实验实验一微波功率与频率的测量一、实验目的1.了解微波测量系统的组成、测试仪器的工作原理及测试方法。
2.学会用波长计谐振吸收法测频率,掌握吸收式波长计测取频率值的原理和方法。
3.学会用微瓦功率计测功率。
二、实验要求1.充分作好实验前的预习和准备工作,写出预习报告。
2.实验应严格按照仪器使用说明、测量方法和实验步骤进行操作。
三、预习报告要求1.画出实验仪器和器件连接框图。
2.简述实验目的、实验原理和方法。
3.写出实验步骤,画出数据表格。
四、实验注意事项1.开机前必须将信号源的衰减器置于较大衰减量,否则易烧坏器件。
(注意:面板标注“功率”,则向左旋,衰减增大;面板标注“衰减”,则向右旋,衰减增大。
)2.拆接器件时,将信号源工作方式置“外调制”,不要随意关电源。
3.连接器件时,注意波导口方向。
五、实验原理微波信号发生器是由高频部分、调制部分、功率指示器部分、频率显示及衰减显示部分组成。
高频部分是由体效应振荡器、截止式衰减器二个单元组成。
体效应振荡器采用砷化镓体效应二极管作为振荡管,在外加直流偏压的瞬时,所产生的尖峰脉冲电流能量,被不断用来激发谐振腔。
当高频电源送来高频电压加到体效应管上,在谐振腔产生相应射频电压,腔体的输出耦合孔直接耦合输出,经过环流器送到调制器与脉冲形成电路进行调制,从而完成对微波信号的脉冲调幅,工作状态选择电路控制输出状态。
当工作状态选择按键置“等幅”时,信号源输出微波信号,输出功率可直接用微瓦功率计测得,输出信号频率可用外接的波长计测得,也可校对信号源频率显示是否准确。
当工作状态选择按键置“方波”或“脉冲”时,则输出微波调幅信号。
仪器采用PIN调制器来实现微波信号的脉冲幅度调制,整个调制部分是由一套脉冲形成电路及一个PIN调制器构成,由脉冲形成电路产生一系列的脉冲信号,驱动PIN 调制器,从而完成对微波信号的脉冲调制。
图1-1 简单的微波测量系统框图六、实验系统简介一般常用的微波测量系统如图1-1所示。
《微波技术与天线》实验指导书(DOC)
微波技术与天线实验指导书南京工业大学信息科学与工程学院通信工程系目录实验一微波测量系统的熟悉和调整 - 2 -实验二电压驻波比的测量 - 9 -实验三微波阻抗的测量与匹配 - 12 -实验四二端口微波网络阻抗参数的测量 - 17 -实验一微波测量系统的熟悉和调整一、实验目的1. 熟悉波导测量线的使用方法;2. 掌握校准晶体检波特性的方法;3. 观测矩形波导终端的三种状态(短路、接任意负载、匹配)时,TE10波的电场分量沿轴向方向上的分布。
二、实验原理1. 传输线的三种状态对于波导系统,电场基本解为(1) 当终端接短路负载时,导行波在终端全部被反射――纯驻波状态。
在x=a/2处其模值为:最大值和最小值为:(2) 终端接任意负载时,导行波在终端部分被反射――行驻波状态。
在x=a/2处由此可见,行驻波由一行波与一驻波合成而得。
其模值为:可得到最大值和最小值为:(3) 终端接匹配负载时,导行波仅有入射波而无反射波――行波状态。
其模值为由上述可知,在测量线的终端分别接上短路器、任意负载和匹配负载,移动探针位置,都可以观测到测量线中不同位置的电场强度(复振幅大小)对应的电流指示读数。
2. 由测量线的基本工作原理可知,指示器的读数1是探针所在处|E|对应的检波电流。
任一位置处|E|与I的对应关系应视检波晶体二极管的检波特性而定。
一般,这种关系可通过对二极管定标而确定。
所谓定标,就是找出电场的归一化值|E’|与I的对应关系。
我们知道,当测量线终端短路时:如果我们取任意一零点(波节点)作为坐标起始位置,且坐标用d表示,则:晶体二极管上的检波电压u正比于探针所在处|E’|。
所以上式可用u的归一化值u’来表示。
即:晶体二极管的检波电流I与检波电压u之间的关系为:式中c为比例常数,n为检波率。
式中c’为比例常数。
3. 当测量线的探针插入波导时,在波导中会引入不均匀性,从而影响系统的工作状态。
探针在开槽线中与电场耦合,其效果相当于在等效传输线上并联了一个探针支路。
微波与天线实验报告
微波与天线实验报告微波与天线实验报告引言:微波与天线是无线通信领域中非常重要的技术。
微波是指频率范围在1GHz至300GHz之间的电磁波,它在通信、雷达、卫星通信等领域得到广泛应用。
天线是将电磁波转换为电信号或将电信号转换为电磁波的装置,它在无线通信中起到传输和接收信号的关键作用。
本实验旨在通过实际操作,深入了解微波与天线的原理和应用。
一、实验目的本实验的目的是通过实际操作,掌握微波与天线的基本原理和实验方法,了解它们在无线通信中的应用。
二、实验设备与材料1. 微波信号发生器2. 微波天线3. 微波功率计4. 微波频谱仪5. 微波衰减器6. 微波衰减器控制器7. 微波衰减器电源8. 射频线缆9. 各种连接线缆10. 计算机三、实验步骤与结果1. 实验一:微波信号发生器的调试与测量a. 将微波信号发生器与微波功率计通过射频线缆连接。
b. 打开微波信号发生器和微波功率计,调节微波信号发生器的频率和功率,观察微波功率计的读数变化。
c. 记录不同频率和功率下的微波功率计读数,并绘制频率与功率的关系曲线。
2. 实验二:微波天线的特性测量a. 将微波天线与微波信号发生器通过射频线缆连接。
b. 调节微波信号发生器的频率和功率,观察微波天线的辐射特性。
c. 测量不同频率和功率下微波天线的增益、方向性等参数,并绘制相应的特性曲线。
3. 实验三:微波天线的阻抗匹配a. 将微波天线与微波信号发生器通过射频线缆连接。
b. 调节微波信号发生器的频率和功率,观察微波天线的阻抗匹配情况。
c. 根据实验结果,调整微波天线的结构和参数,实现最佳的阻抗匹配效果。
四、实验结果分析通过实验一,我们可以得到微波信号发生器的频率与功率的关系曲线,从而了解微波信号发生器的工作特性。
实验二则帮助我们了解微波天线的辐射特性,如增益、方向性等参数,这对于无线通信系统的设计和优化至关重要。
实验三则是为了实现微波天线的阻抗匹配,阻抗匹配的好坏直接影响到系统的传输效率和性能。
微波技术与天线实验
微波技术与天线实验一、实验课学时分配表二、实验内容:实验一T型波导内场分析实验一、实验目的1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。
2、掌握T型波导功分器的设计方法和工作原理。
二、实验内容使用HFSS进行T型波导功分器的设计实现,创建设计模型,进行求解设置,并运行仿真计算。
最后进行相关的数据后处理。
三、基本原理及要求T型波导功分器又叫T型波导分支器,它能将波导能量从主波导中分路接出,它是微波功率分配器件的一种。
此次设计H面T型分支,使得从一端口输入的功率可以平均的分配给端口2、3,使得2、3端口的TE10波为等幅同向。
同时,通过设置隔片改变各端口的功率分配。
进行扫频设置,观察S参数曲线和电场分布。
实验二T型波导优化设计实验一、实验目的1、进一步熟悉并掌握HFSS的工作界面、操作步骤及工作流程。
2、掌握T型波导功分器的优化设计方法。
二、实验内容使用HFSS进行T型波导功分器的优化设计实现,进行参数扫描分析,利用HFSS的优化设计功能实现3端口输出功率为2端口输出功率的2倍。
三、基本原理及要求T型波导功分器又叫T型波导分支器,它能将波导能量从主波导中分路接出,它是微波功率分配器件的一种。
此次设计H面T型分支,使得从1端口输入的功率不平均的分配给端口2、3,使得2端口的输出功率为3端口的一半。
同时,注意隔片尺寸的大小对于改变各端口的功率分配的作用。
改变波端口激励,实现2端口输入,1、3端口输出。
实验三微带贴片天线设计实验一、实验目的1.熟悉并掌握HFSS设计微带天线的操作步骤及工作流程。
2.掌握ISM频段微带贴片天线的设计方法。
二、实验内容使用HFSS进行微带贴片天线的设计实现,创建设计模型,进行求解设置,设置求解频率为2.45GHz,同时添加1.5-3.5GHz的扫频设置,分析天线在1.5-3.5GHz频段内的电压驻波比,并运行仿真计算。
将谐振频率落在2.45GHz频点上。
最后进行相关的数据后处理。
微波技术与天线实验指导书概要
微波技术与天线实验指导书王东明吴迪信息科学与工程学院实验技术中心实验一频谱分析仪使用实验目的:一、掌握频谱分析仪的使用二、使用频谱分析仪进行信号捕捉与测量实验原理:实验内容要求:测量周围环境800MHz~1GHz的信号,并记录其频谱图并查找分析其所属(移动、联通、小灵通、未知实验二返回损耗测量实验目的:一、了解天线的基础知识。
二、了解常见的天线结构。
三、利用频谱仪测量天线的返回损耗实验原理:天线是射频系统中不可缺少的组成部分,其主要功能是将电磁波发射至空气中或从空气中接收电磁波,相当于射频发射接收电路与空气的信号耦合器。
合适的天线可以改善信号分布增大信噪比、克服覆盖范围内01111in VSWR Z Z⎧+Γ=⎪-Γ⎪⎨+Γ⎪=⎪-Γ⎩(2-41. 辐射效率r η定义为 rr iP P η= (2-5式中, P r 为天线辐射出的功率,单位为W ;P i 为馈入天线的功率,单位为W 。
2. 辐射方向图:用一极坐标图来表示天线的辐射场强度与辐射功率的分布,如图2-1所示。
Φ=00 θ=900Φ=270图2-1 辐射方向图3.半功率角的定义如图2-2所示。
(a按电场定义(b按功率定义图2-2 半功率波束宽度4.旁瓣:在主辐射波瓣旁,还有许多副瓣,沿角度方向展开如图2-3所示。
其中HPBW为半功率波束宽度,辐射最大功率下降3dB时的角度;FNBW为第一零点波束宽度;SLL为旁瓣高度,辐射最大功率与最大旁瓣的差。
角度/deg图2-3 主瓣与旁瓣5. 方向系数D 定义为max avP D P =(2-6式中,P max 为最大功率密度,单位为W/m 2;P av 为平均辐射功率密度,单位为W/m 2。
的薄弱环节,甚至可以降低发射功耗。
一、天线的重要参数6. 天线增益G 定义为r iP G P =(2-1式中,P r 为被测天线距离R 处所接收到的功率密度,单位为W/m 2;P i 为全向性天线距离R 处所接到的功率密度,单位为W/m 2。
微波与天线实验报告讲解
实验一基本辐射单元方向图一、实验目的基本辐射单元,指的是基本电振子(电偶极子),基本磁振子(磁偶极子),基本缝隙,惠更斯面元等。
它们是构成实际天线的基本单元。
通过本次实验了解这些基本辐射单元在空间产生的辐射场。
二、实验指导实验界面有三个显示区:立体方向图、E面方向图、H面方向图,分别用来显示基本辐射单元在空间产生的辐射场的立体方向图、E面方向图和H面方向图。
界面下端有六个按钮:基本电振子、基本磁振子、基本缝隙、惠更斯面元、Return、Help。
点击按钮基本电振子,则基本电振子的方向图在显示区内显示出来,由显示图形可见基本电振子所辐射的电磁场强度不仅与r有关,而且与观察方向θ有关。
在振子的轴线方向,场强为零;在垂直于振子轴的方向上,场强最大;在其它方向上,场强正比于sinθ。
点击按钮基本磁振子,则基本磁振子的方向图在显示区内显示出来,由显示图形可见基本磁振子所辐射的电磁场的空间图形与基本电振子一样,这是因为基本电振子的辐射是振子上电流产生的辐射与基本磁振子的辐射是振子表面切向磁场产生的磁场是等效的。
点击按钮基本缝隙,则基本缝隙的方向图在显示区内显示出来,由显示图形可见基本缝隙所辐射的电磁场与基本磁振子完全相同,基本缝隙与基本磁振子是等效的。
点击按钮惠更斯面元,则惠更斯面元的方向图在显示区内显示出来,由显示图形可见惠更斯面元所辐射的电磁场在空间是一个对称于面元法线的心脏形方向图。
点击按钮Return,返回天线实验总界面。
实验二对称阵子方向图分析一、实验目的:通过MATLAB编程,熟悉电基本阵子和对称阵子的辐射特性,了解影响对称阵子辐射的因素及其变化对辐射造成的影响二、实验原理:1.电基本振子的辐射电基本振子(Electric Short Dipole)又称电流元,它是指一段理想的高频电流直导线,其长度l远小于波长λ,其半径a远小于l,同时振子沿线的电流I处处等幅同相。
用这样的电流元可以构成实际的更复杂的天线,因而电基本振子的辐射特性是研究更复杂天线辐射特性的基础。
微波技术与天线(第三版)第2章
EZ 0
j m m n H x 2 H mn sin( x) cos( y)e jz a a b m 0 n 0 kc
j n m n H y 2 H mn cos( x) sin( y)e jz b a b m 0 n 0 kc
第2章 规则金属波导
(2)
与截止波长关系为:
g
2 1 ( ) c来自2 其中, c kc
第2章 规则金属波导
(3)
相速
对于TE、TM波,波速比光速快——快波
群速
v p vg v2
第2章 规则金属波导
(4) 波阻抗
Et Z Ht
(5) 传输功率
第2章 规则金属波导
截止波长: cTM mn 相移常数:
2 2 kc ( m / a ) 2 ( n / b) 2 2
2
g
2 1 ( ) c
第2章 规则金属波导
TM波的场量表达式
j mπ mπ nπ E x 2 Emn cos( x) sin( y )e jz a a b m 1 n 1 k c
分析方法:
1、写出基本方程与边界条件
2、分离变量法,求解纵向波动方程
3、由边界条件,求波动方程特解 4、由横纵关系,求横向量 5、分析场特性
第2章 规则金属波导 场量横纵分离
2 Et k 2 Et 0 2 2 Ez k Ez 0 2 2 H k Ht 0 t 2 H k 2 H 0 z z
麦克斯韦方程组 亥姆霍兹方程
横纵分离
第2章 规则金属波导
2.1导波原理
第2章 规则金属波导
横纵分离
微波技术与天线仿真实验报告
微波技术与天线仿真实验报告《微波技术与天线》HFSS仿真实验报告实验⼆H⾯T型波导分⽀器设计⼀.仿真实验内容和⽬的使⽤HFSS设计⼀个带有隔⽚的H⾯T型波导分⽀器,⾸先分析隔⽚位于T型波导正中央,在8~10GHz的⼯作频段内,波导输⼊输出端⼝的S参数随频率变化的关系曲线以及10GHz 时波导表⾯的电场分布;然后通过参数扫描分析以及优化设计功能分析在10GHz处输⼊输出端⼝的S参数随着隔⽚位置变化⽽变化的关系曲线;最后利⽤HFSS优化设计功能找出端⼝三输出功率是端⼝⼆输出功率两倍时隔⽚所在位置。
⼆.设计模型简介整个H⾯T型波导分为两个部分:T型波导模型,隔⽚。
见图1。
图1三.建模和仿真步骤1.运⾏HFSS并新建⼯程,把⼯程另存为Tee.hfss。
2.选择求解类型:主菜单HFSS→solution type→driven modal,设置求解类型为模式驱动。
3.设置长度单位:主菜单modeler→units→in,设置默认长度单位为英⼨。
4.创建长⽅体模型1)从主菜单选择draw→box,进⼊创建长⽅体模型的⼯作状态,移动⿏标到HFSS⼯作界⾯的右下⾓状态栏,在状态栏输⼊长⽅体的起始点坐标为(0,-0.45,0),按下回车键确认之后在状态栏输⼊长⽅体的长宽⾼分别为2,0.9,0.4。
2)再次按下回车键之后,在新建长⽅体的属性对话框修改物体的位置,尺⼨,名称,材料和透明度等属性。
在attribute选项卡中将长⽅体名称项(name)修改为Tee,材料属性(material)保持为真空(vacuum)不变,透明度(transparent)设置为0.4。
3)设置端⼝激励4)复制长⽅体第⼆个和第三个臂5)合并长⽅体5.创建隔⽚1)创建⼀个长⽅体并设置位置和尺⼨2)执⾏相减操作上诉步骤完成后即可得到H⾯T型波导的三维仿真模型图如图2所⽰图26.分析求解设置1)添加求解设置:在⼯程管理窗⼝中展开⼯程并选中analyse节点,单击右键,在弹出的快捷菜单中选择add solution type并设置相关参数,完成后⼯程管理窗⼝的analyse节点下会添加⼀个名称为setup1的求解设置项2)添加扫频设置:在⼯程管理窗⼝中展开analysis节点,右键单击前⾯添加的setup1求解设置项,在弹出菜单中单击add frequency sweep,并设置sweep name,sweep type,等表13)设计检查7.运⾏仿真分析:HFSS→analyze all四.仿真结果分析1.图形化显⽰S参数计算结果图3为S11,S12,S13幅度随着频率变化的曲线。
微波技术天线课程实验指导书精品文档6页
实验一微波发送系统电路组成及介绍一、实验目的1、了解射频前端发射器的基本结构与主要设计参数。
2、利用实验模组的实际测量了解射频前端发射器的特性。
二、原理分析微波电视传输系统是一套短距离、点对点的微波电视发送和接收系统,它将现场摄得的电视视频、音频信号以微波方式传送,再向电视中心站或有线电视站发送。
三、实验框图五、主要技术指标1. 一路电视图像信号和一路拌音信号。
系统可多路组合使用;2. 传输距离优于4km;(开阔无阻挡)3. 工作频率S波段(2.1-2.7GHz),频率点可由用户选定;4. 发射机输出功率≥100mW;10 ;5. 频率稳定度:5×67. 视频输入/输出电平:1V(75Ω);8.视频调制方式:FM9. 音频输入/输出电平:2.2V(p-p) (600Ω不平衡);10.音频调制方式:FM-FM11.频带宽度:27MHz12. 微分增益:≤±3%;13. 微分相位:≤±2°;14. 工作电源:发射机:+12V一体化电池可充电电池连续工作10小时以上;六、实验步骤和方法⑴如图所示,接好视频信号发生器和微波调制器的发射支路,如有可能测量微波发射频谱特性。
⑵将接收支路连接好,在图像监视器上应能看到较大的调频雪花噪声颗粒。
⑶对接受机进行调谐,选择频道,首先调出图像信号,然后对伴音信号进行调谐,是伴音信号清晰悦耳。
⑷如图所示,按微波数字信号传输系统方框图进行连接,发射端接上数字信号发生器,接受端接上示波器观察接收数字信号波形。
七、实验预习要求1、预习放大器、滤波器、混频器和功率放大器的原理的理论知识。
2、预习放大器、滤波器、混频器和功率放大器的设计原理。
八、实验报告要求1、画出实验系统的连接方框图并叙述实验原理。
2、调谐不同的频段,观察输出端实验现象。
3、写出实验的心得体会。
实验二微波接收系统电路组成及介绍一、实验目的1、了解射频前端发射器的基本结构与主要设计参数。
微波技术与天线实验报告
微波技术与天线实验报告一、实验名称:测量微波通信系统各模块的特性参数二、实验目的与要求◆了解矢量网络分析仪的工作原理◆理解模块的频率特性、驻波比、反射系数、插损、S参数等概念◆测量并分析微波通信系统各模块的S参数三、实验设备:矢量网络分析仪、PNA 天线实验测量仪四、实验原理(共同部分)1.矢量网络分析仪的工作原理矢量网络分析仪器是一种电磁波能量的测试设备。
矢量网络分析仪的原理与使用力直接取决于系统的动态范围指标。
相位波动参数的测试是利用矢量网络分析仪的电子延迟(Electrical Delay)功能来实现的。
直接观察插入相移通常不是很有用,这是因为器件的电长度相移相对于频率呈现负斜率(器件越长,斜率越大)。
由于只有偏离线性相移才会引起失真,因此希望移去相位响应的线性部分。
利用网络分析仪的电子延迟功能,能够抵消被测器件的电长度,结果得到与线性相移的偏差,即相位波动(失真)。
矢量网络分析仪既能测量单端口网络或两端口网络的各种参数幅值,又能测相位,矢量网络分析仪能用史密斯圆图显示测试数据。
2.几个重要的概念频率特性:系统频率响应与输入信号的复数比称为频率特性,频率特性表征了系统输入输出之间的关系,故可由频率特性来分析系统性能。
驻波比:驻波比全称为电压驻波比,又名VSWR和SWR,为英文Voltage Standing Wave Ratio的简写。
在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。
其它各点的振幅值则介于波腹与波节之间。
这种合成波称为行驻波。
驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin之比。
驻波比就是一个数值,用来表示天线和电波发射台是否匹配。
如果 SWR 的值等于1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。
如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温。
电磁场微波技术与天线实验指导书
自编教材《电磁场微波技术与天线》实验指导书长沙学院电子与通信工程系二0一0年九月实验一谐振腔法测量微波频率一、实验目的1、熟悉和了解微波测试系统的基本组成和工作原理。
2、掌握微波测试系统各组件的调整和使用方法。
3、掌握谐振腔法测频率的原理。
二、实验框图及器材1、实验框图图一谐振腔法测频率框图2、实验仪器微波信号源一台3cm测量线一台隔离器一个定标衰减器一个波长计一个检波指示器一台晶体检波器一个选频放大器一台各种负载三、实验原理谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。
旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。
反映在检波指示器上的指示是一跌落点,(参见图二)此时,读出波长表测微头的读数,再从波长表频率与刻度曲线上查出对应的频率。
检波指示器指示I图二波长表的谐振点曲线四、实验内容及步骤1、按图一所示的框图连接微波实验系统。
2、将检波器及检波指示器接到被测件位置上。
3、用波长表测出微波信号源的频率。
五、实验报告及要求1、实验目的与任务;2、正确画出微波测试系统的基本框图;3、说明用谐振腔法测频率的原理;4、记录实验数据,分析误差原因。
六、预习报告及要求1、实验目的与任务;2、实验所用仪器设备的功能;3、实验原理。
实验二微波功率的测量一、实验目的1、熟悉和了解微波测试系统的基本组成和工作原理。
2、掌握微波测试系统各组件的调整和使用方法。
3、掌握微波功率的测量原理,熟悉测量被测件的相对功率、绝对功率值的方法。
二、实验框图及器材1、实验框图图三功率测量微波系统框图2、实验仪器微波信号源一台3cm测量线一台隔离器一个定标衰减器一个波长计一个检波指示器一台晶体检波器一个选频放大器一台波导开关一个功率计一台功率头一个各种负载三、实验原理在波导管中传输的微波通过衰减器时,可以衰减部分传输功率,沿着宽边改变衰减器的移动吸收片可改变衰减量的大小。
微波技术与天线实验报告(航大)
电磁场、微波测量实验报告姓名:学号:学院:电子信息工程学院实验1 电磁喇叭天线特性测量一、实验目的研究电磁喇叭天线方向性图的测量方法以及天线的互易性原理。
二、实验仪器及装置图1、三厘米固态信号源2、喇叭天线3、分度转台及支柱4、微分表三、实验原理由于在通信、雷达等用途中,天线都处于它的远区,所以正确的测试天线的远区场辐射特性非常重要。
天线参量是描述天线辐射特性的量,可用实验的方法测定。
天线参量的测量是设计天线和调整天线的重要手段,其中最重要的是测量其辐射场幅值分布的方向性,其表征量是天线的方向函数及方向图。
四、实验内容及步骤1、按图连接好装置。
2、整机机械调整:首先旋转工作平台使0度刻线与固定臂上只针对正,在转动活动臂使活动臂上的指针对正在工作平台180度刻线上。
3、固定被测天线,而把辅助天线沿以被测天线为中心,距离r为半径的圆周运动转动平台记录工作平台角度及微安表度数。
Y oz平面方向图的数据逆时针转动角度180 177 174 171 168 165 162 159 156 153 150 147微安100 94 80 62 46 32 20 10 6 4 2 0顺时针转动角度-180 -177 -174 -171 -168 -165 -162 -159 -156 -153 -150 -147微安100 96 92 80 60 44 26 18 10 6 4 2逆时针转动顺时针转动Xoz 平面方向图数据逆时针转动逆时针转动角度 180177174171168165162159156153150147微安 100 92 80 56 36 20 8 2 0 0 0 0顺时针转动角度 -180 -177 -174 -171 -168 -165 -162 -159 -156 -153 -150 -147微安100 96 88 70 52 30 12 4 2 0 0 0顺时针转动实验2 电磁波参量的测量一、实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E、H和S 互相垂直。
行露2012.9微波与天线实验指导书
《微波技术与天线》实验指导书西安工程大学电信学院电子信息工程教研室2007年2月实验一微波测量仪器的使用实验目的(1) 熟悉基本微波测量仪器;(2) 了解各种常用微波器件;(3) 学会微波测量线的调整;(4) 学会测量双导线传输线波长和信号源频率。
(5)学会功率的测量实验原理1、基本微波测量仪器微波测量技术是通信系统测试的重要分支之一,也是射频工程中必备的测试技术。
它主要包括微波信号特性测量和微波网络参数测量。
微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等,微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。
测量的方法:点频测量、扫频测量和时域测量三大类。
所谓点频测量是信号源只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量从面得到瞬态电磁特性。
图1-1 是典型的微波测量线,它由微波信号源、隔离器或衰减器、定向耦合器、波长/ 频率计、测量线、终端负载、选频放大器及小功率计等组成。
2、常用微波器件简介微波器件的种类很多,下面主要介绍实验室里常见的几种器件:⑴检波器⑵ E-T 接头⑶ H-T 接头⑷双T 接头⑸波导弯曲⑹波导开关⑺可变短路器⑻匹配负载⑼吸收式衰减器⑽定向耦合器⑾隔离器3、长线试验装置组成及指标:(1)米波信号源(300MHz、大于20mW)(2)长线盒(铜棒、有机玻璃)(3)驻波表(量程100μA、精度4μA)(4)短路枝节(铜棒)(5)短路片(6)匹配电阻(7)阻抗圆图(8)传输线理论CAI软件4、长线试验装置原理简介由米波振荡器输出的高频能量加到双导线传输线上,通过传输线与驻波表之间的藕合进入驻波表内,经晶体二极管检波后变成直流,并由微安表指示出来,此电流的指示反映了传输线上驻波表所在位置的电场强度的大小。
微波技术与天线实验报告
百度文库 - 好好学习,天天向上微波技术与天线实验报告姓名:才正国学号:50班级:F0703002指导教师:龙沪强任课教师:袁斌实验一基本低功率微波波导测试系统的熟悉与正确调试一.实验目的:通过本次实验,基本熟悉低功率微波波导测试系统的基本构成以及正确调试的操作方法,学会四点平均法测波导波长,掌握晶体定标曲线的测定方法。
二.实验仪器与预习要求:1.实验主要仪器:(1)X波段信号源(YM1123)(2)1kHz选频放大器(YM3892)(3)驻波测量器(TC26)(4)可变衰减器(BD-20-2)(5)直读式频率计(PX16)(6)短路板2.实验预习要求:详细阅读实验指导书,初步了解低功率微波波导测试系统的基本构成,熟悉探针电路调谐的基本原理,了解四点平均法测波导波长的基本原理。
三.实验仪器与接线框图:四. 实验原理:1. 基本微波测量系统一个小功率的微波测量系统组成如图1-1 所示:图1-1 基本微波测量系统组成微波信号源测试微波元件,必须要有微波信号源提供测试信号。
常用微波信号源可以分为简易信号发生器、标准信号发生器、功率信号发生器和扫频信号发生器。
简易信号发生器通常泛称为“微波信号发生器”。
一般要求信号频率能在一定范围内连续可调;最大信号的功率至少能达到毫瓦级并能连续控制;输出波形一般为正弦波,并至少能用一种低频方波进行开关式幅度调制。
标准信号发生器指的是屏蔽良好,输出信号的频率、功率和调制系数可以在一定范围内调节(有时调制系数可以固定不变),能精确读数的信号源。
通常用于测量微波接收机的灵敏度、选择性等指标。
功率信号发生器的功率输出要求达到瓦级,常用于测试天线性能等。
扫频信号发生器是能产生随时间作线性变化的扫频信号的微波信号源,它能从所需频率范围的一端连续地“扫变”到另一端,所以能直接得到各个频率上的测量结果,在示波器或记录仪上立即显示出所需的幅频特性曲线和相频特性曲线。
●隔离器隔离器又称单向器,是一种使微波信号单向传输的非互易二端口铁氧体器件,它允许微波信号沿一个方向(正向)以很小的衰减通过,而沿另一个方向(反向)传输的波则受到很大的衰减而不能通过。
微波技术与天线实验指导书啊啊
小功率调幅发射机整体概述1.1 小功率调幅发射机的初步认识发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。
调幅发射机实现调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单,所以调幅发射机广泛地应用于广播发射。
所谓调幅,就是指,使振幅随调制信号的变化而变化,严格的讲,就是指载波振幅与调制信号的大小成线性关系,而它的频率和相位不变。
振幅调制分为4种方式:AM(普通调幅)、DSB(抑制载波双边带调幅)、SSB(单边带调幅)、VSB(残留边带调幅)。
本设计调幅发射机指的是AM调幅发射机。
通常,发射机包括三个部分:高频部分,低频部分和电源部分。
高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。
主振荡器的作用是产生频率稳定的载波。
缓冲级主要是削弱后级对主振器的影响。
低频部分包括话筒、低频电压放大级、低频功率放大级。
调制是将要传送的信息装载到某一高频振荡信号上去的过程。
1.2 小功率调幅发射机的主要技术指标在设计调幅发射机时,主要遵循如下性能指标:工作频率范围:调幅制一般适用于中、短波广播通信,其工作频率范围为300kHz~30MHz。
发射功率:一般是指发射机送到天线上的功率。
只有当天线的长度与发射频率的波长可比拟时,天线才能有效地把载波发射出去。
波长λ与频率f的关系为λ=c/f。
调幅系数:调幅系数ma是调制信号控制载波电压振幅变化的系数,ma的取值范围为0~1,通常以百分数的形式表示,即0%~100%。
频率稳定度:发射机的每个波道都有一个标称的射频中心工作频率,用f0表示。
工作频率的稳定度取决于发信本振源的频率稳匹配是射频和微波技术中的一个重要概念,通常包含两方面的意义:一是源的匹配,二是负载的匹配。
通常射频和微波系统中都希望采用匹配源,可使波源不再产生二次反射从而减少测量误差;同时,匹配负载可以从匹配源中取出最大功率。
南昌大学 微波技术与天线 所有实验报告 数据完整 处理教材
实验报告实验课程:微波技术与天线学生姓名:学号:专业班级:年月日实验一微波测量系统的认识及功率测量一、实验目的1.熟悉基本微波测量仪器;2.了解各种常用微波元器件;3.学会功率的测量。
二、实验原理1.基本微波测量仪器(1)微波测量技术主要包括微波信号特性测量和微波网络参数测量:①微波信号特性参量包括微波信号的频率与波长、电平与功率、波形与频谱等;②微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。
(2)微波测量方法包括点频测量、扫频测量和时域测量三大类:①点频测量:信号只能工作在单一频点逐一进行测量;②扫频测量:在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;③时域测量:利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。
(3)微波测量系统由微波信号源、调配器/ 衰减器/隔离器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。
图1微波测量系统2.常用微波元器件实验室里常见的几种元器件:(1)检波器(2)E-T 接头(3)H-T 接头(4)双T 接头(5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载(9)吸收式衰减器(10)定向耦合器(11)隔离器3.功率测量按图1所示连接微波测量系统,在终端处接上微波小功率计探头,接通电源开关,调整衰减器,观察微波功率计指示并作相应记录。
三、实验数据及处理表格 1衰减器指示与功率指示关系曲线12345671122334455667788衰减器位置/mm功率计读数/m W图 2 衰减器指示与功率指示关系曲线实验二微波波导波长、频率的测量、分析和计算一、实验目的1.学会微波测量线的使用;2.学会测量微波波导波长和信号源频率;3.分析和计算波导波长及微波频率。
二、实验原理1.系统调整主要指信号源和测量线的调整,以及晶体检波器的校准:(1)信号源的调整包括振荡频率、功率电平及调制方式等。
《微波技术与天线》
(1-1)
测量驻波比的方法有直接法,等指示度法和功率衰减法。 根据式(1-1)直接求出电压驻波比的方法称为直接法。该方法适用于测量中、 小电压驻波比。 如晶体管为平方律检波,可直接测驻波波腹点和节点的电流值,式(1-1)成为:
ρ = Imax I min
2
4.人身安全 实验中有些电子仪器带有高压,因此必须注意下列事项: ① 实验者双手要保持干燥,鞋子要有一定绝缘性能; ② 不要用手(或身体其它部位)触及带电部分; ③ 不准擅自打开机壳或盖板; ④ 一旦发生事故,要立即切断电源,采取应急措施并及时报告。
5.仪器设备 微波仪器设备和元器件价格昂贵,在使用中要多加爱护。 ① 使用仪器前必须了解其规格、量程和操作规程,不熟悉其性能和使用方法时,
凡由于违反操作规则损坏元器件者,该项实验成绩为不及格,并按规定赔偿经 济损失。 6.注意维护实验场地的清洁
实验结束后,协同搞好卫生方可离开实验室。
3
实验一、导行电磁波的观测与电压驻波比测量
一、实验目的
1.熟悉波导测量线的使用方法; 2.观测矩形波导终端三种状态(短路、接任意负载、匹配)时,TE10 波的电场分量 沿轴向上的分布;
预习是实验的一个重要环节,在每次实验之前,必须认真阅读实验实验指导书 及教材中的有关内容,明确实验目的、要求、内容和原理;在此基础上做好实验前 必要的准备工作,写好预习报告(即实验报告内容中①、②),做好实验前准备工作 (如画好实验记录表格,计划好实验步骤等)。
未预习者不得上机操作。 2.实验
实验开始时要注意正确连接线路,并经实验指导老师检查后方可开始实验。 实验过程中要集中精力,要胆大心细。坚持科学态度,发现数据不合理时,应 及时分析原因,必要时重测,切不可擅自修改数据。 实验完毕,将原始数据交指导老师检查,经允许后方可拆除系统。 3.实验报告 实验报告的一般内容为: ① 目的要求; ② 原理简述、线路(或方框图),包含主要仪器的型号、规格等; ③ 数据处理,包括原始数据、运算结果与误差分析,数据应尽可能整理成表格 形式; ④ 曲线图; ⑤ 问题讨论、心得体会及建议等。