研究生2008矩阵理论试卷

合集下载

2008年数二真题及标准答案及解析

2008年数二真题及标准答案及解析

证法一:假设线性相关.因为分别属于不同特征值的特征向量,故线性无
关,则可由线性表出,不妨设,其中不全为零(若同时为0,则为
0,由可知,而特征向量都是非0向量,矛盾)
,又
,整理得:
则线性相关,矛盾. 所以,线性无关.
证法二:设存在数,使得
(1)
用左乘(1)的两边并由得
(2)
(1)—(2)得
(3)
因为是的属于不同特征值的特征向量,所以线性无关,从而,
(3)【答案】 【详解】由微分方程的通解中含有、、知齐次线性方程所对应的特征方 程有根,所以特征方程为,即. 故以已知函数为通解的微分方程是 本题的难度值为0.832. (4) 【答案】 【详解】时无定义,故是函数的间断点 因为 同理 又 所以 是可去间断点,是跳跃间断点. 本题的难度值为0.486.
(2)若函数具有二阶导数,且满足,证明至少存在一点 (21)(本题满分11分)
求函数在约束条件和下的最大值与最小值. (22)(本题满分12分)
设矩阵,现矩阵满足方程,其中,,
(1)求证; (2)为何值,方程组有唯一解,并求; (3)为何值,方程组有无穷多解,并求通解. (23)(本题满分10分)
设为3阶矩阵,为的分别属于特征值特征向量,向量满足, (1)证明线性无关; (2)令,求.
于是所求函数为
本题的难度值为0.497. (20)【详解】(I) 设与是连续函数在上的最大值与最小值,即
由定积分性质,有 ,即 由连续函数介值定理,至少存在一点,使得 即
(II) 由(I)的结论可知至少存在一点,使 又由 ,知 对在上分别应用拉格朗日中值定理,并注意到,得
在上对导函数应用拉格朗日中值定理,有
2008年全国硕士研究生入学统一考试数学二试题解析

考研数一08真题

考研数一08真题

考研数一08真题2008年考研数学一真题中,试题主要分为两个部分:选择题和填空题。

选择题部分包括20道选择题,填空题部分包括10道填空题。

本文将以试题题号为标记逐一解析各道题目。

选择题部分解析:题目1:设A是n阶方阵,且满足A^2 = A,则下列结论正确的是()A. A = 0B. A = E(单位矩阵)C. A是对称方阵D. A的秩为1这道题目考察了对方阵幂运算的理解。

根据A^2 = A,我们可以发现A作为方阵必然有两种可能:A是零矩阵或者A是单位矩阵。

因此,选项B“A = E”为正确答案。

题目2:设f(x) = x^3 - 3x,则f'(x)的零点的个数是()A. 0B. 1C. 2D. 3这道题目考察了对函数的导数与零点的关系的理解。

f'(x)是f(x)的导函数,即f'(x) = 3x^2 - 3。

根据函数导数存在零点的性质,当f'(x) = 0时,f(x)存在极值点或转折点。

解方程3x^2 - 3 = 0,得到x = ±1。

因此,f'(x)的零点有2个,选项C“2”为正确答案。

填空题部分解析:题目1:若a是方程x^4 - x^3 - x + 1 = 0的一个实根,则a^3 - a^2 -a + 1的值等于________。

这道题目考察了对方程实根的运算。

首先,我们可以将方程x^4 -x^3 - x + 1 = 0进行变形,得到x(x^3 - x^2 - 1) + 1 = 0。

因为a是方程的一个实根,所以该式等于0,即a(a^3 - a^2 - 1) = -1。

因此,a^3 - a^2 -a + 1 = (-1)/a,即填空的值为-1/a。

题目2:设f(x) = (cosx + sinx)^2,g(x) = (cosx - sinx)^2,则f(x) -g(x)的最小值是________。

这道题目考察了对函数最小值的求解。

我们先展开f(x)与g(x):f(x) = cos^2 x + 2sinx cosx + sin^2 xg(x) = cos^2 x - 2sinx cosx + sin^2 x再计算f(x) - g(x):f(x) - g(x) = 4sinx cosx则f(x) - g(x)的值不为负数,且取最小值0,因此填空的答案为0。

2008年同等学力申硕控制科学与工程真题及答案

2008年同等学力申硕控制科学与工程真题及答案

III 微机系统原理与应用
一、(5 分)完成下列数制换算
1.01101100B=
D
2.0.011B=
D
3.0.4375D=
B
4.783D=
H
5.A8CH=
D
二、(5 分)80X86 汇编语言源程序中有一存储器地址表达式为 60ADH:DDF6H.请写出其段
基址、段内偏移地址和物理地址。
三、(5 分)PC/XT 系统中使用 DAC0832 做 D/A 接口如图 1 所示。其中 Y200H 和 Y201H 是地址 译码输出信号,低电位有效。当 I/O 地址是 200H 时, Y200H 有效;当 I/O 地址是 201H 时, Y201H 有效。DAC0832 输入的数字量是 0 时,转换后输出的模拟量 vo 为 0V;输入的 数字量是 FFH 时, vo =10·(255/256)V;中间区域输入输出的转换关系是线性的。
Gc ( s)
=
Kc (1 + Ts) 1 + 0.3s
选择 T ,使 G( jω)Gc ( jω) 在频率 ω = 1 rad/s 时的相位为 ϕ = −140° ;
3.(1 分)选择 Kc ,使校正后系统的增益穿越频率为ωc = 1rad/s。
(注:计算过程中一律采用折线近似来表示对数幅频特性。)
R(s) +
++
C(s)
G1 (s) −
G2 (s)
F1 (s)
图1
A.
G1 (s)G2 (s)
1− G2 (s)F2 (s) + G1 (s)G2 (s)F1 (s)
B.
G1 (s)G2 (s)
1+ G2 (s)F2 (s) − G1 (s)G2 (s)F1 (s)

2008年全国硕士研究生入学统一考试数学二真题及答案

2008年全国硕士研究生入学统一考试数学二真题及答案
故 线性无关.
(Ⅱ)记 则 可逆,
即 .
【难易度】★★
【详解】
解析:
则 。记 ,则
则 ,正、负惯性指数相同,故选
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)已知函数 连续,且 ,则
【答案】2
【考点】等价无穷小
【难易度】★★
【详解】
解析:利用等价无穷小因子替换有
.
(10)微分方程 的通解是 .
【答案】y=Cx-xe-x,其中C为任意常数
2个无穷间断点
2个跳跃间断点
【答案】
【考点】函数间断点的类型
【难易度】★★
Hale Waihona Puke 【详解】解析: 的间断点为 ,而 ,故 是可去间断点;
, ,故 是跳跃间断点
故选 .
(5)设函数 在 内单调有界, 为数列,下列命题正确的是( )
若 收敛,则 收敛. 若 单调,则 收敛.
若 收敛,则 收敛. 若 单调,则 收敛.
【详解】
解析:令
得方程组 即 ,解得 或
得 .
.
(22)(本题满分11分)
设 元线性方程组 ,其中 , , .
(Ⅰ)证明行列式 ;
(Ⅱ)当 为何值时,该方程组有唯一解,求 ;
(Ⅲ)当 为何值时,该方程组有无穷多解,求通解.
【考点】行列式的基本性质,非齐次线性方程组解的判定
【难易度】★★★
【详解】
解析:(Ⅰ)证明:消元法.记

(Ⅱ)由克莱姆法则, 时方程组有唯一解,故 时方程组有唯一解.
由克莱姆法则,将 得第一列换成 ,得行列式为
所以, .
(Ⅲ)当 时,方程组为
此时方程组系数矩阵的秩和增广矩阵的秩均为 ,所以方程组有无穷多组解,其通解为 ,其中 为任意常数.

2008年全国硕士研究生入学统一考试数学三真题及答案

2008年全国硕士研究生入学统一考试数学三真题及答案

2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点. ()B 可去间断点. ()C 无穷间断点.()D 振荡间断点.【答案】()B【考点】可去间断点,积分上限函数及其导数【难易度】★★ 【详解】解析:()()0()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰,所以0x =是函数()g x 的可去间断点.(2)如图,曲线方程为()y f x =,函数()f x 在区间[0,]a 上有连续导 数,则定积分'()axf x dx ⎰等于( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.【答案】()C【考点】定积分的分部积分法,定积分的几何应用—平面图形的面积【难易度】★★ 【详解】 解析:()()()()aa a xf x dx xdf x af a f x dx '==-⎰⎰⎰,其中()af a 是矩形面积,0()af x dx ⎰为曲边梯形的面积,所以0()axf x dx '⎰为曲边三角形ACD 的面积.(3)已知24(,)x y f x y e+=则 ( )()A (0,0),(0,0)x y f f ''都存在 ()B (0,0)x f '存在,(0,0)y f '不存在()C(0,0)x f '不存在,(0,0)y f '存在 ()D (0,0),(0,0)x y f f ''都不存在【答案】()C【考点】多元函数的偏导数 【难易度】★★★ 【详解】 解析:2400011(0,0)limlim 00xx x x x ee f x x +→→--'==-- 00011lim lim 100xx x x e e x x →+→+--==--,001lim 10x x e x -→--=-- 000011lim lim 00xx x x e e x x -→+→---≠--,所以偏导数不存在. 24200011(0,0)limlim 000y y y y y ee f y y +→→--'===-- 所以偏导数存在。

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

B.
1 2 1
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E


1 1
0 2
1 1
2 1

1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
令 g n n2 2 1 n2 2 1 2 1
2 1 n2 1 2 1 1 n3 n4 1 3
由 Hamilton-Cayley 定理知 gA 0
et e 2t
a0 a0
a1 2a1
于是解得:
a0 a1
2et e2t

e 2t et
从而:
f A e At gA a0 E a1 A

2008年数二真题及标准答案及解析

2008年数二真题及标准答案及解析

2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为( )()A 0 ()B 1. ()C 2 ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分()at af x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积。

(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( ) (5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛。

()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛。

()D 若{}()n f x 单调,则{}n x 收敛。

(6)设函数f 连续,若22(,)uvD F u v =,其中区域uv D 为图中阴影部分,则F∂= (7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵。

若30A =,则( ()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +()C E A -可逆,E A +可逆.()D E A -可逆,E A +(8)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫ ⎪-⎝⎭。

()B 2112-⎛⎫ ⎪-⎝⎭。

()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭。

30676 77D4 矔 29252 7244 牄27551 6B9F 殟-25596 63FC 揼:二、填空题:9—14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0x y x e dx xdy -+-=的通解是____y =。

2008 年线性代数考研试题

2008 年线性代数考研试题

2008年线性代数考研试题[数一]1.设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若,则[ C ]O =3A (A )E-A 不可逆,E+A 不可逆 (B )E-A 不可逆,E+A 可逆(C )E-A 可逆,E+A 可逆 (D )E-A 可逆,E+A 不可逆【考点】 矩阵的可逆性2.设A 为二阶矩阵,21αα,为线性无关的二维列向量,21212A 0A αααα+==,,则A 的非零特征值为 1【考点】 矩阵的特征值3.设βα,为三维列向量,矩阵,其中的转置,的转置.T T A ββαα+=αα为T ββ为T (1) 证明 (2)若2 (A)≤r βα,线性相关,则2 (A)<r【考点】 矩阵的秩【祥解】 (1)βα,为三维列向量,则 1)()(,1)()(T ≤≤≤≤βββαααr r r r T 211)()()(r(A)T T =+≤+≤+=T T r r r ββααββαα,即2 (A)≤r .(2) 已知βα,线性相关,不妨设αβk =,则,21)())1(()))((()(r(A)2T T <≤=+=+=+=T T T T r k r k k r r ααααααααββαα即有.2 (A)<r 4.设n 元线性方程组,其中 b Ax = , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2a a 012a a 012a A 22%%%T T n b x )0,...0,1(,),...,(x x 1==(1) 证明行列式na n )1(A +=(2) a 为何值,方程组有唯一解?求x 1(3) a 为何值,方程组有无穷多解?求通解.【考点】 线性方程组解的结构和通解【祥解】 (1)利用行列式的性质可证n a n )1(A +=.(2) 若使方程组有唯一解,则00)1(A ≠≠+=a a n n ,即.则由克莱姆法则得an n x )1(1+=. (3) 若使方程组有无穷多解,则00)1(A ==+=a a n n ,即.把代入矩阵A 中,显然有0=a 1)()(−==n A r B A r #,方程组有一个基础解向量.取自由未知量x 1=1,得到它的基础解系为;代入后方程组化为,特解取为,则方程组的通解为为任意常数)k k T ()0,0,0,1("0=a ⎩⎨⎧====01432n x x x x "T )0,...0,0,1,0( . 为任意常数)k k T T ()0,...0,1,0()0,...0,0,1(+。

2008年全国硕士研究生入学统一考试数学四试题及答案详解

2008年全国硕士研究生入学统一考试数学四试题及答案详解

2008年全国硕士研究生入学统一考试数学四试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设0a b <<,则()1lim n n n n a b --®+( )()A a .()B 1a -. ()C b .()D 1b -.解:()B分析;()1100lim lim 1n n n nn n n n n b a b a a ----- 轾骣÷ç犏+=+÷ç÷ç犏桫臌()1101lim 1nn a a b a-®轾骣÷ç犏=+=÷ç÷ç犏桫臌(2)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=ò的( )()A 跳跃间断点.()B 可去间断点. ()C 无穷间断点()D 振荡间断点解 :()B分析:()()00()lim ()lim lim 0xx xx f t dtg x f x f x===ò所以0x =是函数()g x 的可去间断点(3)设()f x 是连续奇函数,()g x 是连续偶函数,区域{(,)01,D x y xy=#-则正确的( )()A ()()0Df yg x dxdy =蝌.()B ()()0Df xg y d x d y =蝌. ()C [()()]0Df xg y dxdy +=蝌.()D [()()]0Df yg x dxdy +=蝌.解 :()A分析:()A 中()f y 为奇函数,()g x 为偶函数,所以()()0Df yg x dxdy =蝌(4)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分'0()axf x dx ò( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.解: C分析:00()()()()aa axf x dx xdf x af a f x dx ¢==-蝌其中()af a 是矩形面积,0()a f x dx ò为曲边梯形的面积所以0()axf x dx ¢ò为曲边三角形的面积。

研究生课程-《矩阵分析》试题及答案

研究生课程-《矩阵分析》试题及答案

第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。

由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。

故1x ,2x ,3x 是线性无关的。

(2)用反证法。

假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。

所以,1x +2x +3x 不是σ的特征向量。

二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。

四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。

2008年全国硕士研究生入学统一考试数学一试题及答案详解

2008年全国硕士研究生入学统一考试数学一试题及答案详解

2008年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设函数2()ln(2)x f x t dt =+ò,则()f x ¢的零点个数( ) ()A 0()B 1 ()C 2 ()D 3解:()B .分析:22()ln(2)22ln(2)f x x x x x ¢=+?+2224()2ln(2)02xf x x xⅱ=++>+,恒大于0,所以()f x ¢在(,)-??上是单调递增的. 又因为(0)0f ¢=,根据其单调性可知()f x ¢只有一个零点. (2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于( ) ()A i()B -i ()C j ()D -j解;()A .分析:由 222222111,(0,1) 1.11x x y yyf f x x y x y y y =====+++ 22222,(0,1)0.1y y x y xf f x x y y--===++所以(0,1)10.gradf i j i =??(3)在下列微分方程中,以123cos 2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A 440y y y y ⅱⅱⅱ+--=. ()B 440y y y y ⅱⅱⅱ+++=. ()C 440y y y y ⅱⅱⅱ--+=.()D 440y y y y ⅱⅱⅱ-+-=. 解:()D .分析;由123cos 2sin 2x y C e C x C x =++可知其特征根为12,31,2i l l ==?.故对应的特征方程为 2(1)(2)(2)(1)(4)i i l l l l l -+-=-+32324444l l l lll =+--=-+-所以所求微分方程为440y y y y ⅱⅱⅱ-+-=, 选()D . (4)设函数()f x 在(,)-??内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛.()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.解:()B分析:若{}n x 单调,则由()f x 在(,)-??内单调有界知,{}()n f x 单调有界, 因此{}()n f x 收敛,应选()B .(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A ()1,4Y N :不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.解:选()C分析:23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆。

2008线性代数考研题

2008线性代数考研题

解 (1) 因为 α 1 , α 2 是 A 的属于不同特征值的特征向量,所以 α 1 , α 2 线性无关.假设
2008 线性代数考研题
1.(08-1,2,3,4-04)设 A 为 n 阶非零矩阵, E 为 n 阶单位矩阵.若 A = O ,则( ). (A) E − A 不可逆, E + A 不可逆. (B) E − A 不可逆, E + A 可逆. (C) E − A 可逆, E + A 可逆. (D) E − A 可逆, E + A 不可逆. 解 应选(C).
由克莱姆法则知方程组有唯一解, 且有 x1 = (2) 当 a ≠ 0 时, A = ( n + 1) a ≠ 0 ,
n
A1 A

其中
1 1 2a 1 0 2a 1 按1列展开 a 2 2a O 2 A1 = M a 2a O = Dn−1 = na n−1 O O 1 M O O 1 a 2 2a 2 0 a 2a
λ1 , λ2 , λ3 互 不 相 同 , 所 以 存 在 可 逆 矩 阵 P 使 得 P −1 AP = diag(λ1 , λ2 , λ3 ) .又因为 A = λ1λ2 λ3 = 0 ,所以 λ1 , λ2 , λ3 中有且仅有一个为零,
故 r ( A) = r (diag(λ1 , λ2 , λ3 )) = 2 . 7.(08-1-11) A = αα + ββ , α , β 是 3 维列向量, α 为 α 的转置, β 为 β 的转 置. (1) 证 r ( A) ≤ 2 ; (2) 若 α , β 线性相关,则 r ( A) < 2 .
故 x1 =
A1 A
=
na n −1 n . = n (n + 1)a (n + 1)a

西北工业大学2008硕士研究生矩阵论试题及答案

西北工业大学2008硕士研究生矩阵论试题及答案

0 1 13 0 26 65 0 10 0 15
G G T GG T


1
0 0 26 0 1 13 0 2 20 0 30 1 1 0 , A G F 60 10 0 4 650 0 40 0 0 0 78 0 3 39
1 令S H 0 ,则有 H1
2 2 1 0 0 1 1 0 Q S T H0 1 H 1 3 2 2 1 2 2 0 2 3 1 4 3 1 2 1 , A QR ,R 0 5 0 0 2
m( ) ( 2) . 令 f ( ) e t m( ) g ( ) (a b ) ,则有
M2008B 试题及解答
B3
f (0) 1 2t f (2) e
e
At

1 a 2t a 2b e
a 1 2t b (e 1) 2
1 行 0 解 1. A 0 0
0 0 3 0 1 1 2 0 0 2 0 3 1 0 FG ,A 2 0 0 0 0 0 1 2 0 0 0 0 0 3
2. F F T F


1
FT
a b a b a b b a T ( E11 ) E11 , T ( E12 ) E12 b a 0 0 b a 0 0 a b 0 0 a b 0 0 T ( E 21 ) E 21 , T ( E 22 ) E 22 b a a b b a b a
则 T 的核 N (T ) 的一个基为(

2008年全国考研数学一真题及答案.doc

2008年全国考研数学一真题及答案.doc

2008年考研数学一真题一、选择题(18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)设函数,则的零点个数为(A)0 (B)1(C)2 (D)3【答案】B。

【解析】且,则是唯一的零点综上所述,本题正确答案是B。

【考点】高等数学—一元函数积分学—积分上限的函数及其导数(2)函数在点处的梯度等于(A)(B)(C)(D)【答案】A。

【解析】所以综上所述,本题正确答案是A。

【考点】高等数学—多元函数微分学—方向导数和梯度(3)在下列微分方程中,以为任意常数为通解的是(A)(B)(C)(D)【答案】D。

【解析】由通解表达式可知其特征根为可见其对应特征方程为故对应微分方程为综上所述,本题正确答案是D。

【考点】高等数学—常微分方程—高于二阶的某些常系数齐次线性微分方程(4)设函数在内单调有界,为数列,下列命题正确的是(A)若收敛,则收敛(B)若单调,则收敛(C)若收敛,则收敛(D)若单调,则收敛【答案】B。

【解析】【方法一】由于单调,单调有界,则数列单调有界,根据单调有界准则知数列收敛。

【方法二】排除法:若取,,则显然单调,收敛,但,为偶数为奇数,显然不收敛,排除A。

若取,显然收敛且单调,但不收敛,排除C和D。

综上所述,本题正确答案是B。

【考点】高等数学—函数、极限、连续—函数的有界性、单调性、周期性和奇偶性,极限存在的两个准则:单调有界准则和夹逼准则(5)设为阶非零矩阵,为阶单位矩阵,若,则(A)不可逆,不可逆(B)不可逆,可逆(C)可逆,可逆(D)可逆,不可逆【答案】C。

【解析】因为所以可知可逆,可逆综上所述,本题正确答案是C。

【考点】线性代数—矩阵—矩阵的概念和性质,矩阵可逆的充分必要条件(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如右图所示,则的正特征值的个数为(A)(B)1(C)2 (D)3【答案】B。

【解析】所给图形为双叶双曲线,标准方程为二次型正交变换化为标准形时,其平方项的系数就是的特征值,可知的正特征值的个数为1综上所述,本题正确答案是B。

电子科技大学级硕士研究生《矩阵理论》试题

电子科技大学级硕士研究生《矩阵理论》试题

|
xn
xn
|
an1
|
x1xnx2 Nhomakorabeaxn
| a12 | x2 x1
| a22 |
| an2 | x2
xn
| a1n | xn
x1
| a2n | xn
x2
| ann |
∑ →
D−1BD 的每个
Gerschgorin
圆为
Si
={z ∈ C
:|
z−
|
aii
||≤
Ri },
Ri
(
)
= 例如 x (0,1, 0,, 0) ≠ 0 ,但 || x ||= 0
4、|| x ||∞ ≤|| x ||1≤ n || x ||∞ .
n

||
x
||∞
=max i
|
xi
|≤
i =1
|
xi
|
= || x ||1≤
n max i
|
xi
|=n ||
x ||∞
5、设 A 为 n 阶酉矩阵,则 A= A+ A= + A E.
=
0 AH
A
0
,则
||
B
||2
=||
A
||2
.
(5 分)
0
证:
B
=
AH
A
0

BH
=
0
AH
A
0

BB H
=
AAH
0 AH A

r ( BB H
)
=
r( AAH )
→ || B ||2 =|| A ||2

合肥工业大学2008年高等代数考研试题

合肥工业大学2008年高等代数考研试题

合肥工业大学2008年考研试题----高等代数一、填空题(每题5分,共40分)1、()xx x x x x f 43214321432432=中3x 的系数为 ;2、设3维向量空间3R 有两组基:(1)()T=0,0,11a ,()T=0,1,02a ,()T=1,1,13a(2)()T=0,0,11β,()T=0,1,02β,()T=1,0,03β则从(1)到(2)的过度矩阵为 ;3、设()T=t ,2,1β,()T=1,1,21a ,()T-=7,2,12a ,若β可由1α、2α线性表出,则t=;4、设矩阵()()A E A E B -+=-1,则()=+-1B E ;5、设3维欧式空间V 上的线性变换T 在基321,,εεε下的矩阵为⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,则T 在基321,2,εεε下的矩阵为 ;6、设()T=1,0,1a ,矩阵T=ααA ,n 为正整数,则=-E n A ;7、齐次线性方程组⎩⎨⎧=+-=++020*******x x x x x x 的解空间S (作为欧式空间4R 的子空间)的一组标准正交基为 ;8、已知实二次型()323121232221321222,,x x x x x bx x ax x x x x f +++++=经正交变换Py x =化为标准型23224y y f +=,则a= 、b= ; 9、设A 是n 阶实对称矩阵,P 是n 阶可逆阵,已知n 维列向量α是A 属于特征值λ的特征向量,则矩阵()T-AP P 1属于特征值λ的一个特征向量为 ;10、矩阵⎪⎪⎪⎭⎫⎝⎛=100210321A 的若尔当(Jordan )标准型为 。

二、(10分)在[]x P 中,设()0≠x g ,()x f 、()x h 为任意的多项式,试证:()()()()()()()()x g x g x h x f x g x f ,,-=。

考研数学二(矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学二(矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学二(矩阵)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(1998年)设A是任一n(n≥3)阶方阵,A*是A的伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=【】A.kA*B.kn-1A*C.knA*D.k-1A*正确答案:B解析:由于n阶行列式的每个元素的余子式都是一个n-1阶行列式,故|kA|的每个元素的代数余子式等于|A|的对应元素的代数余子式的kn-1倍,于是由伴随矩阵的定义知(kA)*的每个元素等于A*的对应元素的kn-1倍,即(kA)*=kn-1A*.知识模块:矩阵2.(2004年)设A是3阶方阵,将A的第1列与第2列交换得B,再把B 的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为【】A.B.C.D.正确答案:D解析:记交换单位矩阵的第1列与第2列所得初等矩阵为E(1,2),记将单位矩阵第2列的忌倍加到第3列所得初等矩阵为E(3,2(k)),则由题设条件,有AE(1.2)=B,BE(3,2(1))=C,故有AE(1,2)E(3,2(1))=C 于是得所求逆矩阵为所以只有选项D正确.知识模块:矩阵3.(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则【】A.交换A*的第1列与第2列得B*.B.交换A*的第1行与第2行得B*.C.交换A*的第1列与第2列得-B*.D.交换A*的第1行与第2行得-B*.正确答案:C解析:用排除法.以2阶方阵为例,设由此可见,交换A*的第1列与第2列得-B*,而其它选项均不对,故只有C正确.知识模块:矩阵4.(2006年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则【】A.C=P-1APB.C=PAP-1C.C=PTAPD.C=PAPT正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P,由初等变换与初等矩阵的关系,有B=PA.令矩阵则将E的第1列的-1倍加到第2列即得矩阵Q,于是有C=BQ,从而有C=PAQ.由于所以,C=PAQ=PAP-1,只有选项B正确.知识模块:矩阵5.(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则【】A.E-A不可逆,E+A不可逆.B.E-A不可逆,E+A可逆.C.E-A可逆,E+A可逆.D.E-A可逆,E+A不可逆.正确答案:C解析:由于(E-A)(E+A+A2)=E-A3=E,(E+A)(E-A+A2)=E+A3=E,故由可逆矩阵的定义知:E-A和E+A均是可逆的.知识模块:矩阵6.(2009年)设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为【】A.B.C.D.正确答案:B解析:记矩阵C=,则C的行列式|C|=(-1)4=|A||B|=6≠0,因此C为可逆矩阵,由公式CC*=|C|E,得故只有选项B正确.知识模块:矩阵7.(2009年)设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QAQ为【】A.B.C.D.正确答案:A解析:故只有选项A正确.知识模块:矩阵8.(2011年)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记则A=【】A.P1P2B.P1-1P2C.P2P1D.P2P1-1正确答案:D解析:由题设条件有P2AP1=I,两端左乘P2-1,两端右乘P1-1,得A=P2-1P1-1,因P2-1=P2,而P1-1≠P1,故只有D正确.知识模块:矩阵9.(2012年)设区域D由曲线y=sinχ,χ=±,y=1围成,则(χy5-1)d χdy=【】A.πB.2C.-2D.-π正确答案:B解析:于是,Q-1AQ=(PM)-1A(PM)=M-1(P-1AP)M 因此选B.知识模块:矩阵填空题10.(2000年)设A=E为4阶单位矩阵,且B=(E+A)-1(E-A),则(E+B)-1=______.正确答案:解析:由题设等式得E+B=E+(E+A)-1(E-A) 用(E+A)左乘上式两端,得(E+A)(E+B)=E+A+E-A=2E 即[(E+A)](E+B)=E 所以(E+B)-1=知识模块:矩阵11.(2003年)设α为3维列向量,αT是α的转置.若ααT=,则αTα=_______.正确答案:3解析:于是有a2=1,b2=1,c2=1,从而得αTα=[a b c]=a2+b2+c2=1+1+1=3.知识模块:矩阵12.(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=_______.正确答案:解析:由题设方程移项得A2B-B=A+E,(A2-E)B=A+E,(A+E)(A-E)B=A+E,注意A+E=可逆,用(A+E)-1左乘上式两端,得(A-E)B=E 两端取行列式,得|A-E||B|=1 因为|A-E|==2 得2|B|=1,知识模块:矩阵13.(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A 的伴随矩阵,E是单位矩阵,则|B|=_______.正确答案:解析:由于A*A=|A|E,而|A|=3,所以A*A=3E.用矩阵A右乘题设方程两端,可得3AB=6B+A,或3(A-2E)B=A,两端取行列式,得33|A-2E||B|=|A|,由于故有27|B|=3,所以|B|=知识模块:矩阵14.(2005年)设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.正确答案:2.解析:利用矩阵乘法,可将B表示为涉及知识点:矩阵15.(2006年)设矩阵A=,E为2阶单位矩阵,矩阵B满足BA=B+2E,则|B|=_______.正确答案:2.解析:由给定矩阵方程得BA-B=2EB(A-E)=2E 两端取行列式,得|B||A-E|=|2E|因|A-E|==2,|2E|=22|E|=4 所以有2|B|=4,从而得|B|=2.知识模块:矩阵16.(2007年)设矩阵A=,则A3的秩为_______.正确答案:1.解析:利用矩阵乘法,容易计算得由于A3中非零子式的最高阶数为1,故由矩阵的秩的定义,即知r(A3)=1.知识模块:矩阵17.(2010年)设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_______.正确答案:3.解析:由于A+B-1=(AB+E)B-1=A(B+A-1)B-1=A(A-1+B)B-1,两端取行列式,并利用|ABC|=|A||B||C|及|B-1|=|B|-1,得|A+B-1|=|A|.|A-1+B|.|B-1|=3×2×=3.知识模块:矩阵18.(2012年)设A为3阶矩阵,|A|=3,A*为A的佯随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|=_______.正确答案:-27.解析:由于互换行列式的两行,则行列式仅变号,于是知|B|=-3.再利用|A*|=|A|n-1-|A|2=9,得|BA*|=|B||A*|=-27.知识模块:矩阵19.(2013年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij 的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=_______.正确答案:-1.解析:由A≠0,不妨设a11≠0,由已知的Aij=-aij(i,j=1,2,3),得及A=-(A*)T,其中A*为A的伴随矩阵.以下方法:用AT右乘A=-(A*)T 的两端,得AAT=-(A*)AT=-(AA*)T=-(|A|I)T,其中I为3阶单位矩阵,上式两端取行列式,得|A|2=(-1)3|A|3,或|A|2(1+|A|)=0,因|A|≠0,所以|A|=-1.知识模块:矩阵解答题解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵理论试卷(A )(2008级) (共1页) 成绩
学院班级__ _; 姓名___ __; 学号_ __ __ 1 (15分)给定 2222{()|}ij ij R A a a R ⨯⨯==∈(数域R 上二阶实方阵按通常矩阵的加法与数乘构成的线性空间)的子集 221122i j {()|0, }
i j V A a a a a R ⨯==+=∈ (1)证明V 是22R ⨯的子空间;(2)求V 的维数和一组基;(3)求3253A ⎛⎫= ⎪-⎝⎭
在所求基下的坐标。

2 (15分)设α为n 维欧氏空间V 中的单位向量,对V 中任意一向量x , 定义线性变换: ()2(,)T T x x x αα=-, (1)证明:T 为正交变换; (2)证明 T 对应特征值1有n-1 个线性无关的特征向量;(3)问T 能否在某组基下的矩阵为对角阵,说明理由。

3 (15分)设矩阵010120110A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭
(1)求A 的若当标准形;(2)求A 的最小多项式;(3)计算532()45g A A A A E =+-+。

4(10分)设3
R 中的线性变换T 如下:123122323(,,)(2,,) ; ()i T x x x x x x x x x x R =--+∈
(1) 写出T 在基T T T 123 =(1, 1, 0),=(0, 1, 1), =(0, 0, 1)βββ下的矩阵;(2) 求3()T R 及()Ker T 。

5 (10分)已知多项式矩阵 2210007(2)00()00(1)00
00(1)(5)A λλλλλλλ-⎛⎫ ⎪++ ⎪= ⎪- ⎪++⎝⎭,求()A λ的初等因子及史密斯标准形。

6(10分)在欧氏空间4R 中, 对任意两个向量12341234(,,,) , (,,,),T T a a a a b b b b αβ==定义内积
1122334(, )2a b a b a b a b
αβ=+++ 求齐次方程组1234123
20 = 0x x x x x x x +-+=⎧⎨+-⎩ 的解空间的一组标准正交基。

7 (10分)(1) 设A 为可逆矩阵, 证明对任何矩阵的算子范数, 都有11||||||||--≥A A 。

(2)设⎪⎪⎪⎭
⎫ ⎝⎛--+-=21512363
11684i i A , 利用(1)的结论分别估计11||||-A 和∞-||||1A 的下界。

8(15分)已知200111113⎛⎫ ⎪= ⎪ ⎪-⎝⎭
A , 求矩阵函数()e t f =A A 。

相关文档
最新文档