初中函数题型及解题方法,函数经典题型总结与函数测试题及答案解析
初二函数题及解析
初二函数题及解析一、题目:已知函数f(x) = 2x + 3,求f(5)的值。
解析:这是一个简单的一次函数求值问题。
我们需要将x的值代入函数表达式中计算出f(x)的值。
步骤1:将x=5代入函数f(x) = 2x + 3。
步骤2:计算f(5) = 2 * 5 + 3。
步骤3:得出结果f(5) = 10 + 3 = 13。
所以,f(5)的值为13。
二、题目:已知函数g(x) = 3x - 4,求g(x) = 0时的x值。
解析:这是一个求解一次函数零点的问题。
我们需要找到x的值使得函数g(x)等于0。
步骤1:将g(x)设为0,即3x - 4 = 0。
步骤2:解这个方程,首先将-4移到等号的另一边,得到3x = 4。
步骤3:然后将两边都除以3,得到x = 4/3。
所以,当x等于4/3时,g(x)等于0。
三、题目:已知函数h(x) = x^2 - 5x + 6,求h(x)的最小值。
解析:这是一个求解二次函数最值的问题。
我们需要找到函数h(x)的顶点,从而确定最小值。
步骤1:将函数h(x) = x^2 - 5x + 6写成顶点式。
首先找到x的系数的一半,即-(-5)/2 = 5/2。
步骤2:计算顶点的x坐标,即x = 5/2。
步骤3:将x = 5/2代入函数h(x)中,计算出顶点的y坐标,即h(5/2) = (5/2)^2 - 5*(5/2) + 6 = 6.25 - 12.5 + 6 = -0.25。
所以,函数h(x)的最小值为-0.25。
四、题目:已知函数k(x) = |x - 2|,求k(x) ≤ 3的解集。
解析:这是一个绝对值不等式的解法问题。
我们需要找到满足不等式k(x) ≤ 3的x值范围。
步骤1:将绝对值不等式k(x) ≤ 3转化为普通的不等式,即-3 ≤ x - 2 ≤ 3。
步骤2:分别解这两个不等式。
对于-3 ≤ x - 2,我们得到x ≥ -1。
对于x - 2 ≤ 3,我们得到x ≤ 5。
9年级学生函数试卷加答案【含答案】
9年级学生函数试卷加答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个是正比例函数?A. y = 2x + 3B. y = 3x 2C. y = x^2 + 1D. y = 1/x2. 如果函数y = kx + b的图像是一条经过原点的直线,那么k和b的关系是?A. k = 0, b ≠ 0B. k ≠ 0, b = 0C. k = 0, b = 0D. k ≠ 0, b ≠ 03. 下列函数中,哪个是反比例函数?A. y = 2x + 3B. y = 3/xC. y = x^2 + 1D. y = 1/x^24. 如果函数y = kx + b的图像是一条平行于x轴的直线,那么k和b的关系是?A. k = 0, b ≠ 0B. k ≠ 0, b = 0C. k = 0, b = 0D. k ≠ 0, b ≠ 05. 下列函数中,哪个是一次函数?A. y = 2x + 3B. y = 3/xC. y = x^2 + 1D. y = 1/x^2二、判断题(每题1分,共5分)1. 正比例函数的图像是一条经过原点的直线。
()2. 反比例函数的图像是一条平行于x轴的直线。
()3. 一次函数的图像是一条经过原点的直线。
()4. 二次函数的图像是一条抛物线。
()5. 指数函数的图像是一条经过原点的直线。
()三、填空题(每题1分,共5分)1. 正比例函数的一般形式是_________。
2. 反比例函数的一般形式是_________。
3. 一次函数的一般形式是_________。
4. 二次函数的一般形式是_________。
5. 指数函数的一般形式是_________。
四、简答题(每题2分,共10分)1. 请简要说明一次函数的性质。
2. 请简要说明二次函数的性质。
3. 请简要说明反比例函数的性质。
4. 请简要说明指数函数的性质。
5. 请简要说明对数函数的性质。
五、应用题(每题2分,共10分)1. 已知一次函数y = 2x + 3,求当x = 4时的y值。
初中函数试题讲解及答案
初中函数试题讲解及答案
一、选择题
1. 函数y=2x+3中,当x=1时,y的值为多少?
A. 2
B. 5
C. 8
D. 10
答案:B
解析:将x=1代入函数y=2x+3,得到y=2*1+3=5。
2. 已知函数y=-3x+4,下列哪个点不在该函数的图像上?
A. (0, 4)
B. (1, 1)
C. (2, -2)
D. (-1, 7)
答案:C
解析:将选项中的x值代入函数y=-3x+4,计算得到y值,只有选项C 的计算结果与选项不符。
二、填空题
3. 函数y=x^2-4x+3的顶点坐标为______。
答案:(2, -1)
解析:将函数y=x^2-4x+3转化为顶点式y=(x-2)^2-1,可知顶点坐标
为(2, -1)。
4. 若函数y=kx+b的图像经过点(1, 5)和(2, 8),则k和b的值分别
为______和______。
答案:3,2
解析:将点(1, 5)和(2, 8)代入函数y=kx+b,得到两个方程:5=k+b
和8=2k+b,解得k=3,b=2。
三、解答题
5. 已知函数y=2x-1,求当y=7时,x的值。
答案:x=4
解析:将y=7代入函数y=2x-1,得到7=2x-1,解得x=4。
6. 画出函数y=x+2的图像,并标出与x轴和y轴的交点。
答案:交点坐标为(-2, 0)和(0, 2)。
解析:令y=0求x轴交点,得到x=-2,令x=0求y轴交点,得到y=2。
图像为一条斜率为1,截距为2的直线。
经典初中函数试题及答案
经典初中函数试题及答案一、选择题1. 下列函数中,哪一个是一次函数?A. \( y = 2x + 3 \)B. \( y = x^2 \)C. \( y = \frac{1}{x} \)D. \( y = 3 \)答案:A2. 函数 \( y = 3x - 2 \) 的图像经过第几象限?A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限答案:C3. 抛物线 \( y = x^2 - 4x + 3 \) 的顶点坐标是?A. (2, 1)B. (-2, 1)C. (2, -1)D. (-2, -1)答案:A二、填空题4. 函数 \( y = 4x + 5 \) 的斜率是____。
答案:45. 函数 \( y = -\frac{1}{2}x + 3 \) 与 \( y = 2x - 4 \) 的交点坐标为____。
答案:(2, 1)三、解答题6. 已知函数 \( y = 2x + 1 \),求当 \( x = 3 \) 时的函数值。
答案:当 \( x = 3 \) 时,\( y = 2 \times 3 + 1 = 7 \)。
7. 已知函数 \( y = x^2 - 6x + 9 \),求该函数的最小值。
答案:函数 \( y = x^2 - 6x + 9 \) 可以写成 \( y = (x - 3)^2 \) 的形式,因此它的最小值为 0,当 \( x = 3 \) 时取得。
四、应用题8. 一个物体从地面以 20 米/秒的初速度向上抛出,忽略空气阻力,求物体达到最高点所需的时间。
答案:物体向上运动的方程为 \( y = 20t - 5t^2 \),其中 \( t \) 为时间,\( y \) 为高度。
当物体达到最高点时,\( y' = 0 \),即\( 20 - 10t = 0 \),解得 \( t = 2 \) 秒。
9. 一个水池的底部有一个出水口,当水池的水深为 3 米时,水以每秒 2 立方米的速率流出。
初中一次函数常见题型总结(附答案)
一次函数题型总结1、判断下列变化过程存在函数关系的是( )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x xy ,当a x =时,y = 1,则a 的值为( ) A.1 B.-1 C.3 D.213、下列各曲线中不能表示y 是x 的函数是( )。
1、下列各函数中,y 与x 成正比例函数关系的是(其中k 为常数)( ) A 、y=3x -2 B 、y=(k+1)x C 、y=(|k|+1)x D 、y= x 22、如果y=kx+b ,当 时,y 叫做x 的正比例函数3、一次函数y=kx+k+1,当k= 时,y 叫做x 正比例函数1、下列函数关系中,是一次函数的个数是( )①y=1x ②y=x 3 ③y=210-x ④y=x 2-2 ⑤ y=13x +1A 、1B 、2C 、3D 、42、若函数y=(3-m)x m -9是正比例函数,则m= 。
3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数 (2)是正比例函数一次函数与坐标系1.一次函数y=-2x+4的图象经过第 象限,y 的值随x 的值增大而 (增大或减少)图象与x 轴交点坐标是 ,与y 轴的交点坐标是 .2. 已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= .3.已知k >0,b >0,则直线y=kx+b 不经过第 象限.4、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( ) A. 1- B. 1 C. 41-D. 415.如图,表示一次函数y =mx+n 与正比例函数y=mnx(m ,n 是常数,且 mn ≠0)图像的是( ).6、已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( ) A .1a >B .1a <C .0a >D .0a <7.一次函数y=kx+(k-3)的函数图象不可能是( )图1Ox y待定系数法求一次函数解析式1.已知直线经过点(1,2)和点(3,0),求这条直线的解析式.2.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴相交于C 点.求: (1)直线AC 的函数解析式; (2)设点(a ,-2)在这个函数图象上,求a 的值;2、 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?123456yxO A B C(2,4)234514、东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B时)的关系。
初中中考数学函数基础28典型题(含答案和解析)
初中中考数学函数基础28道典型题(含答案和解析)1.已知关于x 的方程 mx+3=4的解为 x=1,则直线 y=(m−2)x−3一定不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵关于x的方程mx+3=4的解为x=1.∴m+3=4.∴m=1.∴直线y=(m−2)x−3为直线y=−x−3.∴直线y=(m−2)x−3一定不经过第一象限.考点:函数——一次函数——一次函数与一元一次方程.2.如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB解析式是().A. y=−2x−3B. y=−2x−6C. y=−2x+3D. y=−2x+6答案:D.解析:∵直线AB经过点(a,b),且2a+b=6.∴直线AB经过点(a,6−2a).∵直线AB与直线y=−2x平行.∴设直线AB的解析式是:y=−2x+b1.把(a,6−2a)代入函数解析式得:6−2a=−2a+b1.则b1=6.∴直线AB的解析式是y=−2x+6.考点:函数——一次函数——一次函数图象与几何变换——一次函数平移变换.3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.答案:x>23.解析:∵函数y=2x过点A(m,3).∴2m=3.解得:m=23.∴A(32,3).∴不等式2x>ax+4的解集为x>23.考点:函数——一次函数——一次函数与一元一次不等式——两条直线相交或平行问题.4.若函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组{x−y=a2x+y=b的解是.答案:{x=2y=1.解析:因为函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1).所以方程组{x−y=a2x+y=b的解是{x=2y=1.考点:函数——一次函数——一次函数与二元一次方程——一次函数与二元一次方程(组)的关系.5.一次函数y=2x−3的图象与y轴交于A,另一个一次函数y=kx+b与y轴交于B,两条直线交于C,C点的纵坐标是1,且S△ABC=5,求k、b的值.答案:(2,1).解析:由题意知C(2,1).过C作CD⊥y轴,CD=2.·AB·CD=5.S△ABC=12∴AB=5.∴B(0,2)或(0,−8).x+2.当B(0,2)时,y=−12x−8.当B(0,−8)时,y=−92考点:函数——一次函数——求一次函数解析式——两条直线相交或平行问题.6.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),求关于x的不等式a(x−1)−b>0的解集.答案:x<−1.解析:∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0,a<0.把(2,0)代入解析式y=ax+b得:0=2a+b.解得:2a=−b.b=−2.a∵a(x−1)−b>0.∴a(x−1)>b.∵a<0..∴x−1<ba∴x<−1.考点:函数——一次函数——一次函数与一元一次不等式.7.如果一次函数y=−x+1的图象与x轴、y轴分别交于A点、B点,点M在x轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,那么这样的点M有().A. 3个B. 4个C. 5个D. 7个答案:B.解析:一次函数y=−x+1中令x=0,解得y=1.令y=0,解得x=1.∴A(1,0),B(0,1),即OA=OB=1.在直角三角形AOB中,根据勾股定理得:AB=√2.分四种情况考虑,如图所示:当BM1=BA时,由BO⊥AM1,根据三线合一得到O为M1A的中点,此时M1(−1,0).当AB=AM2时,由AB=√2,得到OM2=AM2−OA=√2−1,此时M2(1−√2,0).当BA=AM3时,由AB=√2,得到AM3=√2,则OM3=OA+AM3=1+√2,此时M3(1+√2,0).当M4A=M4B时,此时M4与原点重合,此时M4(0,0).综上,这样的M点有4个.故选B.考点:函数——一次函数——一次函数综合题——一次函数与等腰三角形结合.8.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/S的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).答案:4+2√3.解析:由图②可知,t在2到4秒时,△PAD的面积不发生变化.∴在AB上运动的时间是2秒,在BC上运动的时间是4−2=2秒.∵动点P的运动速度是1cm/s.∴AB=2cm,BC=2cm.过点B作BE⊥AD于点E,过点C作CF⊥AD于点F.则四边形BCFE是矩形.∴BE=CF,BC=EF=2cm.∵∠A=60°.∴BE=ABsin60°=2×√3=√3.2AE=ABcos60°=2×1=1.2∴1×AD×BE=3√3.2×AD×√3=3√3.即12解得AD=6cm.∴DF=AD−AE−EF=6−1−2=3.在Rt△CDF中,CD=√CF2+DF2=√√32+32=2√3.所以,动点P运动的总路程为AB+BC+CD=2+2+2√3=4+2√3.∵动点P的运动速度是1cm/s.∴点P从开始移动到停止移动一共用了(4+2√3)÷1=4+2√3(秒).故答案为:4+2√3.考点:函数——一次函数——一次函数的应用.四边形——梯形.的图像上,OA长为2且∠1=60°。
初三函数解析试题及答案
初三函数解析试题及答案在数学学习中,函数解析是一个重要的部分,它不仅帮助我们理解变量之间的关系,还能让我们解决实际问题。
以下是一份初三函数解析的试题及答案,希望对同学们有所帮助。
试题:1. 已知函数y=2x+3,求当x=1时y的值。
2. 给定函数y=x^2-4x+3,求该函数的顶点坐标。
3. 函数y=-2x+1与x轴的交点坐标是什么?4. 已知一次函数y=kx+b,当x=2时,y=3;当x=-1时,y=-3,求k和b的值。
5. 函数y=x^2+2x-3与y轴的交点坐标是多少?6. 给定函数y=-3x+5,当x=0时,y的值是多少?7. 函数y=2x-4与直线y=x+1的交点坐标是什么?8. 已知函数y=x^2-6x+8,求该函数与x轴的交点坐标。
答案:1. 将x=1代入函数y=2x+3,得到y=2*1+3=5。
所以当x=1时,y的值为5。
2. 对于函数y=x^2-4x+3,我们可以通过配方将其转化为顶点式:y=(x-2)^2-1。
因此,该函数的顶点坐标为(2, -1)。
3. 函数y=-2x+1与x轴的交点意味着y=0。
将y=0代入函数,得到0=-2x+1,解得x=1/2。
所以交点坐标为(1/2, 0)。
4. 根据题目条件,我们有以下方程组:\begin{cases}2k+b=3 \\-k+b=-3\end{cases}解这个方程组,我们得到k=2,b=-1。
5. 函数y=x^2+2x-3与y轴的交点意味着x=0。
将x=0代入函数,得到y=-3。
所以交点坐标为(0, -3)。
6. 将x=0代入函数y=-3x+5,得到y=5。
所以当x=0时,y的值为5。
7. 函数y=2x-4与直线y=x+1的交点意味着两个函数的y值相等。
将两个函数设置为相等,得到2x-4=x+1,解得x=5。
将x=5代入任一函数,得到y=6。
所以交点坐标为(5, 6)。
8. 函数y=x^2-6x+8与x轴的交点意味着y=0。
将y=0代入函数,得到0=x^2-6x+8,解这个二次方程,我们得到x=2或x=4。
(完整版),初中二次函数知识点及经典题型,文档
二次函数的解析式二次函数的解析式有三种形式:2 bx c a b c a y ax 是常数,〔1〕一般一般式:( , , 0)2〔2〕两根当抛物线y ax bx c 与x轴有交点时,即对应二次好方程 2 bx c ax x1 x2有实根和存在时,依照二次三项式的分解因式2 bx c a x x x x 2ax y ax bx c( 1)( 2 ),二次函数可转变为两根式y a( x x1 x x2)( ) 。
若是没有交点,那么不能够这样表示。
a 的绝对值越大,抛物线的张口越小。
2 k a h k a y a x h是常数,〔3〕极点式:( ) ( , , 0)知识点八、二次函数的最值若是自变量的取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕2b 4ac bx y,即当时,。
最值2a 4ab 若是自变量的取值范围是x1 x x2 ,那么,第一要看可否在自变量取值范2a2b 4ac b围x1 x x2 内,假设在此范围内,那么当 x= 时,;假设不在此范围y最值2a 4a内,那么需要考虑函数在x1 x x2 范围内的增减性,若是在此范围内, y随x的增大而2 2增大,那么当x x2 时,y最大ax bx c,当x x1时,y ax bx1 c;如最小2 2 12果在此范围内, y随x的增大而减小,那么当x x1时,y ax bx1 c,当最大x x212时,y ax bx2 c。
最小2知识点九、二次函数的性质1 、二次函数的性质二次函数函数 2 bx c a b c ay ax ( , , 是常数,0)a>0 a<0yy图像0 x 0 x〔1〕抛物线张口向上,并向上无量延伸;〔1〕抛物线张口向下,并向下无量延伸;b b〔2〕对称轴是 x= ,极点坐标是〔2a 2ab〔2〕对称轴是 x= ,极点坐标是〔2a24ac b ,〕;4a2 b 4ac b,〕;2a 4a性b〔3〕在对称轴的左侧,即当 x< 时,y随2ab〔3〕在对称轴的左侧,即当 x< 时,y2a x的增大而减小;在对称轴的右侧,即当 x随x的增大而增大;在对称轴的右侧,质b b> 时,y随x的增大而增大,简记左即当x> 时,y随x的增大而减小,2a 2a减右增;简记左增右减;b 〔4〕抛物线有最低点,当 x= 时,y有最2ab 〔4〕抛物线有最高点,当 x= 时,y有2a小值,y最小值4ac4ab 2最大值,y最大值4ac4ab 22 bx c a b c a2、二次函数y ax ( , , 是常数, 0) 中,a、b、c 的含义:a a表示张口方向: >0 时,抛物线张口向上a <0 时,抛物线张口向下b b 与对称轴有关:对称轴为 x=2ac c表示抛物线与 y轴的交点坐标:〔 0,〕3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与 x轴的交点坐标。
中考数学复习《函数压轴题》经典题型及测试题(含答案)
中考数学复习《函数压轴题》经典题型及测试题(含答案)阅读与理解函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数关系式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.类型一 动点函数图象问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数关系式,最后根据函数关系式判断图象的变化.例1 (2016·济南) 如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【分析】 由点Q 从点N 出发,沿折线NDDCCE 向点E 运动,确定出点Q 分别在ND ,DC ,CE 运动时对应的t 的取值范围,再根据t 所在的取值范围分别求出其对应的函数关系式,最后根据函数关系式确定对应的函数图象.【自主解答】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4.第15题图 A BCDM N Q∵AD =5,DF =4,∴AF =3.∴sin ∠A=DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S随t 的增大而增大,且当t =2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2.∴S =12AB •PE =12×5×2=5.∵6>5,∴选项D 正确.变式训练1.如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC ,AB =4,D 为AB 上的动点,DP ⊥AB 交折线A -C -B 于点P.设AD =x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是( )2.(2016·烟台)如图,⊙O 的半径为1,AD ,BC 是⊙O 的两条相互垂直的直径,图1 DC B A E M N QP F 图2 A B C D E M N Q P F 图3 A B C D E (Q )M N F P点P从点O出发(P点与O点不重合),沿OCD的路线运动.设AP=x,sin∠APB =y,那么y与x之间的关系图象大致是()类型二二次函数的实际问题解答此类问题时,首先要构建合理的坐标系,并写出对应的函数解析式,并利用二次函数的性质求解后续的问题.一般来说,选择的坐标系不同,得出的解析式必然不同,因此解答此类问题时,选择最恰当的坐标系往往显得尤为重要.例2 (2017·金华) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【自主解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.变式训练3.(2017·沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是_____元时,才能在半月内获得最大利润.4、(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【自主解答】解:(1)设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x元,日总收入为y元,y=(800+x)(50﹣)=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.类型三二次函数的综合题二次函数作为整套试卷的压轴题,往往会命制三个小问题,其中第一问求解二次函数的解析式,此问题往往利用待定系数法便可解决;第二、三问往往涉及动点问题及存在点问题,此问题需要利用全等三角形、相似三角形、平行四边形、圆等知识综合解答,计算量很大,且题目较为综合.例3 (2017·泰安) )如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【自主解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).变式训练5.(2016·襄阳) 如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP 为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC 于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA 向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或6.(2017·潍坊) 如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF =S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。
初一函数试题及答案解析
初一函数试题及答案解析一、选择题1. 函数y=2x+3中,当x=1时,y的值为()A. 5B. 4C. 3D. 2答案:A解析:将x=1代入函数y=2x+3中,计算得到y=2*1+3=5,所以当x=1时,y的值为5。
2. 函数y=3x-2中,当y=4时,x的值为()A. 2B. 1C. 0D. -2答案:A解析:将y=4代入函数y=3x-2中,得到4=3x-2,解这个方程得到x=2,所以当y=4时,x的值为2。
3. 函数y=x^2-4x+4中,当x=2时,y的值为()A. 0B. 4C. 8D. -4答案:B解析:将x=2代入函数y=x^2-4x+4中,计算得到y=2^2-4*2+4=4,所以当x=2时,y的值为4。
二、填空题4. 函数y=5x+1中,当x增加1时,y增加()。
答案:5解析:函数y=5x+1表示y与x成正比例关系,比例系数为5。
当x增加1时,y增加的量为5*1=5。
5. 函数y=-2x+6中,当x=0时,y的值为()。
答案:6解析:将x=0代入函数y=-2x+6中,计算得到y=-2*0+6=6,所以当x=0时,y的值为6。
6. 函数y=x^2+2x-3中,当x=-1时,y的值为()。
答案:0解析:将x=-1代入函数y=x^2+2x-3中,计算得到y=(-1)^2+2*(-1)-3=1-2-3=-4,所以当x=-1时,y的值为-4。
三、解答题7. 已知函数y=2x-1,求当x=3时,y的值。
答案:5解析:将x=3代入函数y=2x-1中,计算得到y=2*3-1=6-1=5,所以当x=3时,y的值为5。
8. 已知函数y=-3x+5,求当y=2时,x的值。
答案:1解析:将y=2代入函数y=-3x+5中,得到2=-3x+5,解这个方程得到x=1,所以当y=2时,x的值为1。
9. 已知函数y=x^2-6x+8,求当x=4时,y的值。
答案:0解析:将x=4代入函数y=x^2-6x+8中,计算得到y=4^2-6*4+8=16-24+8=0,所以当x=4时,y的值为0。
初三数学函数综合题型及解题方法讲解
二次函数综合题型精讲精练题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.(1)求抛物线y=ax 2+bx+c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM+OM 的最小值.解析:(1)把A (﹣2,﹣4),O (0,0),B (2,0)三点的坐标代入y=ax 2+bx+c 中,得解这个方程组,得a=﹣,b=1,c=0 所以解析式为y=﹣x 2+x .(2)由y=﹣x 2+x=﹣(x ﹣1)2+,可得 抛物线的对称轴为x=1,并且对称轴垂直平分线段OB ∴OM=BM∴OM+AM=BM+AM连接AB 交直线x=1于M 点,则此时OM+AM 最小 过点A 作AN ⊥x 轴于点N , 在Rt △ABN 中,AB===4,因此OM+AM 最小值为.方法提炼:已知一条直线上一动点M 和直线同侧两个固定点A 、B ,求AM+BM 最小值的问题,我们只需做出点A 关于这条直线的对称点A ’,将点B 与A ’连接起来交直线与点M ,那么A ’B 就是AM+BM 的最小值。
同理,我们也可以做出点B 关于这条直线的对称点B ’,将点A 与B ’连接起来交直线与点M ,那么AB ’就是AM+BM 的最小值。
应用的定理是:两点之间线段最短。
AAB B M或者 MA ’B ’例2:已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程230ax bx a +-=的两根为1x ,2x ,且124x x -=。
(1)求抛物线1C 的顶点坐标.(2)已知实数0x >,请证明:1x x +≥2,并说明x 为何值时才会有12x x+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m 的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。
初三数学 函数综合-中考必做题(详解版)
1
2
3
随着运算次数的增加,运算结果越
4
5
6
7
8
的面积恰好等于正方形的面积,求点
,一次函数解析式为.
,
9
的图象相交于点,与轴相交于点.
10
11
12
13
14
15 16
17
18
19
20
21
22
23
24
25
,试比较,对应的的范围.
;当时,
.
.
函数
函数基础知识
动点问题的函数图象
分段函数
二次函数
二次函数与方程不等式综合
二次函数与一元二次方程的关系
利用二次函数图象解决不等式问题26
的不等式组,恰有三个整数解,则关于
的图像的公共点的个数为
不等式组的解为:,
∵不等式组恰有个整数解,
.
联立方程组,得
,
这是一个二次函数,开口向上,
27
点关28
29
30。
一次函数题型总结(含答案)
一次函数题型总结(含答案)一次函数题型总结(含答案)求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。
二.平移型两条直线l1:yk1xb1;l2:yk2xb2。
当k1k2,b1b2时,l1∥l2,解决问题时要抓住平行的直线k值相同这一特征。
例1.把直线y2x1向下平移2个单位得到的图像解析式为___________。
第一种情况:直接或间接已知函数是一次函数,采用待定系数法。
(已知是一次函数或已知解析式形式ykxb或已知函数图象是直线都是已知了一次函数)一、定义型一次函数的定义:形如ykxb,k、b为常数,且k≠0。
例1.已知函数ym3xm283是一次函数,求其解析式。
解析:由一次函数定义知m3,故一次函数的解析式为y3x3注意:利用定义求一次函数ykxb解析式时,要保证k≠0。
如本例中应保证m30。
例2.已知y-1与x+1成正比例,且当x=1时,y=5.求y与x的函数关系式;解析:∵y-1与x+1成正比例,∴可假设y-1=k(x+1)又当x=1时,y=5,代入求出k=2,所以y-1=2(x+1),变形为y=2x+3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y-1与x+1成正比例就可以假设y-1=k(x+1)。
解析:直线y2x1向下平移得到的直线与直线y2x1平行∴可设把直线y2x1向下平移2个单位得到的图像解析式为y2xb直线y2x1与y轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入y2xb求出b=-1∴所求解析式为y2x1例2.已知直线ykxb与直线y2x平行,且与x轴交点横坐标为1,则直线的解析式为___________。
解析:直线ykxb与直线y2x平行,∴k2。
又直线ykxb与x轴交点横坐标为1,即过点(1,0)代入y2xb中可求出b2故直线的解析式为y2x2三.两点型从几何的角度来看,“两点确定一条直线”,所以两个点的坐标确定直线的解析式;从代数的角度来说,一次函数的解析式ykxb中含两个待定系数k和b,所以两个方程确定两个待定系数,因此想方设法找到两个点的坐标是解决问题的关键。
(专题精选)初中数学函数基础知识经典测试题及答案
(专题精选)初中数学函数基础知识经典测试题及答案一、选择题1.如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D——B作匀速运动,则祥PD的面积S与点P 运动的路程x之间的函数图象大致是()0\ 2 4x O I 2 4 y1A【答案】D【解析】【分析】分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S M PD=X,自变量x的取值范围为0vxw4当点P在CB上运动时,S MPD为定值2,自变量x的取值范围为2V x<4然后根据两个解析式对各选项中的图象进行判断即可.【详解】解:当点D在DC上运动时,DP=x,所以S MPD= -AD?DP=-?2?x=x (OvxQ ;2 2当点P 在CB 上运动时,如图,PC=x- 4,所以 S\APD=-AD?DC=- ?2?2=2 (2<x<^ .2 2故选:D.【点睛】此题考查动点问题的函数图象,解题关键在于掌握分类讨论的思想、函数的知识、正方形余部分的面积为y (单位:cm2),则能大致反映 y 与x 的函数关系的图象是(的性质和三角形的面积公式.注意自变量的取值范围.2.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿 A- B-Cf D —A 方向 运动到点A 处停止.设点P 运动的路程为x, APAB 的面积为y,如果y 与x 的函数图象如 图2所示,则矩形 ABCD 的面积为()A. 24B. 40C. 56D. 60【答案】A【解析】【分析】 由点P 的运动路径可得 APAB 面积的变化,根据图 2得出AB 、BC 的长,进而求出矩形 ABCD 的面积即可得答案.【详解】•・•点P 在AB 边运动时,APAB 的面积为0,在BC 边运动时,APAB 的面积逐渐增大,,由图 2 可知:AB=4, BC=10-4=6,,矩形 ABCD 的面积为 AB BC=24,故选:A.【点睛】本题考查分段函数的图象,根据APAB 面积的变化,正确从图象中得出所需信息是解题关键. 3 .如图,在直角三角形 ABC 中, B 90 , AB 4, BC 3,动点E 从点B 开始 沿B C 以2cm/s 的速度运动至 C 点停止;动点F 从点B 同时出发沿B A 以1cm/s 的 速度运动至 A 点停止,连接 EF .设运动时间为 x (单位:s ) , ABC 去掉 BEF 后剩图】图2【答案】B【解析】【分析】根据已知题意写出函数关系, y 为 ABC 去掉 BEF 后剩余部分的面积,注意 1. 5秒时故选B. 本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关 系,要注意自变量的取值范围,以及是否为分段函数.4 .如图,在 ABC 中,/ C 90o , B 30°, AB 10cm, p 、Q两点同时从点 A 分 别出发,点P 以2cm/s 的速度,沿A B C 运动,点Q 以1cm/s 的速度,沿A CB 运动,相遇后停止,这一过程中,若P 、Q 两点之间的距离PQ y,则y 与时间t 的关系大致图像是()点E 运动到【详解】C 点,而点 F 则继续运动,因此 y 的变化应分为两个阶段.• 一 1 ,-八解:S ABC 2 4 3 6, ,.一3 一 1 一 2当 0 x —时,S BEF— 2x x x . y 22 ,.3一 13 当一x 4时,S BEF - 3 x—x, y 22 2 ,.3 S ABC S BEF S ABC SBEF 3 … 一 x 4 时, 2 函数为一次函数.出答案.【详解】II .当t 5, P 、Q 在BC 上,由题意可得:P 走过的路程是 PQ 15 5.3 3t ,故选:A.【点睛】此题主要考查了动点问题的函数图象,正确理解 数关系式是解题关键. 5,下列说法:①函数y J x 6的自变量x 的取值范围是x 6;②对角线相等的四边形 是矩形;③ 正六边形的中心角为 60 ;④ 对角线互相平分且相等的四边形是菱形; ⑤ 计 算|J 9 21的结果为7:⑥相等的圆心角所对的弧相等; ⑦J 12 J 27的运算结果是无理数.其中正确的个数有(根据题意分当0 t 5、t 5时两种情况,分别表示出 PQ 的长y 与t 的关系式,进而得 解:在 ABC 中, /C 90°, B 30°, AB=10,,AC=5, AC 1AB 2I .当 0 t 5时, P 在AB 上,Q 在AC 上,由题意可得:AP 2t, AQ t, 依题意得:又「 A VAPQ : AQ AP A 1 2VABC ,AQPC 90 Q 走过的路程是t, PQ 长与时间是 次函数关系,并得出函A. C. B.D.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数y4=6的自变量x的取值范围是x 6;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算I J9-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦.12 ,27 2,.3 3 .. 3 .3是无理数;故正确.故选:B.【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.x6,函数y ------- 中自变量x的取值范围是( )2 xA. xW2B. x>2C. x<2D. x>2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-XWQ解得xw2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.如图,在Rt^PMN 中,/ P=90°, PM=PN, MN=6cm ,矩形ABCD中AB=2cm, BC=10cm,点C和点M重合,点B、C (M)、N在同一直线上,令RtAPMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒【解析】分析:在RtAPMN 中解题,要充分运用好垂直关系和 45度角,因为此题也是点的移动问题,可知矩形 ABCD 以每秒1cm 的速度由开始向右移动到停止,和Rt4PMN 重叠部分的形 状可分为下列三种情况,(1) 0WxW ;2 (2) 2<x<4 (3) 4vxWS 根据重叠图形确定面 积的求法,作出判断即可.详解:.一/ P=90°, PM=PN,PMN=Z PNM=45 ,••• / PMN=45 ,・•.△ MEC 是等腰直角三角形,此时矩形ABCD 与4PMN 重叠部分是△£“611 2-y=S 任MC = — CM?CE L x ;2 2当D 在边PN 上时,过 P 作PH MN 于F,交AD 于G,••• / N=45 , CD=2,• .CN=CD=2,后,矩形ABCD 与4PMN 重叠部分的面积为 y,则y 与x 的大致图象是()由题意得:CM=x, 分三种情况:①当0W x 却力,如图1,故选项B 和D 不正确;,CM=6 - 2=4,即此时x=4,当2vxW4时,如图3,矩形ABCD与4PMN重叠部分是四边形EMCD,过E作EF,MN于F,• .EF=MF=2,ED=CF=x- 2,,c 1 - ______________ 1 ,- y=S梯形EMCD=-CD? (DE+CMD =- 2 (x 2 x) =2x- 2;2 2③当4vxW6时,如图4,P矩形ABCD与HMN重叠部分是五边形EMCGF,过E作EHI± MN于H,.•.EH=MH=2, DE=CH=x- 2,. MN=6, CM=x,.•.CG=CN=6- x,.•.DF=DG=2- (6-x) =x- 4,1 12 1 1 , .2y=S 梯形EMCD - S Z\FDG=一CD(DE CM )——DG =—x 2>(x- 2+x)- -(x 4)=-2 2 2 21 2—x +10x- 18,2故选项A正确;故选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.8.如图1,在扇形OAB中,O 60 ,点P从点。
中考复习 函数专题(含答案)
中考复习 函数专题1、已知一次函数与反比例函数的图象交于点(21)P -,和(1)Q m ,. (1)求反比例函数的关系式; (2)求Q 点的坐标;(3)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值?解:(1)设反比例函数关系式为ky x=,反比例函数图象经过点(21)P --,.2k ∴=-. ∴反比例函数关第式2y x =-.(2) 点(1)Q m ,在2y x=-上,2m ∴=-.(12)Q ∴-,2.已知:抛物线2(1)y x b x c =+-+经过点(12)P b --,. (1)求b c +的值;(2)若3b =,求这条抛物线的顶点坐标;(3)若3b >,过点P 作直线PA y ⊥轴,交y 轴于点A ,交抛物线于另一点B ,且2BP PA =,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)解:(1)依题意得:2(1)(1)(1)2b c b -+--+=-,2b c ∴+=-.(2)当3b =时,5c =-,2225(1)6y x x x ∴=+-=+-∴抛物线的顶点坐标是(16)--,. (3)当3b >时,抛物线对称轴112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b --,且2BP PA =. (32)B b ∴--,122b -∴-=-.5b ∴=.又2b c +=-,7c ∴=-. ∴抛物线所对应的二次函数关系式247y x x =+-.解法2:(3)当3b >时,112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b -- ,,且2(32)BP PA B b =∴--,,2(3)3(2)2b c b ∴---+=-.又2b c +=-,解得:57b c ==-,∴这条抛物线对应的二次函数关系式是247y x x =+-.解法3:(3)2b c +=- ,2c b ∴=--,2(1)2y x b x b ∴=+---分BP x ∥轴,2(1)22x b x b b ∴+---=-即:2(1)20x b x b +-+-=.解得:121(2)x x b =-=--,,即(2)B x b =-- 由2BP PA =,1(2)21b ∴-+-=⨯.57b c ∴==-,∴这条抛物线对应的二次函数关系式247y x x =+-3.已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、 C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达势力的线的对称轴上某点(设为点F ),最后运动到点A.求使点运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.解:(1)抛物线的解析式为3518532+-=x x y ;(2)线段OA 的三等分点为D (0,1)或(0,2);(3)直线DC 的解析式为151+-=x y 或252+-=x y ;(3)点M (0,23)关于x 轴对称的点M ’(0,23-),点A (0,3)关于抛物线的对称轴x =3对称的点为A ’(6,3),连结M ’A ’,则M ’A ’ =215.根据轴对称性及两点之间线段最短可知,M ’A ’的长就是所求点P 运动的基本最短总路径的长.直线M ’A ’的解析式为2343-=x y ,点x 轴交于点E (2,0),与抛物线的对称轴交于点F (3,43).4.一次函数y =x -3的图象与x 轴,y 轴分别交于点A ,B .一个二次函数y =x 2+bx +c 的图象经过点A ,B .(1)求点A ,B 的坐标,并画出一次函数y =x -3的图象; (2)求二次函数的解析式及它的最小值. 解:(1)令0y =,得3x =,∴点A 的坐标是(30),……1分 令0x =,得3y =-,∴点B 的坐标是(03)-,…(2) 二次函数2y x bx c =++的图象经过点A B ,,0933b c c =++⎧∴⎨-=⎩,解得:23b c =-⎧⎨=-⎩. ∴二次函数2y x bx c =++的解析式是223y x x =--2223(1)4y x x x =--=-- ,∴函数223y x x =--的最小值为5. 已知关于x 的一元二次方程2x 2+4x+k-1=0有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;(3) 在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象。
初中数学函数知识点和常见题型总结
函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。
函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。
函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。
换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。
一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。
注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。
平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。
2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。
3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。
3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。
2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。
初三函数试题及答案
初三函数试题及答案在数学的学习过程中,函数是一个重要的概念。
对于初三的学生来说,掌握函数的基本概念和解题技巧是至关重要的。
以下是一份初三函数试题及答案,供同学们练习和参考。
1. 已知函数y=2x+3,求当x=1时,y的值。
答案:将x=1代入函数y=2x+3,得到y=2×1+3=5。
所以当x=1时,y的值为5。
2. 判断函数y=-3x+1是否为一次函数。
答案:一次函数的定义是y=kx+b的形式,其中k和b是常数,k不等于0。
函数y=-3x+1符合这个定义,因此它是一个一次函数。
3. 已知函数y=x^2-4x+4,求该函数的最小值。
答案:这是一个二次函数,可以通过配方的方法求得最小值。
将函数y=x^2-4x+4转化为y=(x-2)^2。
由于平方项(x-2)^2总是非负的,所以当x=2时,函数取得最小值,即y=0。
4. 判断函数y=1/x是否为反比例函数。
答案:反比例函数的定义是y=k/x的形式,其中k是常数,k不等于0。
函数y=1/x符合这个定义,因此它是一个反比例函数。
5. 已知函数y=2x-1与直线y=3x+2相交,求交点坐标。
答案:要求两直线的交点,需要解方程组:\begin{cases}y=2x-1 \\y=3x+2\end{cases}将第一个方程的y代入第二个方程,得到2x-1=3x+2,解得x=-3。
将x=-3代入任一方程求得y=-7。
所以交点坐标为(-3, -7)。
6. 已知函数y=x^3-3x+2,求导数y'。
答案:根据导数的定义,函数y=x^3-3x+2的导数为y'=3x^2-3。
7. 判断函数y=|x|+1的奇偶性。
答案:函数y=|x|+1的定义域为全体实数,且满足f(-x)=|-x|+1=|x|+1=f(x),因此该函数为偶函数。
8. 已知函数y=x^2+2x+1,求该函数的对称轴。
答案:这是一个二次函数,其对称轴为x=-b/2a。
将函数y=x^2+2x+1转化为y=(x+1)^2,可以看出对称轴为x=-1。
初三函数解析试题及答案
初三函数解析试题及答案一、选择题:1. 函数y=2x+3中,当x=1时,y的值为()。
A. 5B. 4C. 3D. 2答案:A解析:将x=1代入函数y=2x+3,得到y=2*1+3=5。
2. 函数y=-3x+2的图象经过第()象限。
A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限答案:D解析:函数y=-3x+2的斜率为-3,小于0,说明函数图象从左上向右下倾斜;截距为2,大于0,说明函数图象在y轴上的截距为正。
因此,函数图象经过第二、三、四象限。
3. 函数y=x^2-4x+4的顶点坐标为()。
A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A解析:函数y=x^2-4x+4可以写成顶点式y=(x-2)^2,因此顶点坐标为(2, 0)。
二、填空题:4. 函数y=-2x+1与x轴的交点坐标为()。
答案:(1/2, 0)解析:令y=0,解方程-2x+1=0,得到x=1/2,因此交点坐标为(1/2, 0)。
5. 函数y=x^2-6x+9的最小值为()。
答案:0解析:函数y=x^2-6x+9可以写成顶点式y=(x-3)^2,因此最小值为0。
三、解答题:6. 已知函数y=kx+b的图象经过点(-1, 2)和(2, -3),求k和b的值。
答案:k=-5/3,b=1/3解析:将点(-1, 2)和(2, -3)代入函数y=kx+b,得到两个方程:-k+b=22k+b=-3解这个方程组,得到k=-5/3,b=1/3。
7. 已知函数y=2x-3与y=-x+1的图象相交于点P,求点P的坐标。
答案:P(4/3, -5/3)解析:联立方程2x-3=-x+1,解得x=4/3,代入任意一个方程求得y=-5/3,因此点P的坐标为(4/3, -5/3)。
8. 已知函数y=x^2-4x+m的图象与x轴有两个交点,求m的取值范围。
答案:m>4解析:函数y=x^2-4x+m的判别式Δ=16-4m,要使图象与x轴有两个交点,需要Δ>0,即16-4m>0,解得m<4。