相似三角形证明技巧_专题

合集下载

相似三角形六大证明技巧

相似三角形六大证明技巧

相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。

如果两个三角形的两个角分别相等,那么这两个三角形相似。

这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。

二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。

这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。

三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。

这是因为三边成比例,可以保证两个三角形的形状相同。

四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。

如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。

这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。

五、等比三角形如果两个三角形的对应边成等比,那么这两个三角形相似。

这是因为等比关系可以保证两个三角形的形状相同。

六、共线相似如果两个三角形有一条边共线,且这条边上的两个点分别与另一个三角形的两个点对应,那么这两个三角形相似。

这是因为共线关系可以保证两个三角形的形状相同。

相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。

如果两个三角形的两个角分别相等,那么这两个三角形相似。

这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。

二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。

这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。

三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。

这是因为三边成比例,可以保证两个三角形的形状相同。

四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。

如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。

这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。

相似三角形六大证明技巧(提高类技巧训练)

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结: 相似三角形6大证明技巧相似三角形证明方法之反A型与反X型1. 2. 3. 4. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似三边成比例的两个三角形相似.(SSS两边成比例且夹角相等的两个三角形相似.(SAS)两角分别相等的两个三角形相似.(AA)斜边和一条直角边成比例的两个直角三角形相似(HL)5.模型一:反A型:如图,已知△ ABC, / ADE = / C,若连CD、BE,进而能证明△ ACD ABE(SAS) 试一试写出具体证明过程模型二:反X型:如图,已知角/ BAO= / CDO,若连AD, BC,进而能证明△ AODBOC.试一试写出具体证明过程D B应用练习:1.已知△ ABC 中,/ AEF= / ACB,求证:(1) AE AB AF AC (2)/ BEO= / CFO ,/ EBO= / FCO ( 3)/ OEF= / OBC,/ OFE= / OCB2.已知在MBC中,/ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.⑴当点P在线段AB上时,求证:MPQ S /△ABC ;⑵当/△^QB为等腰三角形时,求AP的长。

模型三:射影定理相似三角形证明方法之射影定理与类射影如图已知^ ABC,/ ACB=90° , CH 丄AB 于H,求证:A C2AH AB , BC2 BH BA ,, 2HC HA HB ,试一试写出具体证明过程模型四:类射影BD AB如图,已知AB 2AC AD ,求证:亍 乔,试一试写出具体证明过程BC AC应用练习:J 451.如图,在 △ ABC 中,AD 丄BC 于D ,DE 丄AB 于E ,DF 丄AC 于F 。

求证:—AP AS2.如图,在 △ ABC 中,AD BC 于 D , DE AB 于 E , DF/ AEF= / C模型五:一线三等角如图,已知/ B=/ C= / EDF ,则△ BDECFD (AA ),试 一试写出具体证明过程应用练习:1.如图,△ ABC 和/ DEF 两个全等的等腰直角三角形, / BACK EDF=90, △ DEF 的顶点E 与^ABC 的斜边BC 的中点重合.将△ DEF 绕点E 旋转,旋转过程中, 线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1) 如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△ BPE^ZCQE (2) (2)如图②,当点Q 在线段CA 的延长线上时,求证: 并求当BP=a CQ=9a/2时,P 、Q 两点间的距离(用含2.^ABC 中,AB=AC , D 为BC 的中点,以 D 为顶点作/(1) 如图(1)当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅 助线,写出图中所有与/△ADE 相似的三角形.(2) 如图(2),将/ MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交 线段AC ,AB 于E ,F 点(点E 与点A 不重合),不添加辅助线,写出图 中所有的相似三角形,并证明你的结论.(3) 在图(2 )中,若 AB=AC=10,BC=12,当 Z\DEF 的面积等于 /ABC 的面积的4时,求线段EF 的长.3.如图,点仔在线段《上,点D 、F 在M 同侧,"=« =妙,他丄砒,AD = SC(1)求证:胆"D+CA(2 )若37, CE",点P 为线段丄&上的动点,连接DP ,作M3尸,交 直线占E相似三角形证明方法之一线三等角△ BP0A CEQa 的代数式表示)AC 于F ,连EF ,求证:于点Q。

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件: ①;②;③.二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似找夹角相等两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例三边对应成比例,两三角形相似 找一个直角斜边、直角边对应成比例,两个直角三角形相似找另一角两角对应相等,两三角形相似找两边对应成比例判定定理2 找顶角对应相等判定定理1 找底角对应相等判定定理1 找底和腰对应成比例判定定理3e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

相似三角形证明的方法与技巧

相似三角形证明的方法与技巧

相似三角形的判定和应用一、判定相似三角形的基本思路:1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的角所对的边是对应边,对应边所对的角是对应角。

2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。

二、相似形的应用: 1.证比例式; 2.证等积式;3.证直线平行;4.证直线垂直;5.证面积相等; 三、经典例题:例1.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。

求证:CEAEBF AF =.变式1:如图,在ΔABC 中,A ∠与B ∠互余,CD ⊥AB ,DE//BC ,交AC 于点E ,求证: AD:AC=CE:BD.例2:如图:已知梯形ABCD 中,AD//BC ,︒=∠90ABC ,且BD ⊥CD 于D 。

求证:①DCB ABD ∆∆~ ;②BC AD BD ∙=2例3.如图,在ΔABC 中,︒=∠90BAC ,M 是BC 的中点,DM ⊥BC 交BA 的延长线于D ,交AC 于E 。

求证:ME MD MA ∙=2例4.已知:在ΔABC 中,AD 是BAC ∠的平分线,点E 在AD 上,点F 在AD 的延长线上,且ACABDF ED =求证:BE//FC 。

例5.如图,在正方形ABCD 中,E ,F 分别为AB 、AC 上一点,切BE=BF ,BP ⊥CE ,垂足为P 。

求证:PD ⊥PF.例6.在ΔABC 的中线AD,BE 相交于G 。

求证:ΔAGB 的面积等于四边形CEGD 。

四.课堂练习:1.如图,在ABC △中,AC BC >,D 是AC 边上一点,连接BD .(1)要使CBD CAB △∽△,还需要补充一个条件是 (只要求填一个) (2)若CBD CAB △∽△,且2AD =,3BC =,求CD 的长.2. 如图,在平行四边形ABCD 中,R 在BC 的延长线上,AR 交CD 于Q ,若DQ ∶CQ =4∶3,求AQ ∶QR 的值。

九年级数学相似三角形的判定及证明技巧讲义

九年级数学相似三角形的判定及证明技巧讲义

相似三角形是中学数学中的一个重要内容,对于九年级学生来说,掌握相似三角形的判定及证明技巧是必不可少的。

本文将详细讲解相似三角形的判定及证明技巧,帮助学生更好地理解和运用这一知识点。

一、相似三角形的判定:1.AAA相似判定法:如果两个三角形的对应角度相等,则这两个三角形是相似的。

例如,在△ABC和△DEF中,∠A=∠D,∠B=∠E,∠C=∠F,那么这两个三角形相似。

2.AA相似判定法:如果两个三角形的一个角对等于另一个角,且两个角的对边成比例,则这两个三角形是相似的。

例如,在△ABC和△DEF 中,∠A=∠D,∠C=∠F,且AB/DE=BC/EF,那么这两个三角形相似。

3.SSS相似判定法:如果两个三角形的对应边成比例,则这两个三角形是相似的。

例如,在△ABC和△DEF中,AB/DE=BC/EF=AC/DF,那么这两个三角形相似。

4.平行线判定法:如果两个三角形的对应边平行,则这两个三角形是相似的。

例如,在△ABC和△DEF中,AB∥DE,BC∥EF,AC∥DF,那么这两个三角形相似。

二、相似三角形的证明技巧:1.用平行线证明相似:如果两个三角形的对应边平行,则这两个三角形是相似的。

证明时,可以使用平行线的性质,如同位角相等、内错角互补等。

2.用角度证明相似:如果两个三角形的对应角度相等,则这两个三角形是相似的。

证明时,可以根据已知信息,使用角度的性质进行推导。

3.用边长比证明相似:如果两个三角形的对应边长比相等,则这两个三角形是相似的。

证明时,可以根据已知的边长比,通过等式推导得出结论。

4.用等腰三角形证明相似:如果两个三角形分别为等腰三角形,且对应的顶角相等,则这两个三角形是相似的。

以上是常用的相似三角形的判定及证明技巧,希望对九年级的数学学习有所帮助。

在学习过程中,要多加练习,掌握不同方法的应用,提高解题能力。

同时,要注重理论与实践相结合,灵活运用知识,培养自己的思维能力和推理能力。

祝每位同学在数学学习中取得优异成绩!。

初中数学相似三角形六大证明技巧

初中数学相似三角形六大证明技巧

初中数学相似三角形六大证明技巧初中数学中,相似三角形是一个非常重要的概念。

在学习相似三角形时,我们需要掌握一些证明技巧,以便能够正确地证明相似三角形的性质。

下面是六大证明技巧:1.直角三角形的性质:直角三角形是相似三角形中应用最多的一种情况。

当我们需要证明两个三角形相似且其中一个是直角三角形时,可以使用直角三角形的性质,比如勾股定理、余弦定理等,来进行证明。

2.AAA相似定理:如果两个三角形的三个角分别相等,那么它们是相似的。

可以通过将两个三角形的角度逐一对应,并通过角度相等来得到相似性。

3.SSS相似定理:如果两个三角形的三条边分别成比例,那么它们是相似的。

可以通过将两个三角形的边逐一对应,并通过边的比例来得到相似性。

4.SAS相似定理:如果两个三角形的一个角相等,且两个角分别对应的两边成比例,那么它们是相似的。

可以通过将两个三角形的角和边逐一对应,以及利用边的比例来得到相似性。

5.高度比例定理:如果两个三角形的一个角相等,且两个角分别对应的高分别成比例,那么它们是相似的。

我们可以通过证明两个三角形的高比例相等来得到相似性。

6.视角相等定理:如果两个三角形的一个角相等,且两个角分别对应的一对角的视角相等,那么它们是相似的。

我们可以通过证明两个三角形的视角相等来得到相似性。

在进行相似三角形的证明时,我们可以根据题目给出的条件选择合适的证明技巧。

通过灵活运用以上的六大证明技巧,我们可以较为简洁地完成相似三角形的证明。

同时,大量的练习也是提高证明技巧的重要方法,只有不断地练习才能够真正地掌握相似三角形的证明方法。

通过练习,我们还能够发现一些相似三角形的性质和规律,进一步提升对相似三角形的理解和运用能力。

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全比例式的证明方法比例式是数学中常见的重要概念,其证明方法也是需要掌握的基本技能。

下面介绍几种比例式的证明方法。

1.相似三角形法若两个三角形相似,则它们对应边的比例相等。

因此,可以通过相似三角形的证明来得到比例式。

2.射影定理法射影定理指:在直角三角形中,直角边上的高的平方等于直角边与这个高的两个部分的乘积。

因此,可以通过射影定理来证明比例式。

3.平行线法若两条直线平行,则它们所截线段的比例相等。

因此,可以通过平行线的证明来得到比例式。

4.等角定理法等角定理指:在同一圆周角或同位角中,对应弧所对应的角相等。

因此,可以通过等角定理来证明比例式。

5.数学归纳法数学归纳法是数学中常见的证明方法,适用于证明一般情况下的比例式。

其基本思路是:证明当n=1时比例式成立,假设当n=k时比例式成立,证明当n=k+1时比例式也成立。

比例式的证明方法多种多样,需要根据具体情况选择合适的方法。

熟练掌握这些方法,可以更加轻松地解决各种数学问题。

通过前面的研究,我们知道,比例线段的证明离不开“平行线模型”(A型、X型、线束型),也离不开上述的6种“相似模型”。

但是,XXX认为,“模型”只是工具,怎样选择工具、怎样使用工具、怎样用好工具,取决于我们如何思考问题。

合理的思维方法能让模型成为解题的利刃,让复杂的问题变简单。

在本模块中,我们将研究比例式的证明中经常用到的思维技巧,包括三点定型法、等线段代换、等比代换、等积代换、证等量先证等比、几何计算。

技巧一:三点定型法例1】在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于F,求证:$\frac{DC}{CF}=\frac{AE}{AD}$。

例2】在直角三角形△ABC中,$\angle BAC=90^\circ$,M为BC的中点,DM垂直于BC交CA的延长线于D,交AB 于E。

求证:$AM^2=MD\cdot ME$。

例3】在直角三角形△ABC中,AD是斜边BC上的高,$\angle ABC$的平分线BE交AC于E,交AD于F。

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

初中相似三角形几何证明技巧

初中相似三角形几何证明技巧

初中相似三角形几何证明技巧相似三角形是指具有相同形状但大小不同的两个三角形。

在初中的几何学中,相似三角形是一个重要的概念,学生们需要学会如何证明两个三角形是相似的。

下面,我将介绍几种常用的相似三角形几何证明技巧。

1.AA相似定理证明法AA相似定理指出,如果两个三角形的两个角分别相等,那么这两个三角形是相似的。

在证明中,可以先找到两个对应的角相等,然后通过其他已知条件来证明另外两个对应的角也相等。

最后,根据AA相似定理,可以得出两个三角形是相似的。

2.SAS相似定理证明法SAS相似定理指出,如果两个三角形的两个对应边成比例,并且夹角相等,那么这两个三角形是相似的。

在证明中,可以从已知条件出发,利用比例关系和夹角相等来证明两个对应边成比例。

最后,根据SAS相似定理,可以得出两个三角形是相似的。

3.SSS相似定理证明法SSS相似定理指出,如果两个三角形的三个对应边成比例,那么这两个三角形是相似的。

在证明中,同样可以从已知条件出发,利用三边成比例的关系来证明两个对应边成比例。

最后,根据SSS相似定理,可以得出两个三角形是相似的。

4.辅助线法辅助线法是一种常用的证明技巧,在通过辅助线的引入可以简化证明过程。

对于一些复杂的相似三角形问题,通过引入辅助线,可以将问题拆解成多个简单的相似三角形的证明。

这样,可以分步骤进行证明,更容易理解和思考。

5.割线法割线法是一种用于证明两个相似三角形的证明技巧。

通过在三角形内部或者外部引入割线,并证明割线和三角形的一些边成比例关系,从而导出相似三角形的结论。

这种证明方法常用于证明特殊的相似三角形问题。

总结起来,学习相似三角形的几何证明技巧需要掌握不同的相似定理和常用的辅助线法、割线法等技巧。

在解题过程中,需要灵活运用这些技巧和定理,从已知条件出发,逐步推导出证明结论。

通过反复练习和思考,可以提高解题的能力和几何推理的水平。

相似三角形的证明

相似三角形的证明

相似三角形的证明在初中数学学习中,我们经常会接触到相似三角形这个概念。

相似三角形是指具有相同形状但大小不同的两个或多个三角形。

下面我会通过几种方法来证明相似三角形的性质。

1. AA相似定理AA相似定理是指如果两个三角形的两个角分别相等,则这两个三角形相似。

具体来说,假设三角形ABC和三角形DEF,如果∠A = ∠D,并且∠B = ∠E,则三角形ABC ∼ 三角形DEF。

证明:假设∠A = ∠D,∠B = ∠E。

我们知道∠A + ∠B + ∠C = 180°,∠D + ∠E + ∠F= 180°。

由于∠A = ∠D,∠B = ∠E,所以∠C = ∠F,即三角形ABC和三角形DEF对应的三个角相等,因此根据AA相似定理,三角形ABC ∼ 三角形DEF。

2. SSS相似定理SSS相似定理是指如果两个三角形的对应边的比例相等,则这两个三角形相似。

具体来说,假设三角形ABC和三角形DEF,若AB/DE = BC/EF = AC/DF,则三角形ABC ∼ 三角形DEF。

证明:假设AB/DE = BC/EF = AC/DF。

根据三角形的性质,我们知道角的对边成正比。

由于AB/DE = BC/EF,所以∠B = ∠E,同理可得∠A = ∠D,∠C = ∠F。

根据AA相似定理,三角形ABC ∼ 三角形DEF。

3. SAS相似定理SAS相似定理是指如果两个三角形的一个角相等,另外两个对应边成比例,则这两个三角形相似。

具体来说,假设三角形ABC和三角形DEF,如果∠A = ∠D,AB/DE = AC/DF,则三角形ABC ∼ 三角形DEF。

证明:假设∠A = ∠D,AB/DE = AC/DF。

根据条件可知∠B = ∠E。

又由于AB/DE = AC/DF,则根据三角形的性质,我们有BC/EF = AC/DF,所以∠C = ∠F。

综上所述,根据AA相似定理,三角形ABC ∼ 三角形DEF。

通过以上三种相似定理的证明,我们可以得出相似三角形的性质。

相似三角形的判定条件及证明

相似三角形的判定条件及证明

相似三角形的判定条件及证明相似三角形是几何学中重要的概念,它们具有相似的形状但可能具有不同的大小。

在实际问题中,我们经常需要确定两个三角形是否相似。

本文将介绍判定相似三角形的条件及其证明方法。

1. AA相似定理如果两个三角形的两个角分别相等(其中一个角必须是对应角),那么这两个三角形是相似的。

证明:设三角形ABC和三角形DEF满足条件,即∠A = ∠D,∠B = ∠E 或∠C = ∠F。

我们需要证明它们是相似的。

根据AA相似定理,我们只需证明另外一个对应角也相等。

假设∠A = ∠D,∠B = ∠E。

根据三角形内角和为180°,我们可以得到∠C = 180° - ∠A - ∠B = 180° - ∠D - ∠E = ∠F。

因此,三角形ABC和三角形DEF的对应角都相等,根据AA相似定理,它们是相似的。

2. 三边比值相等定理如果两个三角形的三边对应成比例,那么这两个三角形是相似的。

证明:设三角形ABC和三角形DEF满足条件,即AB/DE = BC/EF =AC/DF。

我们需要证明它们是相似的。

假设AB/DE = BC/EF,我们可以得到AB/BC = DE/EF。

根据三角形的角边比例定理,如果三角形的两边之间的比值相等,那么这两个三角形的对应角也相等。

因此,∠A = ∠D,而根据AA相似定理,我们可以得出三角形ABC和三角形DEF是相似的。

3. SAS相似定理如果两个三角形的一对对应边成比例,并且两个对应角分别相等,那么这两个三角形是相似的。

证明:设三角形ABC和三角形DEF满足条件,即AB/DE = AC/DF,并且∠A = ∠D。

我们需要证明它们是相似的。

我们已经得知∠A = ∠D,因此,我们只需证明另外两对对应边之间的比值相等。

设x = AB/DE = AC/DF,我们可以得到DE = AB/x,DF = AC/x。

由此可得:DE/DF = (AB/x)/(AC/x) = AB/AC。

初中数学解题模型专题讲解16---相似三角形六大证明技巧

初中数学解题模型专题讲解16---相似三角形六大证明技巧

初中数学解题模型专题讲解 专题16 16 相似三角形相似三角形6大证明技巧大证明技巧相似三角形的判定方法总结相似三角形的判定方法总结:: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS)3. 两边成比例且夹角相等的两个三角形相似. (SAS)4. 两角分别相等的两个三角形相似.(AA)5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结相似三角形的模型方法总结:: “反A ”型与型与““反X ”型.“类射影”与射影模型与射影模型类射影””一线三等角”“旋转相似”与“一线三等角旋转相似”反A型与反X型已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ⋅=⋅(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCBOF ECBA类射影如图,已知2AB AC AD =⋅,求证:BD ABBC AC= A BCD射影定理已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =⋅,2BC BH BA =⋅,2HC HA HB =⋅通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维比例式的证明方法方法,能让模型成为解题的利刃,让复杂的问题变简单。

在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证:DC CF AE AD=. ABCFDE【例2】 如图,ABC △中,90BAC ∠=°,M 为BC 的中点,DM BC ⊥交CA 的延长线于D ,交AB 于E .求证:2AM MD ME =⋅技巧一技巧一::三点定型三点定型CBAEDM【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E ,交AD 于F .求证:BF ABBE BC=.DBACF E悄悄地替换比例式中的某条线段…【例4】 如图,在△ABC ,AD 平分∠BAC ,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2FD FB FC =⋅ABCDEF【例5】 如图,四边形ABCD 是平行四边形,点E 在边BA 的延长线上,CE 交AD 于F ,ECA D ∠=∠.求证:AC BE CE AD ⋅=⋅.技巧二技巧二::等线段代换等线段代换CBAD EF【例6】 如图,△ACB 为等腰直角三角形,AB=AC ,∠BAC=90°,∠DAE=45°,求证:2AB BE CD =⋅ABCE【例7】 如图,ABC △中,AB AC =,AD 是中线,P 是AD 上一点,过C 作CF AB ∥,延长BP 交AC 于E ,交CF 于F .求证:2BP PE PF =⋅.CBADPEF【例8】 如图,平行四边形ABCD 中,过B 作直线AC 、AD 于O ,E 、交CD 的延长线于F ,求证:2OB OE OF =⋅.技巧三技巧三::等比代换等比代换OFEDC BA【例9】 如图,在ABC △中,已知90A ∠=°时,AD BC ⊥于D ,E 为直角边AC 的中点,过D 、E 作直线交AB 的延长线于F .求证:AB AF AC DF ⋅=⋅.EFCABD【例10】 如图,在ABC △中(AB >AC )的边AB 上取一点D ,在边AC 上取一点E ,使AD AE =,直线DE 和BC 的延长线交于点P .求证:BP CE CP BD⋅=⋅E CD BAP【例11】 如图,ABC △中,BD 、CE 是高,EH BC ⊥于H 、交BD 于G 、交CA 的延长线于M .求证:2HE HG MH =⋅.技巧四技巧四::等积代换等积代换PMN D ABCA BCDE HGM【例12】 如图,在ABC △中,AD BC ⊥于D ,DE AB ⊥于E ,DF AC ⊥于F ,连EF ,求证:∠AEF =∠CFEDCBA【例13】 如图,在ABC △中,90BAC ∠=°,D 为AC 中点,AE BD ⊥,E 为垂足,求证:CBD ECD ∠=∠.CBADE【例14】 在Rt △ABC 中,AD ⊥BC ,P 为AD 中点,MN ⊥BC ,求证2MN AN NC =⋅【例15】 已知,平行四边形ABCD 中,E 、F 分别在直线AD 、CD 上,EF //AC ,BE 、BF 分别交AC 于M 、N .,求证:AM =CN.【例16】 已知如图AB =AC ,BD //AC ,AB //CE ,过A点的直线分别交BD 、CE 于D 、E . 求证:AM =NC ,MN //DE .DBAEM N【例17】 如图,△ABC 为等腰直角三角形,点P 为AB 上任意一点,PF ⊥BC ,PE ⊥AC ,AF 交PE 于N ,BE 交PF 于M .,求证:PM =PN ,MN //AB .CBAP EFN M技巧五技巧五::证等量先证等比证等量先证等比FMNEDC BA【例18】 如图,正方形BFDE 内接于△ABC ,CE 与DF 交于点N ,AF 交ED 于点M ,CE 与AF 交于点P . 求证:(1)MN //AC ;(2)EM =DN .PNM EFD ABC【例19】 (※)设E 、F 分别为AC 、AB 的中点,D 为BC 上一点,P 在BF 上,DP //CF ,Q 在CE 上,DQ //BE ,PQ 交BE 于R ,交CF 于S ,求证:13RS PQ =CBADP QSE FGR【例20】 (※)如图,梯形ABCD 的底边AB 上任取一点M ,过M 作MK //BD ,MN //AC ,分别交AD 、BC 于K 、N ,连KN ,分别交对角线AC 、BD 于P 、Q ,求证:KP =QN .Q N S PRKM ODC BA【例21】 (2016年四月调考)如图,在△ABC 中,AC >AB ,AD 是角平分线,AE 是中线,BF ⊥AD 于G ,交AC 于点M ,EG 的延长线交AB 于点H .(1)求证:AH =BH ,(2)若∠BAC =60°,求FG DG的值. HM FG E D CB A【例22】 (2016七一华源)如图:正方形ABCD 中,点E 、点F 、点G 分别在边BC 、AB 、CD 上,∠1=∠2=∠3=α. 求证:(1)EF +EG =AE (2)求证:CE+CG =AF技巧六技巧六::几何计算几何计算。

证三角形相似的方法

证三角形相似的方法

证三角形相似的方法相似三角形是指具有相同形状但大小不同的三角形。

证明两个三角形相似通常有以下几种方法:1.AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形是相似的。

具体证明如下:设两个三角形为△ABC和△DEF,已知∠A=∠D,∠B=∠E。

我们需要证明这两个三角形是相似的,即△ABC~△DEF。

首先,由直角三角形中的角和为90°可知,∠C=180°-∠A-∠B,∠F=180°-∠D-∠E。

因为∠A=∠D,∠B=∠E,所以∠A+∠B=∠D+∠E。

进而可得:∠C=180°-(∠A+∠B)=180°-(∠D+∠E)=∠F即△ABC和△DEF的三个内角相等。

根据三角形内角和定理可知,两个三角形的第三个角也相等。

综上所述,△ABC和△DEF的三个角对应相等,因此这两个三角形相似。

2.SAS相似定理:如果两个三角形的一个角相等,而这个角的两边上的对应线段成比例,则这两个三角形是相似的。

具体证明如下:设两个三角形为△ABC和△DEF,已知∠A=∠D,AB/DE=AC/DF。

我们需要证明这两个三角形是相似的,即△ABC~△DEF。

首先,根据已知条件得到:AB/DE=AC/DF进而可以得到:AB/AC=DE/DF。

因为∠A=∠D,所以根据正弦定理可得:AB/AC = sin∠B/sin∠C = DE/DF进一步可以得到:sin∠B/sin∠C = sin∠E/sin∠F。

由正弦定理可知,若两个角的正弦比相等,则这两个角对应相等。

因此,∠B=∠E,∠C=∠F。

综上所述,△ABC和△DEF的三个角对应相等,因此这两个三角形相似。

3.SSS相似定理:如果两个三角形的三条边分别成比例,则这两个三角形是相似的。

具体证明如下:设两个三角形为△ABC和△DEF,已知AB/DE=BC/EF=AC/DF。

我们需要证明这两个三角形是相似的,即△ABC~△DEF。

根据SAS相似定理的证明过程中的结果,我们已经得到了∠B=∠E,∠C=∠F,因此只需证明∠A=∠D。

证明相似三角形判定方法

证明相似三角形判定方法

证明相似三角形判定方法证明相似三角形的判定方法有多种,以下是其中的50种方法,并对每种方法进行详细描述:1. 相似角对应相等:如果两个三角形的对应角相等,则这两个三角形相似。

2. 辅助角相等:如果两个三角形的一个角等于另一个角的辅助角,则这两个三角形相似。

3. 边长比例相等:如果两个三角形的对应边的比例相等,则这两个三角形相似。

4. 三边比例相等:如果两个三角形的三条边的比例相等,则这两个三角形相似。

5. 比较周长:如果两个三角形的周长比例相等,则这两个三角形相似。

6. 比较面积:如果两个三角形的面积比例相等,则这两个三角形相似。

7. 角平分线所成的相似三角形:如果两个三角形的一个角被其相对边的平分线所平分,且两个角相等,则这两个三角形相似。

8. 内切圆和外切圆:如果两个三角形的内切圆和外切圆的半径比例相等,则这两个三角形相似。

9. 三角形的高比较:如果两个三角形的高的比例相等,则这两个三角形相似。

10. 图中的角平分线构成相似三角形:如果两个三角形的一个角被图中一条直线平分,且划分的相邻两边的比例相等,则这两个三角形相似。

11. 内接三角形相似性:如果一个三角形内部有另一个相似的三角形,则这两个三角形相似。

12. 应用正弦定理:如果两个三角形中包含的两个角的正弦比相等,则这两个三角形相似。

13. 应用余弦定理:如果两个三角形中包含的两个角的余弦比相等,则这两个三角形相似。

14. 应用正切定理:如果两个三角形中包含的两个角的正切比相等,则这两个三角形相似。

15. 利用半角公式:如果两个三角形中包含的两个角的半角正弦比相等,则这两个三角形相似。

16. 利用角平分定理:如果平分一个三角形的一个角,并且用两条角平分线切分其对边,则所得的小三角形相似。

17. 边角边:如果两个三角形的一对对应边和夹角相等,则这两个三角形相似。

18. 角边角:如果两个三角形的一对对应角和夹边相等,则这两个三角形相似。

19. 边边边:如果两个三角形的三条边相等,则这两个三角形相似。

三角形相似的判定方法6种

三角形相似的判定方法6种

三角形相似的判定方法6种相似三角形是初中数学中的一个非常重要的知识点,它也是历年中考的热点内容,通常考查以下三个部分:一是考查相似三角形的判定;二是考查利用相似三角形的性质解题;三是考查与相似三角形有关的综合内容。

以上试题的考查既能体现开放探究性,又能注重知识之间的综合性。

首先我们帮助学生突破相似三角形判定这个难点。

三角形相似的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形比值与比的概念比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1判定方法证两个相似三角形应该把表示对应顶点的`字母写在对应的位置上。

如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。

知道了定义那么我们接下来就看看,三角形相似的判定的6种方法。

方法一(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。

(这是相似三角形判定的定理,是以下判定方法证明的基础。

这个引理的证明方法需要平行线与线段成比例的证明)方法二如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

方法三如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似方法四如果两个三角形的三组对应边成比例,那么这两个三角形相似方法五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形三个基本型Z型A型反A型方法六两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。

一定相似的三角形1、两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)2、两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。

)3、两个等边三角形(两个等边三角形,三角都是60度,且边边相等,所以相似)4、直角三角形中由斜边的高形成的三个三角形(母子三角形)。

(完整版)相似三角形证明技巧(整理)

(完整版)相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

相似三角形的判定及证明技巧课件讲义.doc

相似三角形的判定及证明技巧课件讲义.doc

相似三角形(三)知识点(一):相似三角形的证明技巧1.相似三角形的基本图形2.相似三角形判定定理(3条)3.相似三角形的具体解题方法1.“三点定形法”:即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

例1、已知:如图△ABC中,CE⊥AB,BF⊥AC.求证:AE•AB=AC•AF.(判断“横定”还是“竖定”?)例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB 吗?说明理由。

分析方法:1)先将积式______________2)______________(“横定”还是“竖定”?)练习1.已知:如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交BC延长线于F。

求证:CD2=DE·DF。

C2.过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.(1)等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。

然后再应用三点定形法确定相似三角形。

只要代换得当,问题往往可以得到解决。

当然,还要注意最后将代换的线段再代换回来。

例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的延长线于E.求证:DE2=BE·CE.(2)等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。

相似三角形证明技巧_专题

相似三角形证明技巧_专题

相似三角形解题方法、技巧、步骤、辅助线解析 一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础.二、相似三角形(1)三角形相似的条件:① ;② ;③ .三、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对角对应相等,且看夹角的两边是否对应成比例;3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似 找两边对应成比例 判定定理1或判定定理4 找顶角对应相等 判定定理1 找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题b)己知两边对应成比c)己知一个直角d)有等腰关a)已知一对等例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC.求证: BAAC AF AE (判断“横定”还是“竖定”? )例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗?说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形解题方法、技巧、步骤、辅助线解析一、相似、全等的关系全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础.二、相似三角形(1)三角形相似的条件:①;②;③. 三、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例;3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似找夹角相等两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例三边对应成比例,两三角形相似找一个直角斜边、直角边对应成比例,两个直角三角形相似找另一角两角对应相等,两三角形相似找两边对应成比例判定定理1或判定定理4找顶角对应相等判定定理1找底角对应相等判定定理1找底和腰对应成比例判定定理3e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC中,CE⊥AB,BF⊥AC.b)己知两边对应成比c)己知一个直角d)有等腰关a)已知一对等求证: BAAC AF AE (判断“横定”还是“竖定”? )例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗?说明理由。

分析方法:1)先将积式______________2)______________( “横定”还是“竖定”? )已知:如图,△ABC 中,∠ACB=900,AB 的垂直平分线交AB 于D ,交BC 延长线于F 。

求证:CD 2=DE ·DF 。

分析方法:1)先将积式______________2)______________( “横定”还是“竖定”? )六、过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.1、 等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。

然后再应用三点定形法确定相似三角形。

只要代换得当,问题往往可以得到解决。

当然,还要注意最后将代换的线段再代换回来。

例1:如图3,△ABC 中,AD 平分∠BAC , AD 的垂直平分线FE 交BC 的延长线于E .求证:DE 2=BE·CE . 分析:2、 等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。

例2:如图4,在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB的延长线于点F.求证:AB DF AC AF.3、等积过渡法(等积代换法)思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若三点定形法不能确定两个相似三角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,若以上三种方法行不通时,则考虑用等积代换法。

例3:如图5,在△ABC中,∠ACB=90°,CD是斜边AB上的高,G是DC延长线上一点,过B作BE⊥AG,垂足为E,交CD于点F.求证:CD2=DF·DG.小结:证明等积式思路口诀:“遇等积,化比例:横找竖找定相似;不相似,不用急:等线等比来代替。

”同类练习:1.如图,点D、E分别在边AB、AC上,且∠ADE=∠C求证:(1)△ADE∽△ACB;(2)AD·AB=AE·AC.2.如图,△ABC中,点DE在边BC上,且△ADE是等边三角形,∠BAC=120°求证:(1)△ADB∽△CEA;(2) DE²=BD·CE;(3) AB·AC=AD·BC.3.如图,平行四边形ABCD中,E为BA延长线上一点,∠D=∠ECA. 求证:AD·EC=AC·EB.(此题为陷阱题,应注意条件中唯一的角相等,考虑平行四边形对边相等,用等线替代思想解决)4.如图,AD为△ABC中∠BAC的平分线,EF是AD的垂直平分线。

求证:FD²=FC·FB。

(此题四点共线,应积极寻找条件,等线替代,转化为证三角形相似。

)5.如图,E是平行四边形的边DA延长线上一点,EC交AB于点G,交BD于点F,求证:FC²=FG·EF.(此题再次出现四点共线,等线替代无法进行,可以考虑等比替代。

)6.如图,E是正方形ABCD边BC延长线上一点,连接AE交CD于F,过F作FM∥BE交DE于M.求证:FM=CF.(注:等线替代和等比替代的思想不局限于证明等积式,也可应用于线段相等的证明。

此题用等比替代可以解决。

)7.如图,△ABC中,AB=AC,点D为BC边中点,CE∥AB,BE分别交AD、AC于点F、G,连接FC.求证:(1)BF=CF.(2)BF²=FG·FE.8.如图,∠ABC=90°,AD=DB,DE⊥AB,求证:DC²=DE·DF.9.如图,ABCD为直角梯形,AB∥CD,AB⊥BC,AC⊥BD。

AD= BD,过E作EF∥AB交AD于F.是说明:(1)AF=BE;(2)AF²=AE·EC.10.△ABC中,∠BAC=90°,AD⊥BC,E为AC中点。

求证:AB:AC=DF:AF。

11.已知,CE是RT△ABC斜边AB上的高,在EC延长线上任取一点P,连接AP,作BG⊥AP,垂足为G ,交CE于点D.试证:CE²=ED·EP.(注:此题要用到等积替代,将CE ²用射影定理替代,再化成比例式。

)七、证比例式和等积式的方法:对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等.若比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明.可用口诀: 遇等积,改等比,横看竖看找关系; 三点定形用相似,三点共线取平截;平行线,转比例,等线等比来代替; 两端各自找联系,可用射影和园幂.例1 如图5在△ABC 中,AD 、BE 分别是BC 、AC 边上的高,DF ⊥AB 于F ,交AC 的延长线于H ,交BE 于G ,求证:(1)FG / F A =FB / FH (2)FD 是FG 与FH 的比例中项.1说明:证明线段成比例或等积式,通常是借证三角形相似.找相似三角形用三点定形法(在比例式中,或横着找三点,或竖着找三点),若不能找到相似三角形,应考虑将比例式变形,找等积式代换,或直接找等比代换例2 如图6,□ABCD 中,E 是BC 上的一点,AE 交BD 于点F ,已知BE :EC =3:1,S∆FBE =18,求:(1)BF :FD (2)S∆FDA2说明:线段BF 、FD 三点共线应用平截比定理.由平行四边形得出两线段平行且相等,再由“平截比定理”得到对应线段成比例、三角形相似;由比例合比性质转化为所求线段的比;由面积比等于相似比的平方,求出三角形的面积.例3 如图7在△ABC 中,AD 是BC 边上的中线,M 是AD 的中点,CM 的延长线交AB 于N .求:AN :AB 的值;图5 AE F B D GC HC AD BEF 图6 A3说明:求比例式的值,可直接利用己知的比例关系或是借助己知条件中的平行线,找等比过渡.当已知条件中的比例关系不够用时,还应添作平行线,再找中间比过渡.例4 如图8在矩形ABCD 中,E 是CD 的中点,BE ⊥AC 交AC 于F ,过F 作FG ∥AB 交AE 于G .求证:AG 2=AF ×FC4说明:证明线段的等积式,可先转化为比例式,再用等线段替换法,然后利用“三点定形法”确定要证明的两个三角形相似.、例5 如图在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,交AB 于点E ,EC 交AD 于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.5说明:要证明两个三角形相似可由平行线推出或相似三角形的判定定理得两个三角形相似.再由相似三角形的面积比等于相似比的平方及比例的基本性质得到线段的长.例6 如图10过△ABC 的顶点C 任作一直线与边AB 及中线AD 分别交于点F 和E .过点D 作DM ∥FC 交AB 于点M .(1)若S △AEF :S 四边形MDEF =2:3,求AE :ED ; (2)求证:AE ×FB =2AF ×EDA B C E D G F A E B D M C F6说明:由平行线推出两个三角形相似,再由相似三角形的面积比等于相似比的平方及比例的基本性质得到两线段的比.注意平截比定理的应用.例7 己知如图11在正方形ABCD 的边长为1,P 是CD 边的中点,Q 在线段BC 上,当BQ 为何值时,△ADP 与△QCP 相似?7说明:两个三角形相似,必须注意其顶点的对应关系.然后再确定顶点P 所在的位置.本题是开放性题型,有多个位置,应注意计算,严防漏解.例8 己知如图12在梯形ABCD 中,AD ∥BC ,∠A =900,AB =7,AD =2,BC =3.试在边AB 上确定点P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.8说明:两个三角形相似,必须注意其顶点的对应关系.然后再确定顶点P 所在的位置.本题有多个位置,应注意计算,严防漏解.例11.如图,已知△ABC 中,AB=AC ,AD 是BC 边上的中线,CF ∥BA ,BF 交AD 于P 点,交AC 于E 点。

相关文档
最新文档