第12章动能定理-2-BW (1)
动能定理
第十二章动能定理12-1 功和功率2、变力在曲线运动中的功Mvr Fr dsM ′rr ∆rr r r ′为弧的路程上所作的总功在力21M M F r∫=21M M W W δ∫++=21)(M M Zdz Ydy Xdx rd F M M rr ∫⋅=21F W r ⋅δrd F W M M rr ∫⋅=21∫++=21)(M M Zdz Ydy Xdx W ds F W M M ϕcos 21∫=dtv F W M M ∫⋅=21rr影为重力在三坐标轴上的投运动到沿曲线轨迹设质点,21M M M mgG Z Y X −=−===,0δδk F F =成正比。
弹簧变形的大小与在弹性极限内,弹性力r)(212221δ−δ=k W 上式表明,当初始变形大于末变形时,弹性力作功为正。
反之为负。
的无限小增量。
点的距离点相对于为AB A B r d AB τr AB B r d F ⋅=的无限小增量。
点的距离点相对于为AB A B r d AB τr221ii V m T ∑=1、刚体平动的动能221k k V m T ∑=设瞬心在P点2)(21ωk k r m ∑=2221kk r m ∑=ω221ωz J =均质圆柱体作纯滚动时的动能RCCV r r得到两边同乘以,dt V r d r r =2121由动力学基本方程有FdtVd mr r=W r d F δ=⋅r r FdtV m d r r=)(或r d F dt V dtV m d rr r r⋅=⋅)()21()(2)(2mV d V V d m dt V dt V m d =⋅=⋅r r r r W mV d δ=⇒)21(2力的元功。
用于质点上微分等于作质点动能的W mV d δ=)21(2δ二、质点的动能定理的积分形式质点动能在某一路程上的改变量,等于作用于质点上力在同一路程上所作的功。
§12-5 质点系的动能定理)21(2i i V m d ∑∑=)21(2i i V m d *ii W W δδ∑+∑=质点系动能的微分等于作用在该质点系的全部外力和内力的元功的总和。
第十二章 动能定理
10
动能定理
10.1 力的功 10.2 质点和质点系的动能 10.3 动能定理
10.4 功率 功率方程 机械效率 10.5 势力场 势能 机械能守恒定律 10.6 普遍定理的综合应用举例
10.1 力的功 10.1.1 常力在直线运动中的功
W F cos s
上式也可以写成
W F s
2 1
W12
2 k 2 ( 12 2 ) 2
10.1 力的功 3.万有引力的功 质量为m2的质点M受到另一质量为m1的固定点O的引 力F的作用。由牛顿万有引力定律知 M
F f m1m2 m1m2 r f r 0 2 3 r r
M1
r1
M2
F
r0 o
式中f 为万有引力常数 f =6.667×10-11m3/(kg· s2) 当质点从M1运动到M2时,引力F作的功为
10.2 质点和质点系的动能 平面运动刚体的动能
点C ——质心,
点P ——某瞬时的瞬心,
ω ——角速度 1 2 T J P 2 J P J C mr C 2
1 1 1 2 2 2 2 T ( J C mr ) J m ( r ) C 2 2 C 2 C
10.3 动能定理
dT δWi 10.3.2 质点系的动能定理 质点系内任一质点,质量 上式称为质点系动能定理的微 为mi,速度为vi,有 分形式:质点系动能的增量等 1 d( mi vi2 ) δWi 于作用于质点系全部力所作的 2 式中δWi 为作用于这个 元功的和。 质点上的力Fi作的元功。 上式积分,得:T T W
功是代数量,在国际单位制中,功的单位为 J(焦耳)。
10.1 力的功 10.1.2 变力在曲线运动中的功 力在无限小位移dr中作的功称为 元功: W F cos d s 力在全路程上作的功等 于元功之和: s W 0 F cos d s M 上两式也可写成以下矢量点乘形式: W F d r W M F d r
理论力学第12章动能定理
合力之功定理
合力所作的元功等于各分力的元功的代数和;合力在质点
任一段路程中所作的功,等于各分力在同一路段中所作的功的 代数和。
W
M2 M1
FR
dr
M2 M1
Fi
dr
Wi
5
四、几种常见力的功
1、重力的功
Fx Fy 0
W12
z2 z1
mgdz
mg(z1
z2 )
Fz mg
W 12 mgh
即: dT Wi 质点系动能定理的微分形式
T2 T1
W 12
质点系动能定理的积分形式
质点系动能的改变量,等于作用于质点系上的所有力在同一运 动过程中所作的功的代数和。——质点系积分形式动能定理
16
关于功的讨论
1.质点系内力的功
W
F drA F'drB
F drA F drB
vi vC vir
于是有:
T
1 2
mvC2
12mivi2r
质点系的动能等于质点系随同质心C的平动的动能与质点系相对于 质心C运动的动能之和。——柯尼希定理。
13
三.刚体的动能
1.平动刚体
T
1 2
mi
vi
2
1M 2
vC 2
2.定轴转动刚体
T
1 2
mi vi 2
1 2
(
miri2 ) 2
V k 2 δ 为质点在位置M时的弹簧的变形量。
2
三. 机械能守恒定律
T1 V1 T2 V2 机械能守恒.T+V称为机械能
质点系在仅有势力作用下运动时,其机械能保持不变。
质点系在非有势力作用下运动,机械能不守恒。在质点系的 运动过程中,机械能和其他形式的能量之和仍保持不变,这 就是能量守恒定律。
第十二章 动能定理1
(2) 定轴转动刚体的动能
z
T
1 2
mivi2
1 2
miri2 2
1 2
(mi ri 2
)
2
T
1 2
J z2
ri
vi
mi
(3) 平面运动刚体的动能
T
1 2
J P 2
(P 为瞬心)
1 2
(JC
md T
2 )2
1 2
mvC2
1 2
J C 2
d
C P
平面运动刚体的动能,等于随质心平移的动能与绕质心转
动的动能的和。
23
1 (1 ml2 )2
29
1 m( 3 v)2 1 1 ml 2 ( v )2
23
2 12 l sin 60
1 ml 2 2
6
1 ml22
18
2 mv2 9
y
45º 2a
a
x
R
v R
a
T 1 J 2
2
5 ma2 2
12
T 1 J 2
2
1 ( 3 mR2 ) 2
22
3 mR22
2. 弹性力的功
F k(r l0 ) er
W12
A2
F
d
r
A1
A2 A1
k
(r
l0
)
er
d
r
erd r
r
d
r
r
1
d(r r)
2r
dr2 2r
dr
W12
r2 r1
k
(r
l0
)dr
k 2
[(r1
l0
)2
第十二章 动能定理
2. 受力分析 只有重力做功。
3. 建立动力学方程 用动能定理。
v C
A
c
θ
R
★理论力学电子教案
vC (R r) vC / r (R r)/ r
第12章 动能定理
T1 0
T2
1 2
m vC2
1 2
JC2
3 4
m(R
r )22
W12 mg (R r)(1 cos )
力功之和可以不为零。如引力。
2. 刚体间的理想约束做功之和为零。
为什么?
★理论力学电子教案
第12章 动能定理
12
五、功率
单位时间内力(或力偶)所做的功。
P
W
F
dr
F
v
dt dt
力做功之功率
或P W M d M 力偶(力矩)做功之功率
dt
dt
功率的单位:瓦(W)
1.重力功
F FW k
W12
M 2 F
dr
z2
FW
dz FW
z1 z2
M1
z1
2.弹F性力k功r l0 r0
其中r0为r方向的单位矢量,l0为原长
W
F
dr
kr
l0 r0 dr
kr l0 r dr kr l0 dr r
1W 1N 1m / s
★理论力学电子教案
第12章 动能定理
13
例题 鼓轮内半径为r,外半径为R,在常力F作用下作 纯滚动。试求F在s上所作的功。
12第十二章动能定理
ri
mi
vi ri
vC d
15
例.摆:杆m1, l,圆盘:m2 , R,杆与圆轮均质。 求:摆的动能。 解: 组合刚体作定轴转动
1 T J O 2 2
JO JO杆 JO盘
1 1 2 m1l m2 R 2 m2 (l R ) 2 3 2
2) D 物速度与 B 轮角速度关系:
v 2 r B v C r B
T TA TB TD
2v C v
22
3、运动分析: 2 1 P r v 2 1 2 ( ) A:TA J O A 2 2g r 2 1 2 1 2 B:TB mvC J C B 2 2
8
5.平面运动刚体上力系的功 平面运动刚体上力系的功,等于刚体上所受各力作功的代数和。 平面运动刚体上力系的功,也等于力系向质心简化所得的力与力
偶作功之和。
A
c1
F
c2
C
A
W12 W12 ( F '.R ) W12 ( M C )
FR 'drC M C d
C1 C2
2
r r0 r
单位矢量
2
M1 r 1 1 F r0 dr dr d (r r ) d (r 2 ) dr. 2r r 2r r2 r2 k W12 k ( r l0 ) dr d ( r l0 ) 2 2 r1 r1 k 令 1 r1 l0 , 2 r2 l0 [( r1 l0 ) 2 ( r2 l0 ) 2 ] 2 k 2 2 即 W12 ( 1 2 ) 弹性力的功只与弹簧的起始变形和终了 2 变形有关,而与质点运动的路径无关。
第十二章动能定理
2
1
( k ) d
1 2
k ( 1 2 )
2 2
Part A 动能和功
8 作用在平移刚体上的力做功
W
FR
F dr
2
M
M1
i
C
M
2
M1
F R d rC
力系的主矢
Part A 动能和功
9 作用在定轴转动刚体上的力做功
z
F
d ' W F d s F r d
Байду номын сангаас
M
2
M1
( F1 F 2 F n ) d r
W1 W 2 W n
汇交力系合力作功等于各个分力的功的代数和。
Part A 动能和功
6 重力做功
z
F x 0 F y 0 F z mg
M1
W
M2
z2
z1
Fz dz
z2
( mg ) d z
第十二章 动能定理
PART B 动能定理
Part B 动能定理
1 质点的动能定理 质点的动能定理建立起了质点的动能和作用力之间的关系
v M a M1 F
ma F
m dv dt F
ma F
ds vdt
mv d v F d s
得到
1 2 d E k d mv d W 2
Part A 动能和功
10 平面运动刚体上力系的功
Fi
d W i F i d r F i d rC F i d riC F i d riC Fi cos q M i C d M C F i d
理论力学课件 第十二章 动能定理
FRO
r1 r2 O
mg
解:取整体为研究对象,受力分析如图所示。 v1
A
v2
B
系统对O点的动量矩为
m1 g
m2 g
LO m1v1r1 m2v2r2 J0 (m1r12 m2r22 JO )
系统所受全部外力对O点的动量矩为
MO (F e ) m1gr1 m2gr2
质点系的动量矩定理为 dLO dt
WFN 0
WF F s fmgs cos 30 8.5 J
WF
1 2
k
(12
2 2
)
100 (0 0.52) 2
12.5 J
W Wi 24.5 0 8.512.5 3.5 J
12.2 质点和质点系的动能
12.2.1 质点的动能
设质量为m的质点,某瞬时的速度为v,则质点质量与其速度平方乘积的
路径无关。若质点下降,重力的功为正;若质点上升,重力的功为负。
对于质点系,重力的功等于各质点的重力功的和,即
上式也可写为
W12 mi g(zi1 zi2) W12 mg(zC1 zC2 )
2.弹力的功
设有一根刚度系数为k,自由长为l0的弹 簧, 一端固定于点O, 另一端与物体相连接,
如图所示。求物体由M1移动到M2过程中,弹 力F所做的功。
W12
M2 M1
(Fx
d
x
Fy
d
y
Fz
d
z)
12.1.3 常见力的功
1.重力的功
z M1 M
mg
设质点M的重力为mg,沿曲线由M1运动到
M2
M2,如图所示。因为重力在三个坐标轴上的
投影分别为Fx=Fy=0,Fz=-mg,故重力的功为
第十二章动能定理
△ 理想约束力之功
约束反力作功等于零的约束称为理想约束,即
dW 0
常见的理想约束有
(1)光滑固定面和辊轴约束 其约束力垂直于作用点的位移,约束力不做功。 (2)光滑铰链或轴承约束 由于约束力的方向恒与位移的方向垂直, 所以约束力的功为零。
★ 平面运动刚体上力系的功
★ 内力与理想约束力的功
★ 力的功定义
在一无限小位移中力所做 的功称为元功,以 dW表示
dW F dr Fds cos
直角坐标形式
dW Fx dx Fy dy F zdz
在一般情况下,dW不是功函数的全微分,仅仅为点积 F dr的记号。
力在有限路程 M 1 M 2 上的功为力在此路程上元功的定积分。 即 M2 s
F R M z ( F ) M z
于是
dW M z d
W12 M z d
1 2
力在有限转动中的功为
★ 平面运动刚体上力系的功
刚体上任意一点Mi的无限小位移可写为
dri drC driC
其中 drC为质心的无限小位移, driC为Mi 点绕质心C的无限小转动位移 作用于点Mi上的力Fi的元功为
O m1
C m2
vC
v vi vi v v 2 vC vir
2 i 2 C 2 ir
z vir mi
z´
vi vC y´
vC mi vir ?
i
根据质心定义
m r
i i
ir
m rcr
m v
i i
ir
m vcr 0
理论力学第十二章 动能定理
§12-1 力的功
II. 弹性力的功
一端固定的弹簧与一质点M相连接,弹簧的原始长 度为l0,在弹性变形范围内,弹簧弹性力F的大小与其 变形量δ成正比,即
F=kδ
当质点M由M运动时,弹性力的功仍按上式计算,即弹性力的功也 只决定于弹簧初始位置与终了位置的变形量,而与质点的运动轨迹无关。
由于功只有正负值, 不具有方向意义,所 以功是代数量。
§12-1 力的功
II. 变力的功
设质点M在变力F作用下作曲线运动,当质点从M1 沿曲线运动到M2时,力F所做的功的计算可处理为: (1)整个路程细分为无数个微段dS;(2)在微小路程上, 力 F 的 大 小 和 方 向 可 视 为 不 变 ; (3)dr 表 示 相 应 于 dS 的微小位移,当dS足够小时,∣dr∣=dS。根据功的 定义,力F在微小位移dr上所做的功(即元功)为
直角坐标形式为
力F在曲线路程 上所做的功等于该力在各微段的元功之和,即
§12-1 力的功
Ⅲ. 合力的功
合力在任一路程上所做的功等于各分力在同一路程上所作功的代数和。即
常见力的功
I. 重力的功
设有一重力为G的质点,自位置M1沿某曲线运动至M2 ,
上式表明,重力的功等于质点的重量与其起始位置与终了位置 的高度差的乘积,且与质点运动的轨迹形状无关.
第十二章 动能定理
主要研究内容
力的功 功率与机械效率 动能 动能定理
§12-1 力的功
功的概念
功是度量力的作用的一个物理量。它反映的是力在一段路程上对物体作用 的累积效果,其结果是引起物体能量的改变和转化。力的功包含力和路程 两个因素。
I. 常力的功
设有大小和方向都不变的力F作用在物体上,力的 作用点向右作直线运动。则此常力F在位移方向的投 影Fcosα与位移的大小S的乘积称为力F在位移S上所 做的功,用W表示,即 W=S·Fcosa 。可知,当a<90 度时,功W为正值,即力F做正功;当a>90度时,功 W为负值,即力F做负功;当a=90度时,功为零,即 力与物体的运动方向垂直,力不做功。
第12章动能定理
二.势能 在势力场中,任选一点M0令其势能为零,称为零势能点。 则质点从点M 运动到点M0过程中有势力所作的功称为质点在 点M的势能,用Ep 表示。即
Ep
具有相对性。
M0 __
M
F d r ( Fx dx Fy dy Fz dz)
M
__
M0
显然,势能只取决于质点的位置M和零势能点M0的选取,势能 下面计算几种常见的势能。 1. 重力场中的势能 质点: Ep mg( z z0 ) 质点系: Ep mg( zC zC 0 ) z0 − 零势能点的 z 坐标 zC0 −质点系零势能位置质心
作用在转动刚体上的力的功率为:
δW d P Mz Mz dt dt
上式表明:作用于转动刚体上的力的功率等于该力对转轴 的矩与角速度的乘积。
功率的单位:瓦特(W)或 千瓦(kW),1W = 1 J/s 。
二.功率方程 将质点系动能定理的微分形式 dT δWi的两边同除以dt 得 Wi dE k Pi dt dt 上式称为功率方程,即质点系动能对时间的一阶导数,等于
§12-4
一.功率
功率 · 功率方程 · 机械效率
单位时间内力所作的功称功率。它是衡量机器工作能力的
一个重要指标。功率是代数量,并有瞬时性。
δW P dt
注意到 δW F d r ,则
δW F d r P F v Ft v dt dt
上式表明:功率等于切向力与力作用点速度的乘积。
z
1
如果刚体上作用的是力偶,则力偶所 作的功仍可用上式计算,其中Mz为力偶 对z 轴的矩。 若Mz = 常量, 则 W12 M z (2 1 )
5.平面运动刚体上力系的功 平面运动刚体上力系的功,等于力系向质心简化所得的 力(主矢)与力偶(主矩)作功之和。 首先可以证明,刚体上力系的全部力所作的元功之和为
第12章 动能定理
1.2 变力的功
这时可将路程 s 分为无限多个微段 ds,则微段路程 ds 可以近似为直线,且力 F 在位移 dr 中
可视为常力,dr 可视为沿点 M 的切线。力 F 在该微小路径上所做的功称为元功,用W 表示,且
有
W F dr
(12-3)
质点 M 沿曲线由 M1 运动到 M2 的过程中,变力 F 做的功为
迹无关。
1.4 几种常见力的功
3.摩擦力的功
如图 12-6 所示,由于质点受到的滑动摩擦力 F μFN 的方向总是与质点运动的方向相反,所 以滑动摩擦力做功恒为负,且有
W M2 Fds M1
M2 M1
μFNds
(12-10)
式(12-10)为曲线积分,因此,滑动摩擦力的功,不仅与起止位置有关,还与路径有关。
图12-6
02
质点和质点系的动能
质点的动能 质点系的动能 刚体的动能
2.1 质点的动能
动能是指物体由于本身的运动而具有的能量。实践表明,物体动能的大小与物体的质量及 运动速度有关。一切做机械运动的物体,质量越大,运动速度越快,其动能也就越大。因此, 动能是度量物体机械运动强度的物理量。
研究表明,质点的动能等于它的质量 m 与速度 v 平方的乘积的一半,即质点的动能为 mv2 /2 。 动能是一个恒为正值的标量。在国际单位制中,动能的单位与功的单位相同,都为 J。
的单位来决定。在国际单位制中,功的单位是 J。
如果路程用矢量 s 表示,则力 F 的功可以写成
W Fs
(12-2)
图12-1
1.2 变力的功
如图 12-2 所示,设质点 M 在变力 F 作用下,沿曲线从位置 M1 运动到位置 M2 ,现求力 F 在 路径 M1M 2 上做的功。由于从 M1 运动到 M2 的过程中,力 F 的大小和方向在不断变化,因此,力 F 的功不能直接用式(12-1)来计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§12-6动力学普遍定理综合应用
动力学普遍定理包括质点和质点系的动量定理(质心运动定理)、动量矩定理和动能定理。
它们由不同的侧面建立了运动的变化与力的关系,各自有其应用范围。
动量定理和动量矩定理是矢量形式,动能定理是标量形式,他们都用于研究机械运动,动能定理还可用于研究机械运动与其它运动形式的能量转化问题。
动力学普遍定理提供了解决动力学问题的一般方法。
有的问题只能用某一个定理求解,有的问题既可用这个定理又可用另一定理求解,有的问题要同时用几个定理联合求解。
求解过程中,要正确进行运动分析, 提供正确的运动学补充方程。
[综1]已知两均质轮:m ,R,轮C纯滚动; 物块:m ;弹簧:k;于弹簧原长处无初速释放。
求:重物下降h时的速度、加速度及轮C 与地面的摩擦力。
解:(1
)以系统为研究对象,求重物的速度、加速度
h
当重物下降h 时,设其速度为v
:
w O
w C
视h为变量,将式(*)对t求导:
a
C
(2)以轮C 为研究对象
由刚体平面运动微分方程:
[*综2]重150N 的均质圆盘B 与重60N 、长24cm 的均质杆AB 铰接。
系统由图示位置无初速地释放。
求系统经过最低位置B '点时B '点的速度及支座A 的约束反力。
解:(1
)取圆盘为研究对象
,圆盘平移。
又开始系统静止,
60o
A B
B'
B
(2)用动能定理求速度。
取系统研究:T 1=0
,
代入数据,得
60o A
B
B'
w
C
(3)用动量矩定理求杆的角加速度a 。
杆质心C 的加速度:盘质心B
'的加速度:
(4
)由质心运动定理求支座反力。
研究整个系统。
代入数据,得
A B'
w C
a
M
O
D r r R
C
B A
[综3]图示系统中,鼓轮B 和轮C 固结,共重Q ,对水平轴O 的回转半径为r ;轮C 只滚不滑;重物A 重G ;定滑轮D 重W ,其上作用一常力偶M ,可视为均质圆盘。
各轮半径如图,不计轮C 的滚动摩擦及轮D 轴承处的摩擦,求轮D 轴承的反力。
问题:①能否用动能定理求解?
②求反力常用动量定理或质心运动定理,能否以整体为研究对象?
解:(1)以整体为研究对象,用动能定理求a A 。
M O
D r r R C
B A
设任意位置时物A 的速度为v A ,则
w O
w D
其中:
当物A 下降d s A 时:
其中:
两边同除以d t
,得:
M O
D r r R
C
B A
w O
w D
M
D
r
A
其中:于是得:
方向向下
(2)以轮D 和物A 为研究对象,用动量矩定理求绳的拉力。
w D
M
D r A
(3)以轮D 和物A 为研究对象,用质心运动定理求轮D 轴承反力。
x
y
由质心运动定理:
a D
另解:(
1)以轮O 为研究对象,
由动量矩定理:
M
D r
A
x
y
a
D
O
r R
C
B a O
P
(2)以轮D 和物A 为研究对象,由动量矩定理:
(3)以轮D 和物A 为研究对象,由质心运动定理求轮D 轴承反力。
由以上两式即可求得F T 、a A (包括a O 、a O 、a D )。