数字图像处理(图像变换)

合集下载

【精选】数字图像处理第3章

【精选】数字图像处理第3章

设定加权因子 ai 和 bi 的值,可以得到不同的变换。例如,当选定
a2 b1 切。
1 ,b2

0.1
,a1

a0
b0

0
,该情况是图像剪切的一种列剪
(a)原始图像
Digital Image Processing
(b)仿射变换后图像
3.1 图像的几何变换
◘透视变换 :
把物体的三维图像表示转变为二维表示的过程,称为透视 变换,也称为投影映射,其表达式为:

a2

b2
a1 b1
a0
b0


y

1
平移、比例缩放和旋转变换都是一种称为仿射变换的特殊情况。
仿射变换具有如下性质:
(1)仿射变换有6个自由度(对应变换中的6个系数),因此,仿射变换后 互相平行直线仍然为平行直线,三角形映射后仍是三角形。但却不能
保 证将四边形以上的多边形映射为等边数的多边形。
1D-DFT的矩阵表示 :
F (0)

F (1)


WN00 WN10

F (2)

WN20

F (N 1)
W
(N N
1)0
WN01 WN11 WN21
WN(N 1)1

W
0( N
N
1)
WN1(N 1)

第3章 图像变换
◆ 3.1 图像的几何变换 ◆ 3.2 图像的离散傅立叶变换 ◆ 3.3 图像变换的一般表示形式 ◆ 3.4 图像的离散余弦变换 ◆ 3.5 图像的离散沃尔什-哈达玛变换 ◆ 3.6 K-L变换 ◆ 3.7 本章小结

数字图像处理的基本原理和常用方法

数字图像处理的基本原理和常用方法

数字图像处理的基本原理和常用方法数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

图像处理最早出现于20 世纪50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。

数字图像处理作为一门学科大约形成于20 世纪60 年代初期。

早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。

图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

数字图像处理常用方法:1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。

因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。

目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。

压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。

如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。

4 )图像分割:图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

遥感数字图像处理-第三章-图像变换

遥感数字图像处理-第三章-图像变换

含有各种信号,有变化缓慢的背景,有变换激
烈的边缘和噪声部分,而傅立叶变换就像光学
中的三棱镜,在三棱镜的作用下,一束自然光
光信号可以分为无数的单色光信号,单色光信
号从频谱中心开心频率逐渐增加,那么一幅图
像经过一个类似三棱镜的系统(傅里叶变换)
就把源图像中的信号给分开了,这样我们就可
以做各种处理就更为方便。
2021/3/11
2
2021/3/11
3
2021/3/11
4
第三章 图像变换
图像变换的目的在于:①使图像处理问题简化;② 有利于图像特征提取;③有助于从概念上增强对图像信 息的理解。
图像变换通常是一种二维正交变换。一般要求: ① 正交变换必须是可逆的; ②正变换和反变换的算法不能 太复杂; ③正交变换的特点是在变换域中图像能量将集 中分布在低频率成分上,边缘、线状信息反映在高频率 成分上,有利于图像处理。
2021/3/11
17
图像的傅立叶变换
• 灰度在平面空间上的梯度表征图像中灰 度变化剧烈程度,可以描述为图像的频 率。
• 如:大面积的沙漠在图像中是一片灰度 变化缓慢的区域,对应的频率值很低;
• 而对于地表属性变换剧烈的边缘区域在 图像中是一片灰度变化剧烈的区域,对 应的频率值较高。
2021/3/11
24
3.2傅立叶变换
在学习傅立叶级数的时候,一个周期为T的函数f(t)在[T/2,T/2]上满足狄利克雷(Dirichlet)条件,则在[-T/2,T/2] 可以展成傅立叶级数
fT(t)a 2 0n 1(anco nsw b n tsin nw ) t
其复数形式为
其中
cn
1 T
T 2

数字图像处理中的常用变换

数字图像处理中的常用变换

一、离散傅里叶变换1.离散傅里叶变换的特点离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。

在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。

即使对无限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。

在实际应用中通常采用快速傅里叶变换以高效计算DFT。

DFT将空域变换到频域,很容易了解到图像的各空间频域的成分。

DFT的应用十分广泛,如:图像的特征提取、空间频率域滤波、图像恢复和纹理分析等。

2.离散傅里叶变换的性质1)线性性质2)比例性质3)可分离性4)平移性质5)图像中心化6)周期性7)共轭对称性8)旋转不变性9)卷积定理10)平均值二、离散余弦变换1.离散余弦变换简介为了快速有效地对图像进行处理和分析,常通过正交变换将图像变换到频域,利用频域的特有性质进行处理。

传统的正交变换多是复变换,运算量大,不易实时处理。

随着数字图像处理技术的发展,出现了以离散余弦变换(DCT)为代表的一大类正弦型实变换,均具有快速算法。

目前DCT变换在数据压缩,图像分析,信号的稀疏表示等方面有着广泛的应用。

由于其变换矩阵的基向量很近似于托普利兹(Toeplitz )矩阵的特征向量,而托普利兹矩阵又体现了人类语言及图像信号的相关特性,因此常被认为是对语音和图像信号的最佳变换。

对给定长度为N 的输入序列f(x),它的DCT 变换定义为:⎪⎭⎫ ⎝⎛+⨯=∑-=102)12(cos )()(2)(N x N x x f u C N u F μπ式中:1,,1,0u -=N ,式中的)(u C 的满足:⎪⎩⎪⎨⎧==其它1021)(u u C在数字图像处理中,通常使用二维DCT 变换,正变换为:⎪⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N x N y N v y N u x y x f v C u C N v u F ππ 其逆变换IDCT 为:⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N u N v N v y N u x v u F v C u C N y x f ππ 式中:1,,1,0u -=N ,1,,1,0v -=N 。

数字图像处理图像变换实验报告

数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。

三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。

图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。

点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。

如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。

一旦灰度变换函数确定,该点运算就完全确定下来了。

另外,点运算处理将改变图像的灰度直方图分布。

点运算又被称为对比度增强、对比度拉伸或灰度变换。

点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。

图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。

实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。

下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。

数字图像处理---图像的几何变换

数字图像处理---图像的几何变换

数字图像处理---图像的⼏何变换图像的⼏何变换图像的⼏何变换包括了图像的形状变换和图像的位置变换图像的形状变换图像的形状变换是指图像的放⼤、缩⼩与错切图像缩⼩图像的缩⼩是对原有的数据进⾏挑选或处理,获得期望缩⼩尺⼨的数据,并尽量保持原有的特征不消失分为按⽐例缩⼩和不按⽐例缩⼩两种最简单的⽅法是等间隔地选取数据图像缩⼩实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1<1,K 2<1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像放⼤图像放⼤时对多出的空位填⼊适当的值,是信息的估计最简单的思想是将原图像中的每个像素放⼤为k ∗k 的⼦块图像放⼤实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1>1,K 2>1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像错切图像错切变换实际上是平⾯景物在投影平⾯上的⾮垂直投影效果图像错切的数学模型x ′=x +d x y y ′=y(x ⽅向的错切,dx =tan θ)x ′=x y ′=y +d y x(y ⽅向的错切,dy =tan θ)图像的位置变换图像的位置变换是指图像的平移、镜像与旋转,即图像的⼤⼩和形状不发⽣变化主要⽤于⽬标识别中的⽬标配准图像平移公式:{{x ′=x +Δx y ′=y +Δy图像镜像图像镜像分为⽔平镜像和垂直镜像,即左右颠倒和上下颠倒公式:图像⼤⼩为M*Nx ′=x y ′=−y (⽔平镜像)x ′=−x y ′=y(垂直镜像)由于不能为负,因此需要再进⾏⼀次平移x ′=x y ′=N +1−y (⽔平镜像)x ′=M +1−xy ′=y(垂直镜像)图像旋转公式:x ′=xcos θ−ysin θy ′=xsin θ+ycos θ由于计算结果值所在范围与原有值不同,因此需要在进⾏扩⼤画布、取整、平移等处理画布扩⼤原则:以最⼩的⾯积承载全部的画⾯信息⽅法:根据公式x ′=xcos θ−ysin θy ′=xsin θ+ycos θ计算x ′min ,x ′max ,y ′min ,y ′max旋转后可能导致像素之间相邻连接不再连续,因此需要通过增加分辨率的⽅式填充空洞插值最简单的⽅式就是⾏插值(列插值)⽅法1. 找出当前⾏的最⼩和最⼤的⾮背景点坐标,记作:(i,k1)、(i,k2)2. 在(k1,k2)范围内进⾏插值,插值⽅法为空点的像素值等于前⼀点的像素值3. 重复上述操作直⾄没有空洞图像的仿射变换图像的仿射变换即通过通⽤的仿射变换公式,表⽰⼏何变换{{{{{{{齐次坐标原坐标为(x,y),定义齐次坐标为(wx,wy,w)实质上是通过增加坐标量来解决问题仿射变换通式通过齐次坐标定义仿射变换通式为x ′=ax +by +Δx y ′=cx +dy +Δy⇒x ′y ′=a b Δx c dΔyx y⼏何变换表⽰1. 平移x ′y ′1=10Δx 01Δy 001x y12. 旋转x ′y ′1=cos θ−sin θ0sin θcos θ0001x y 13. ⽔平镜像x ′y ′1=−10001001x y14. 垂直镜像x ′y ′1=1000−10001x y15. 垂直错切x ′y ′1=1d x 00−10001x y16. ⽔平错切x ′y ′1=100d y −10001x y1图像的⼏何校正由于图像成像系统的问题,导致拍摄的图⽚存在⼀定的⼏何失真⼏何失真分为{[][][][][][][][][][][][][][][][][][][][][]1. 系统失真:有规律的、可预测的2. ⾮系统失真:随机的⼏何校正的基本⽅法是先建⽴⼏何校正的数学模型,其次利⽤已知条件确定模型参数,最后根据模型对图像进⾏⼏何校正步骤:1. 图像空间坐标的变换2. 确定校正空间各像素的灰度值(灰度内插)途径:1. 根据畸变原因,建⽴数学模型2. 参考点校正法,根据⾜够多的参考点推算全图变形函数空间坐标变换实际⼯作中利⽤⼀幅基准图像f(x,y),来校正失真图像g(x′,y′)根据⼀些控制点对,建⽴两幅图像之间的函数关系,通过坐标变换,以实现失真图像的⼏何校正两幅图像上的f(x,y)=g(x′,y′)时,称其为对应像素(同名像素)通过表达式x′=h1(x,y)y′=h2(x,y)表⽰两幅图像之间的函数关系通常⽤多项式x′=n∑i=0n−i∑j=0a ij x i y jy′=n∑i=0n−i∑j=0b ij x i y j来近似h1(x,y)、h2(x,y)当多项式系数n=1时,畸变关系为线性变换x′=a00+a10x+a01yy′=b00+b10x+b01y六个未知数需要⾄少三个已知点来建⽴⽅程式当多项式系数n=2时,畸变关系式为x′=a00+a10x+a01y+a20x2+a11xy+a02y2y′=b00+b10x+b01y+b20x2+b11xy+b02y2 12个未知数需要⾄少6个已知点来建⽴⽅程式当超过已知点数⽬超过要求时,通过最⼩⼆乘法求解n=2时多项式通式为B2∗n=H2∗6A6∗n(n为待求点数)B2∗n=x′1x′2⋯x′n y′1y′2⋯y′n{ []H 2∗6=a 00a 10a 01a 20a 11a 02b 00b 10b 01b 20b 11b 02A 6∗n =11⋯1x 1x 2⋯x n y 1y 2⋯y n x 21x 22⋯x 2n x 1y 1x 2y 2⋯x n y ny 21y 22⋯y 2n同名点对要求1. 数量多且分散2. 优先选择特征点直接法利⽤已知点坐标,根据x ′=h 1(x ,y )y ′=h 2(x ,y )⇒x =h ′1(x ′,y ′)y =h ′2(x ′,y ′)x =n ∑i =0n −i∑j =0a ′ij x ′i y′jy =n ∑i =0n −i∑j =0b ′ijx ′i y ′j解求未知参数;然后从畸变图像出发,根据上述关系依次计算每个像素的校正坐标,同时把像素灰度值赋予对应像素,⽣成校正图像由于像素分布的不规则,导致出现像素挤压、疏密不均等现象,因此最后还需要进⾏灰度内插,⽣成规则图像间接法间接法通过假定⽣成图像的⽹格交叉点,从⽹格交叉点(x,y)出发,借助已知点求取未知参数,根据x ′=n ∑i =0n −i∑j =0a ij x i y jy ′=n ∑i =0n −i∑j =0b ij x i y j推算⽹格交叉点(x,y)对应畸变图像坐标(x',y'),由于对应坐标⼀般不为整数,因此需要通过畸变图像坐标周围点的灰度值内插求解,作为⽹格交叉点(x,y)的灰度值间接法相对直接法内插较为简单,因此常采⽤间接法作为⼏何校正⽅法像素灰度内插最近邻元法最近邻元法即根据四邻域中最近的相邻像素灰度决定待定点灰度值该⽅法效果较佳,算法简单,但是校正后图像存在明显锯齿,即存在灰度不连续性双线性内插法[][]{{双线性内插法是利⽤待求点四个邻像素的灰度在两个⽅向上作线性内插该⽅法相较最近邻元法更复杂,计算量更⼤,但是没有灰度不连续的缺点,且具有低通滤波性质,图像轮廓较为模糊三次内插法三次内插法利⽤三次多项式S(x)来逼近理论最佳插值函数sin(x)/xS(x)=1−2|x|2+|x|30≤|x|<1 4−8|x|+5|x|2−|x|31≤|x|<20|x|≥2该算法计算量最⼤,但是内插效果最好,精度最⾼{Processing math: 100%。

数字图像处理课件第6章图像的几何变换

数字图像处理课件第6章图像的几何变换
由点的齐次坐标(Hx, Hy, H)求点的规范化齐次坐标(x, y, 1),可按下式进行:
x Hx H
y Hy H
第6章 图像的几何变换
齐次坐标的几何意义相当于点(x, y)落在3D空间H=1
的平面上,如图6-2所示。如果将xOy平面内的三角形abc的 各顶点表示成齐次坐标(xi, yi, 1)(i=1, 2, 3)的形式,就变成H =1平面内的三角形a1b1c1的各顶点。
图6-2 齐次坐标的几何意义
第6章 图像的几何变换
齐次坐标在2D图像几何变换中的另一个应用是:如某 点S(60 000,40 000)在16位计算机上表示,由于大于32767 的最大坐标值,需要进行复杂的处理操作。但如果把S的坐 标形式变成(Hx, Hy, H)形式的齐次坐标,则情况就不同了。 在齐次坐标系中,设H=1/2,则S(60 000,40 000)的齐次坐 标为(x/2,y/2,1/2),那么所要表示的点变为(30 000, 20 000,1/2),此点显然在16位计算机上二进制数所能表示 的范围之内。
(图像上各点的新齐次坐标)
(图像上各点的原齐次坐标)
第6章 图像的几何变换 设变换矩阵T为
a b p
T c
d
q
l m s
则上述变换可以用公式表示为
=
T
Hx1' Hy1'
Hx2' Hy2'
Hxn' Hyn'
x1 x2 xn
T
y1
y2
yn
H H H 3n
1 1 1 3n
第6章 图像的几何变换
6.4 图像镜像
6.4.1 图像镜像变换 图像的镜像(Mirror)变换不改变图像的形状。 镜像变换分为两种:一种是水平镜像,另外一种是垂直镜

数字图像处理 03图像变换(DCT&DWT变换)

数字图像处理  03图像变换(DCT&DWT变换)

3.3.1 一维离散余弦变换
正变换: f (x)为一维离散函数, x = 0,1,",N −1
∑ F (0) =
1
N −1
f (x) ,
N x=0
u=0
∑ F (u) =
2 N
N −1 x=0
f
(
x)
cos
⎡ ⎢⎣
π
2N
(2x
+
1)u
⎤ ⎥⎦
,
u = 1,2,", N −1
反变换:
∑ f (x) =
+ 1)u
⎤ ⎥⎦
∑ +
2 N
N −1 v=1
F
(0,
v)
cos⎢⎣⎡
π
2N
(2 y +1)v⎥⎦⎤
∑ ∑ +
2 N
N −1 u =1
N −1 v=1
F
(u,
v)
cos⎢⎣⎡
π
2N
(2x
+ 1)u ⎥⎦⎤
cos⎢⎣⎡
π
2N
(2 y
+ 1)v ⎥⎦⎤
6
数字图像处理讲义,2006,陈军波©中南民族大学
3.3离散余弦变换(DCT)
23
数字图像处理讲义,2006,陈军波©中南民族大学
3.4 小波变换简介
S
滤波器组
低通
高通
A
D
图3-19 小波分解示意图
24
数字图像处理讲义,2006,陈军波©中南民族大学
3.4 小波变换简介
在小波分析中,近似值是大的缩放因子计算的系数,表示信 号的低频分量,而细节值是小的缩放因子计算的系数,表示信号 的高频分量。实际应用中,信号的低频分量往往是最重要的,而 高频分量只起一个修饰的作用。如同一个人的声音一样, 把高频 分量去掉后,听起来声音会发生改变,但还能听出说的是什么内 容,但如果把低频分量删除后,就会什么内容也听不出来了。

数字图像处理 03图像变换(沃尔什变换)

数字图像处理  03图像变换(沃尔什变换)

6
数字图像处理讲义,2006,陈军波©中南民族大学
3.2.2 Walsh函数
WW (0,t) = 1 WW (1, t ) = R (1, t ) WW (2, t ) = R (2, t ) ⋅ R (1, t ) WW (3, t) = R (2, t)
W W ( 0 , t ) +1
-1 W W (1, t ) +1
t 1
WaWlsWh(序7,的t ) W= Ral(s3h,函t ) 数的特点: R(数1(1)的,是t )是完+-11偶备函的数正,交序函号数为,奇序数号1的为t是偶
WW (4,t) WW (5, t)
t 1 1t
R奇( 2函, t )数+1;可用于正交变换。 t
-1
1
WW (6,t)
1t
R(2(3),一t ) 个+1周期内,过零点数与序号
WW (0, t ) = R (3, t ) 0 ⋅ R ( 2, t ) 0 ⋅ R (1, t ) 0 = 1
5 101 111
WW (1, t ) = R (3, t ) 0 ⋅ R ( 2, t ) 0 ⋅ R (1, t )1 = R (1, t )
6 110 101 7 111 100
WW ( 2, t ) = R (3, t ) 0 ⋅ R ( 2, t )1 ⋅ R (1, t )1 = R ( 2, t ) ⋅ R (1, t )
WW (0,t) =1 WW (1,t) = R(1,t) WW (2,t) = R(2,t)⋅ R(1,t) WW (3,t) = R(2,t) WW (4,t) = R(3,t)⋅ R(2,t) WW (5,t) = R(3,t)⋅ R(2,t)⋅ R(1,t) WW (6,t) = R(3,t)⋅ R(1,t) WW (7,t) = R(3,t)

数字图像处理

数字图像处理

数字图像处理学院:行12数信院姓名:姜晶学号:12202509教师:朱杰时间:2014年10月一绪论1.1人类传递信息的主要媒介是语音和图像。

据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。

目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。

数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。

数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。

数字图像处理作为一门学科大约形成于20世纪60年代初期。

早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。

数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。

图像的概念视觉是人类最重要的感知手段,图像视觉的基础。

图像处理是计算机信息处理的重要内容。

图像可以是可视的和非可视的,也可以是抽象的和实际的。

一般情况下,一幅图像是另一种事物的表示,它包含了有关其所表示物体的描述信息。

可以包括人眼看见的方式显示这一信息,也可以包括人眼不能感知的形式表示信息。

图像是器所表示物体信息的一个浓缩或概括。

一般来说,一幅图像包含的信息远比原物体要少。

因此,一幅图像是该物体的一个不完全、不精确的,但在某种意义上是恰当的表示。

实际上,图像与光学密切相关,即与光的照射、反射密切相关。

因此,从理论上来说,一幅图像可以被看作为空间各个坐标点上光的强度的集合。

数字图像处理

数字图像处理

数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。

它涉及对数字图像进行获取、处理、分析和解释的过程。

数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。

本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。

数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。

在数字图像处理中,我们通常使用灰度图像和彩色图像。

•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。

灰度图像通常表示黑白图像。

•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。

彩色图像可以表示图像中的颜色信息。

图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。

1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。

2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。

3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。

常见的处理包括滤波、边缘检测、图像变换等。

4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。

常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。

常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。

•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。

•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。

•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。

边缘检测边缘检测是用于寻找图像中物体边缘的方法。

常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。

•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。

•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。

数字图像处理——图像非线性变换

数字图像处理——图像非线性变换

数字图像处理——图像⾮线性变换
1、相关了解:由于变换往往是针对具体情况的,因此没有固定的⾮线性变换公式。

有⼏种⾮线性变换公式经常遇到,如
f(B)=A+α×A×(max(A)-A)
其中α>0,这个⾮线性变换公式的图像处理效果是:图像中间灰度的对⽐度拉⼤,两端(⾼亮和过暗区)变化很⼩。

2、相关实例:⽤函数f(x)=(x)+0.005×x×(255-x)对“⾬晴⽴⼈楼”图像进⾏⾮线性变换。

①Matlab程序代码:
function nt
%by Yuanshuai Zheng UESTC 数字视觉视频技术exercise nonlinear transformation
A=imread('UESTC_rain.bmp');
figure(1);
imshow(A);%显⽰原图像
x=1:255;
y=x+0.005*x.*(255-x);
figure(2);
plot(x,y);%显⽰函数曲线图
B=double(A)+0.005*double(A).*(255-double(A));
figure(3)
imshow(uint8(B));%显⽰⾮线性处理后图像
②处理结果
⽴⼈楼原图⾮线性处理后图像
⾮线性变换函数曲线图
③结果简析和反思
从曲线可以看出,该变换是把原图像的中间灰度拉伸,低灰度值近似保持不变,压缩⾼亮灰度。

实验过程中,通过改变α的值,可以明显看出图像的变化。

数字图像处理及MATLAB实现实验四——图像变换

数字图像处理及MATLAB实现实验四——图像变换

数字图像处理及MATLAB实现实验四——图像变换1.图像的傅⾥叶变换⼀(平移性质)傅⾥叶变换的平移性质表明了函数与⼀个指数项相乘等于将变换后的空域中⼼移到新的位置,并且平移不改变频谱的幅值。

I=imread('1.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('2.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('3.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));实验结果符合傅⾥叶变换平移性质2.图像的傅⾥叶变换⼆(旋转性质)%构造原始图像I=zeros(256,256);I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐imshow(I)%求原始图像的傅⾥叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figureimshow(J1,[550])%对原始图像进⾏旋转J=imrotate(I,90,'bilinear','crop');figureimshow(J)%求旋转后图像的傅⾥叶频谱J=fft2(I);F=abs(J);J2=fftshift(F);figureimshow(J2,[550])3.图像的离散余弦变换⼀%对cameraman.tif⽂件计算⼆维DCT变换RGB=imread('cameraman.tif');figure(1)imshow(RGB)I=rgb2gray(RGB);%真彩⾊图像转换成灰度图像J=dct2(I);%计算⼆维DCT变换figure(2)imshow(log(abs(J)),[])%图像⼤部分能量集中在左上⾓处figure(3);J(abs(J)<10)=0;%把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像K=idct2(J)/255;imshow(K)4.图像的离散余弦变换⼆% I=imread('1.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('2.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('3.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% %构造原始图像% I=zeros(256,256);% I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐% imshow(I)% %求原始图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J1=fftshift(F);figure% imshow(J1,[550])% %对原始图像进⾏旋转% J=imrotate(I,90,'bilinear','crop');% figure% imshow(J)% %求旋转后图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J2=fftshift(F);figure% imshow(J2,[550])% %对cameraman.tif⽂件计算⼆维DCT变换% RGB=imread('cameraman.tif');% figure(1)% imshow(RGB)% I=rgb2gray(RGB);% %真彩⾊图像转换成灰度图像% J=dct2(I);% %计算⼆维DCT变换% figure(2)% imshow(log(abs(J)),[])% %图像⼤部分能量集中在左上⾓处% figure(3);% J(abs(J)<10)=0;% %把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像% K=idct2(J)/255;% imshow(K)RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000110000001000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000100000000000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);5.图像的哈达玛变换cr=0.5;I=imread('cameraman.tif');I=im2double(I)/255; %将读⼊的unit8类型的RGB图像I转换为double类型的数据figure(1),imshow(I);%显⽰%求图像⼤⼩[m_I,n_I]=size(I); %提取矩阵I的⾏列数,m_I为I的⾏数,n_I为I的列数sizi=8;snum=64;%分块处理t=hadamard(sizi) %⽣成8*8的哈达码矩阵hdcoe=blkproc(I,[sizi sizi],'P1*x*P2',t,t');%将图⽚分成8*8像素块进⾏哈达码变换%重新排列系数CE=im2col(hdcoe,[sizi,sizi],'distinct');%将矩阵hdcode分为8*8互不重叠的⼦矩阵,再将每个⼦矩阵作为CE的⼀列[Y Ind]=sort(CE); %对CE进⾏升序排序%舍去⽅差较⼩的系数,保留原系数的⼆分之⼀,即32个系数[m,n]=size(CE);%提取矩阵CE的⾏列数,m为CE的⾏数,n为CE的列数snum=snum-snum*cr;for i=1:nCE(Ind(1:snum),i)=0;end%重建图像re_hdcoe=col2im(CE,[sizi,sizi],[m_I,n_I],'distinct');%将矩阵的列重新组织到块中re_I=blkproc(re_hdcoe,[sizi sizi],'P1*x*P2',t',t);%进⾏反哈达码变换,得到压缩后的图像re_I=double(re_I)/64; %转换为double类型的数据figure(2);imshow(re_I);%计算原始图像和压缩后图像的误差error=I.^2-re_I.^2;MSE=sum(error(:))/prod(size(re_I));。

数字图像处理常用方法

数字图像处理常用方法

数字图像处理常用方法
是基于图像的性质进行计算,利用数字图像处理方法来处理和分析数字图像信息。

数字图像处理包括图像采集、图像建模、图像增强、图像分割、图像特征提取、图像修复、图像变换等。

具体数字图像处理方法有:
1、图像采集:利用摄像机采集图像,可以采用光学成像、数字成像或其他技术技术来实现;
2、图像建模:利用数学模型将图像信息表达出来,有些模型可以用来确定图像的特征,而有些模型则能够捕捉图像的复杂细节;
3、图像增强:对采集的图像数据进行处理,包括图像的锐化、滤波、清晰度增强、局部像素增强等;
4、图像分割:根据指定的阈值将图像分成不同的区域,分割图像后可以获得更多的精确细节和信息;
5、图像特征提取:将图像信息中的有价值部分提取出来,提取的过程有多种算法,提取的结果均可以用来进行分类识别等;
6、图像修复:通过卷积神经网络,利用图像的实际内容和特征,自动修复受损图像;
7、图像变换:针对图像的数据结构,可以利用变换矩阵将图像像素坐标和分量进行变换,以获得新的图像。

数字图像处理实验报告(图像灰度变换处理)

数字图像处理实验报告(图像灰度变换处理)

数字图像处理实验报告班级:姓名:学号:数字图像处理实验报告一.实验名称:图像灰度变换二.实验目的:1 学会使用Matlab;2 学会用Matlab软件对图像灰度进行变换,感受各种不同的灰度变换方法对最终图像效果的影响。

三.实验原理:Matlab中经常使用的一些图像处理函数:读取图像:img=imread('filename'); //支持TIFF,JPEG,GIF,BMP,PNG,XWD等文件格式。

显示图像:imshow(img,G); //G表示显示该图像的灰度级数,如省略则默认为256。

保存图片:imwrite(img,'filename'); //不支持GIF格式,其他与imread相同。

亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in至high_in之间的值映射到low_out至high_out之间,low_in 以下及high_in以上归零。

绘制直方图:imhist(img);直方图均衡化:histeq(img,newlevel); //newlevel表示输出图像指定的灰度级数。

像平滑与锐化(空间滤波):w=fspecial('type',parameters);imfilter(img,w); //这两个函数结合将变得十分强大,可以实现photoshop里的任意滤镜。

图像复原:deconvlucy(img,PSF); //可用于图像降噪、去模糊等处理。

四.实验步骤:1.获取实验用图像:Fig3.10(b).jpg. 使用imread函数将图像读入Matlab。

2.产生灰度变换函数T1,使得:0.3r r < 0.35s = 0.105+2.6333(r–0.35) 0.35 ≤ r ≤ 0.65 1+0.3(r–1) r > 0.65用T1对原图像Fig3.10(b).jpg进行处理,打印处理后的新图像。

第6章 遥感数字图像处理_图像变换(2)

第6章 遥感数字图像处理_图像变换(2)
NDห้องสมุดไป่ตู้I


IR R IR R

式中:IR为遥感多波段图像中的近红外 (infrared)波段;R为红波段。 利用植被指数可监测某一区域农作物长势,并 在此基础上建立农作物估产模型,从而进行大 面积的农作物估产。
南京紫金山和玄武湖的NDVI分布
LANDSAT7的ETM影像,2000.6
常用的红外(IR)与红(R)波段

其中, R、G、B ∈[0, 1],r,g,b ∈[0, 1],M=max[R、 G、B],m=min[r、g、b] 注意,R、G、B中至少有一个值是0,与最大值的 颜色对应,并且至少有一个的值是1,与最小值 的颜色对应。
RGB到HSI
I M m 2
如果 M m , S 0 如果 I 0 . 5, S 如果 I 0 . 5, S M m M m M -m 2M m , S 的取值范围是 [ 0 ,1]

例如,在地质探测中,地质学家用TM的某种组 合解译矿石类型:B3/B1突出铁氧化物,B5/B7 突出粘土矿物,B5/B4突出铁矿石,B5/B6突出 大片白陶土蚀变区域,B4/B3突出植被信息, B5/B2分离陆地和水体,等等。

波段比值方法还可以用来探测地物随季节变化 的信息。例如,如果需要监测地区植被的变化, 可以使用不同季节的第3波段的比值,新建立的 波段可能是20060810B3/20040810B3。图像的 时段可以是不同年的同一个月,或同一年的不 同月,新产生的波段将突出变化信息,变化的 像素具有较高的亮度值。没有变化的像素值较 低,在图像中比较暗。
传感器Landsat TM所对应的指数函数
函数名称
归一化植被指数(NDVI) 比值植被指数(IR/R) 差值植被指数(Veg.index) 转换植被指数(TNDVI) 氧化铁指数(IRON OXIDE)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2 离散傅里叶变换(Discrete Fourier Transform)
例4.2图象的二维离散傅立叶频谱。 %读入原始图象
I = imread(‘i_peppers_gray.b应用了对数变换后显示的中心傅里叶谱
4.2 离散傅里叶变换(Discrete Fourier Transform)
符合图像中1: 2的矩形尺寸比例(遵照傅里叶变 换4.4.6节的尺度变换性质)。在显示之前频率 谱用式(对数处理见前章3.2.2)中的对数变换 处理以增强灰度级细节。变换中使用 c0.5的值 可以降低整体强度。在本章显示的多数傅里叶频 率谱都用对数变换进行了相似的处理。
4.2 离散傅里叶变换(Discrete Fourier Transform)
式中 x0,1,..N . ,1,y0,1,..N . ,1
式中 u、v是频率变量。与一维的情况一样,
二维函数的离散傅里叶谱、能量和相位谱为:
傅里叶频谱: F u ,v R 2 u ,v I2 u ,v
相位:
u,varcR Itu a u,,vvn
4.1 连续傅里叶变换(Continuous Fourier Transform)
1、一维傅立叶变换及其反变换
: F (u)f(x)ej2 uxdx
1: f(x)F (u)ej2 uxdu
4.1.1 连续傅里叶变换的定义 (Definition
of Continuous Fourier Transform)
4.1 连续傅里叶变换的定义 (Definition of Continuous Fourier Transform)
傅里叶频谱:
1
F u ,vR 2u ,vI2u ,v2 (4.10)
相位:
u,varcR Itu a u,,vvn
(4.11)
能量谱:
E u ,v R 2 u ,v I 2 u ,v (4.12)
这里 f x是实函数,它的傅里叶变换 Fu通 常是复函数。Fu的实部、虚部、振幅、能量和
相位分别表示如下:
实部 虚部 振幅
Ru ftco2sud t t
Iu ftsi2 n ud t t 1
FuR2uI2u2
(4.3) (4.4) (4.5)
4.1.1 连续傅里叶变换的定义 (Definition of Continuous Fourier Transform)
F f( x ,y ) F ( u ,v ) f( x ,y ) e j2 u x v y d x d y
(4.8)
F 1 F ( u ,v ) f( x ,y ) F ( u ,v ) e j2 u x v y d u d v (4.9) 式中 u、v是频率变量。与一维的情况一样, 二维函数的傅里叶谱、能量和相位谱为:
二、 方法分类 可分离、正交变换: 2D-DFT , 2D-DCT ,
三、 用途
2D-DHT, 2D-DWT 。
1.提取图象特征(如):(1)直流分量:f(x,y)的平均值=F(0,0); (2)目标物边缘:F(u,v)高频分量。
2.图像压缩:正交变换能量集中,对集中(小)部分进行编码。 3.图象增强:低通滤波,平滑噪声;高通滤波,锐化边缘。
图4.1(a)
4.2 离散傅里叶变换(Discrete Fourier
Transform)
此图像在进行傅里叶变换的计算之前被乘以1x,y 从
而可以使频率谱关于中心对称,如图4.1(b)所示。在图
4.1(b)中,u方向谱的零点分割恰好是 v方向零点分隔的
两倍。
(a)
(b)
图4.1(a)在大小为 51251黑2 色背景上叠加一个尺寸为2040的白
能量谱: P u ,v F u ,v 2 R 2 u ,v I 2 u ,v
4.2 离散傅里叶变换(Discrete Fourier Transform)
例4.1一个简单二维函数的中心谱。 图4.1(a)显示了在 51251像2 素尺寸的黑色
背 景 上 叠 加 一 个 2040 像 素 尺 寸 的 白 色 矩 形 。
数字图像处理
第4章图像变换(Image Transform)
4.1 连续傅里叶变换 4.2 离散傅里叶变换 4.3 快速傅里叶变换 4.4 傅里叶变换的性质 4.5 图像傅里叶变换实例 4.6 其他离散变换
一、 图象变换的引入 1. 方法:对图象信息进行变换,使能量保持但重新分配。 2. 目的:有利于加工、处理[滤除不必要信息(如噪声), 加强/提取感兴趣的部分或特征]。
Nu0
4.2 离散傅里叶变换(Discrete Fourier Transform)
傅里叶频谱:
F uR 2uI2u
相位:
u arI c u /tR a u n
能量谱
P u F u 2 R 2 u I2 u
4.2 离散傅里叶变换(Discrete Fourier Transform)
4.2 离散傅里叶变换(Discrete Fourier Transform)
函数 f x的一维离散傅里叶变换由下式定义:
N1
:Fu f xej2ux /N (4.13) x0
其中,u0,1,2,..N . ,1。Fu的傅里叶反变换定
义为:
1:f x1N1Fuej2ux /N (4.14)
同连续函数的傅里叶变换一样,离散函数的 傅里叶变换也可推广到二维的情形,其二维离散 傅里叶变换定义为:
1N1N1
Fu,v
f
xej2(u xv)y/N (4.16)
Nx0y0
式中 u0,1,..N . ,1,v0,1,..N . ,1。二维离 散傅里叶反变换定义为
fx,y1N 1N 1Fu ,vej2(u x v)y /N (4.17) Nu0v0
能量
E u F u 2 R 2 u I2 u (4.6)
相位
uarctR Iau un
(4.7)
傅里叶变换可以很容易推广到二维的情形。
设函数 fx,y是连续可积的,且 fu,v可积,则存
在如下的傅里叶变换对:
4.1 连续傅里叶变换的定义 (Definition of
Continuous Fourier Transform)
相关文档
最新文档