理论力学课件 15.1 牵连运动为平移时点的加速度合成定理
理论力学_点的合成运动_点的加速度合成定理_
8-4 点的加速度合成定理三种加速度(相对于三种运动,瞬时量)绝对加速度动点相对静系运动的加速度相对加速度动点相对动系运动的加速度牵连加速度牵连点的加速度8-4点的加速度合成定理a a r a e a动点--M 点定系--OXYZ动系--O ˊXˊYˊZˊ牵连点—动系O ˊXˊYˊZˊ上M 点M O r r r ''=+r x i y j z k '''''''=++为常矢量,,其中考虑到考虑到则M a O dr v r x i y j z k x i y j z k dt '''''''''''''==++++++eO O edv dv a a dt dt ''===r rr dv dv a dt dt==点的加速度合成定理—当牵连运动为平动时,动点在某瞬时的绝对加速度等于它在该瞬时的牵连加速度与相对加速度的矢量和。
2222222222o M a d r d r d x d y d z a i j k dt dt dt dt dt '''''''==+++a e r a a a =+上式中每一个矢量都有大小和方向两个要素,因此上式总共包含有12个要素,其中若仅有两个要素是未知的,则此矢量式可解。
由于加速度包括沿轨迹切线方向的切向加速度和沿主法线方向的法向加速度两个分量,所以在最一般的情况下练习1凸轮在水平面上向右作减速运动,如图所示。
设凸轮半v a径为R,图示瞬时的速度和加速度分别为和。
求杆AB在图示位置时的加速度。
解:取动点和动系动点:顶杆AB上的A点动系:固结凸轮上的参考系绝对运动:铅垂方向直线运动相对运动:半圆周运动牵连运动:水平直线平移8该瞬时杆AB 的速度方向向上练习1—速度分析绝对速度:大小未知,方向沿杆AB 向上牵连速度:,方向水平向右相对速度:大小未知,方向沿凸轮圆周的切线根据速度合成定理ϕϕsin sin e r vv v ==a v e v r v e v v =练习1—加速度分析绝对加速度:大小未知,方向沿直线AB 牵连加速度:,沿水平方向相对加速度法向分量:,沿着,指向半圆板圆心相对加速度切向分量:大小未知,垂直于,假设指向右下a a e a e a a OA OA O。
9.3牵连运动为平动时点的
v r1 v r
vr
t B
vr , , M B vr1 M , 1 A t+ t
M A
t 又由于牵连运动是平动, B AB曲线与A’B’曲线平行, 认为: vr
vr , , M B vr1 M , 1 A t+ t
v r1 v r
M A
于是:
v r ' v r v r ' v r1 lim lim t 0 t 0 t t
§9.3 牵连运动为平动时点的 加速度合成定理
牵连运动:动坐标系的运动
动坐标系固结于某一运动的刚体上,可能作平动, 定轴转动或其他的更为复杂的运动,动坐标系的运动 不同,加速度合成定理的表达形式不同。 先讨论牵连运动为平动时的加速度合成定理。
牵连运动为平动时的加速度合成定理
a a ae a r
度为a。
试求此瞬时平底推杆的速 度和加速度。
解:在整个运动过程中,AB杆的平底始终与 圆轮相切,所以圆轮中心点C至平底的距离保 持不变。 因此,C点相对于AB杆的运动是 平行于平底的直线运动,即C点 相对于AB杆的轨迹是一条与平 底平行的直线。
动点选圆心C点, 动系固结在推杆AB上。 点C的绝对运动为绕O点的 圆周运动。
动系平动,有:
t B ve M A
, , M B , M1 t+ t
, ve ve1
ve1 ve '
A
因此有: lim v e ' v e lim v e1 v e t 0 t 0 t t ve和ve1是平动坐标系上同一个点在相隔的两个不同瞬 时的速度, ( ve1- ve )= ve是速度增量。
大小为
va=ew
点C的相对运动: 沿平行于平底的水平直线运动, vr=? 方向向左, 牵连运动:AB杆的铅垂直线
牵连运动为定轴转动时点的加速度合成定理
理论力学
aa ae ar aC
即当牵连运动为转动时,动点的绝对加速度等于牵连加速度、相对 加速度与科氏加速度的矢量和。这就是牵连运动为转动时点的加速 度合成定理。
设动点沿直杆 OA 运动,杆 OA 又以角速度 绕O 轴匀速转动。
将动坐标系固结在杆上。在瞬时 t ,动点在 OA杆的M 位置, 它的相对速度、牵连速度分别为 vr 和 ve ,经时间间隔 t后, 杆OA 转动 角,动点运动到 OA 杆的M 点处,这时动点的相 对速度、牵连速度分别为 vr 和 ve ,如图6-10(a)所示。
又由图6-10(c)可知 ve ve1 ve2 (c)
式中,ve1 表示由于牵连速度方向变化而引起的牵连速度增量;ve2 表示由于存在相对运动使牵连速度大小变化而引起的牵连速度增量。
将式(b)、式(c)一起代入式(a),可得
aa
lim vr1 t0 t
lim vr2 t0 t
lim ve1 t0 t
将式(e)、式(f)和式(6-11)一并代入式(d),于是牵连
运动为转动时点的加速度合成定理得到证明,
即式(d)可写成
aa ae ar aC
所得结论也适用于一般情况。科氏加速度的表达式为
aC 2e vr
根据矢量积运算法则,aC 的大小为
aC 2evr sin
式中, 是矢量e与vr 的夹角;
lim ve2 t0 t
lim ve ve t0 t
lim OM OM
t0
t
vr
其方向也垂直于 vr,并与 转向一致。
由于这两项附加加速度的大小相同,方向一致,所以,两项合
并成一项,用 aC 表示,它的大小为
aC 2vr
它的方向与 vr 垂直,并与 转向一致。这项加速度称为科氏加速度。
第四节 牵连运动为转动时点的加速度合成定理
※第四节 牵连运动为转动时点的加速度合成定理。
取动点为小球M ,动系固结于圆盘,定系固结于地面。
动点M 的的相对运动为匀速率圆周运动,相对速度为r v ,故相对加速度r a 的大小为r v a a rn r r 2== (a )方向指向圆心O 。
牵连运动是圆盘以匀角速度e ω绕O 轴转动,故动点M 的牵连速度e v 的大小为r v e e ω=,方向与r v 一致;牵连加速度e a 的大小为2e n e e r a a ω== (b )方向也指向圆心O 。
由于r v 和e v 方向相同,故点M 的绝对速度的大小为=+=+=r e r e a v r v v v ω常数可见,动点M 的绝对运动也是也是匀速圆周运动,于是M 的绝对加速度a a 的大小为()r e r e r e a n aa v r v r r v r r v a a ωωω22222++=+=== (c )方向也是指向圆心O 。
考虑到(a )、(b )两式,有r e r e a v a a a ω2++= (d ) 从上式可以看出,动点的绝对加速度除了牵连加速度和相对加速度两项外,还多了一项r e v ω2,可见牵连运动为转动时,动点的绝对加速度并不等于牵连加速度与相对加速度的矢量和,而多出的一项与牵连转动e ω和相对速度r v 有关,多出的这一项称为科氏加速度。
牵连运动为转动时点的加速度合成定理为:牵连运动为转动时,动点在某瞬时的绝对加速度等于该瞬时它的牵连加速度、相对加速度与科氏加速度的矢量和。
即C r e a a a a a ++= (14-7)式中a c 为科氏加速度,它等于动系角速度矢与点的相对速度矢的矢积的两倍,即r e C v ωa ⨯=2 (14-8)刚体的角速度矢的模等于角速度的大小,其方位沿刚体的转轴,指向用右手螺旋法则来确定(右手四指代表角速度的转向,拇指表示角速度矢的指向)。
C a 的大小为θωsin 2r e C v a =其中θ为e ω与r v 两矢量间的最小夹角。
理论力学第七版第07章(1-2节)--点的合成运动 (2)
绝对运动:圆周运动 相对运动:直线运动(沿O1B) 牵连运动:定轴转动(绕O1轴) 2.速度
va ve vr r
√
大小
? ?
√
rl v r v a cos 2 l r2
方向 √
r 2 v e v a sin 2 l r2
ve ve r 2 1 2 2 2 O1 A l r2 l r
(7-15)
aa ar α r ω ω r 2ω vr
(7-18)
§7-4 牵连运动是定轴转动时点的加速度合成定理
设动系作定轴转动,转轴通过点O´,其角速度矢量为
aa ar α r ω ω r 2ω vr
v a rO xi yj z k xi yj zk
va ve v r
aa ae ar
例7-7
已知:如图所示平面机构中,铰接在曲柄端 A 的滑块,可 在丁字形杆的铅直槽DE内滑动。设曲柄以角速度ω作匀速 转动, OA r 。
回顾: 2.矢积表示绕定轴转动刚体上点的速度和加速度
dv d 加速度 a r dt dt
→
d dr r dt dt
r v
(6-21)
→
→ → →
科里奥利,法国物理学家。
1792年5月21日生于巴黎;1843年9月19日卒于巴黎。 科里奥利是巴黎工艺学院的教师,长期健康状况不佳,这 限制了他创造能力的发挥。即便如此,他的名字在物理学 中仍是不可磨灭的。 1835年,他着手从数学上和实验上研 究自旋表面上的运动问题。地球每 24 小时自转一周。赤道 面上的一点,在此时间内必须运行25,000英里,因此每小 时大约向东运行 1,000英里。在纽约纬度地面上的一点, 一天只需行进19,000英里,向东运行的速度仅约为每小时 800英里。由赤道向北流动的空气,保持其较快的速度,因 此相对于它下面运动较慢的地面而言会向东行。水流的情 况也是一样。因此,空气和水在背向赤道流动时好像被推 向东运动,反之会向西运动,这样会形成一个圆! 推动它们运动的力就称为科里奥利力。 这种力不是真实存在的 ! 只是 “ 惯性 ” 这种性质的表现而已。 正是这种"力"造成了飓风和龙卷风的旋转运动。研究大炮射 击、卫星发射等技术问题时,必须考虑到这种力。
点的合成运动(相对牵连绝对运动)(课堂PPT)
相对速度vr =v 方向 牵连运动: 平动;
牵连速度ve=v平 方向 绝对运动: 曲线;
绝对速度va 的大小,方向待 求
由速度合成定理:va ve vr
作出速度平四边形如图示,则物块A的速度大小和方向为
vA va ve 2 vr 2 v平2 v2
tg 1
v v平
1
15
[例2] 曲柄摆杆机构
已知:OA= r , , OO1=l 图示瞬时OAOO1 求:摆杆O1B角速度1
1
28
选点M为动点,动系固结与圆盘上, 则M点的牵连运动为匀速转动
ve R, ae 2 R
(方向如图)
相对运动为匀速圆周运动,
有vr
常数, ar
vr 2 R
(方向如图)
由速度合成定理可得出
va ve vr R vr 常数
即绝对运动也为匀速圆周运动,所以
aa
va 2 R
(R vr 2
R
)
R
2
vr 2 R
之间的关系。 一.证明
当t t+△t AB A'B' M M'
也可看成M M1 M´
MM ' 为绝对轨迹
MM ' 为绝对位移
M1M ' 为相对轨迹
M1M ' 为相对位移
MM' = MM 1 + M1M '
将上式两边同除以t 后,
取
t 0
时的极限,得
lim
t 0
MM t
lim
t0
MM1 t
lim
t0
恰当地选择动点、动系和静系是求解合成运动问题的关键。
1
19
动点、动系和静系的选择原则 动点、动系和静系必须分别属于三个不同的物体,
理论力学课件 加速度合成定理及其应用
的速度和加速度。
分析
动 点 A(OA) , 动 系 BCD( 平
B
移)。 绝对运动:绕O圆周运动
n O
A
ϕ
O1
D
ϕ
相对运动:绕O1圆周运动
R C
牵连点运动:水平直线
例7-4 图示曲柄滑道机构,圆弧轨道的半径R=OA=10 cm,已
2、分析三种运动。点作直线运动加速度为1 项;曲线运动加速度为2项。
3、速度分析(见前述)。若有科氏加速度,需要求相对 速度和牵连角速度。 4、加速度分析。
1)作加速度矢量图。法向加速度指向曲率中心,加 速度未知的指向可以假设。
7-4 加速度合成定理及其应用
科氏加速度方向由下法确定。
相对速度按牵连角速度转向绕动点转90度。 牵连运动为平移时最一般表达式
7-4 加速度合成定理及其应用
7-4 加速度合成定理及其应用
例7-5 偏心凸轮的偏心距OC=e、半径
为R = 3e , 以 匀 角 速 度 ω 绕 O 轴 转
动,杆AB能在滑槽中上下平动,杆的
B
端 点 A 始 终 与 凸 轮 接 触 , 且 OAB 成 一
直线。求在OC与CA垂直时从动杆AB
的速度和加速度。
= avr
ቤተ መጻሕፍቲ ባይዱ+ ωv × vvr
avC = 2ωve × vvr
7-4 加速度合成定理及其应用
ava = ave +
科氏加速度
avr
+ avC
avC =
2ωve
× vvr
ωe是动系转动的角速度。
ωe = 0 ⇒
牵连运动为平动的加速度合成定理
电子教案
第九章 点的合成运动
太原理工大学理学院 王晓君
9.3 牵连运动为平动时点的加速度合成定理
如图,设 Oxyz为平动参考系,动点M相对
于动系的相对坐标为 x、 y 、z ,则动点M
的相对速度和加速度为
vr
ar
xi yj zk
xi yj zk
x
z
o
z
ar
ok
M
aa y
ae
x i j
y
由点的速度合成定理有: va ve vr
两边对时间求导,得:
动系平动时有: vr
va ve vr
xi yj
所以
aa
1 3
(ae
2arn
aan
)
3 (a v2 ) 3r
9.3 牵连运动为平动时点的加速度合成定理
故OA杆的角加速度
OA
aa OA
3 (a v2 ) 3r r
THE END
谢 谢!
A
,
O1
由 va ve ,v将r 各矢量投影到投影轴上,得
va cos ve vr cos va sin vr sin
9.3 牵连运动为平动时点的加速度合成定理
解得:
va
vr
ve
2 c os
v 2 c os30
v 3
3v 3
OA杆的角速度为
OA
va OA
3v 3r
动点的加速度合成矢量图如图。
加速度合成定理
例8-5 如图所示凸轮机构中,凸轮以匀角速度 ω绕水平O轴转动,带动直杆AB沿铅直线上、下运 动,且O、A、B 共线。凸轮上与点A接触的点为A`, 图示瞬时凸轮上点A`曲率半径为ρA ,点A`的法线与 OA夹角为θ,OA=l。 求:该瞬时AB的速度及加速度。
已知: 常数, O, A, B共线, OA l , A A , CAO , 求:v AB , a AB
点1的牵连加速度与相对加速度在同一直 2 线上,于是得 aa ae ar 1700 mm s 点2的牵连加速度
相对加速度大小为
科氏加速度大小为
ae 0 , 2 2 ar R1 1250 mm s , aC 2 e vr sin 90 1500 mm s 2 ,
2 1 2 2 2
r
2
vr va cos
l r rl
2
2
ve ve r 2 1 2 2 2 2 O1 A l r l r
3 加速度
l r
2
2
aan aet aen
2 2
ar ac
√ √
大小 r ? 1 O1 A ? 21vr 方向 √
√ √
已知:OA 常数, OA r , OO1 l , OA水平, 求:1
va ve tan l tan
3 加速度 a a a t a e r
vr
arn aC
ve
cos
l
cos
? l 方向 √ √ 大
2
? v A √ √
2 r
21vr √
沿 轴投影
aa cos ae cos arn aC
第四节牵连运动为转动的加速度合成定理
理论力学
第八章 点的合成运动
第
ar
v At t
四 节
ve
vr
M
At
牵
r
vr
连
运 动 为 转 动 的 加
lim
2vr sin
2
t 0
t
vr
相对速度 沿角速度 方向转900
ve
O
r1veMv vr
速 度
— 由牵连运动引起的相对速度的附加变化
合
成 定
科氏加速度的大小为相对速度与牵连角速度的乘积的
加
速 度
即: 当牵连运动为转动时,动点的绝对加速度等于其牵连
合
成 加速度、相对加速度与科氏加速度的矢量和。这就是牵连运
定
理 动为转动时的加速度合成定理。
鞍山科技大学机械工程与自动化学院工程力学系 赵宝生
理论力学
第八章 点的合成运动
第 在北半球的河流
四 节
牵 连
运 动
vr
为 转
aC
vr
动
的 加
aC
速
牵
aC aet ar
连
运
aa
动 为
aen
转 动
ω1
ar : 大小未知, aen = r ω 0 2 /8,
的 加
ae t = (O1A) ,
速
度
合 成 定 理
aC
2ω1vr
2
ve O1 A
3 2
r0
3 4
r02
鞍山科技大学机械工程与自动化学院工程力学系 赵宝生
理论力学
第八章 点的合成运动
第
由加速度合成定理
理论力学
第八章 点的合成运动
理论力学 加速度合成定理
选点M为动点,动系固结与圆盘上,
则M点的牵连运动为匀速转动
ve wR , ae w 2R
相对运动为匀速圆周运动,
有vr 常 数,
ar vr2 R
由速度合成定理可得出
ae ar
va ve vr wR vr 常数
即绝对运动也为匀速圆周运动,所以
aa
va 2 R
(Rw vr )2
R
Rw 2
相对速度 vr = ? , 方向CA; 相对加速度 art =? 方向CA
牵连速度 ve=v0 , 方向 →;
a
n r
vr2
/
R
方向沿CA指向C
由速度合成定理 va ve vr , 牵连加速度 ae=a0 , 方向→
vr
ve
sin j
v0 sin 60oFra bibliotek2 v0
3
j
j
因牵连运动为平动,故有
作加速度矢量图如图示,将上式 投影到法线上,得
科氏加速度:
ac 2w2vrsin180 0
由加速度合成定理
aa ae ar 1700 mm s2
计算点2的加速度 动点: 圆盘上的2点
ac
vr
ar
aa
动系: 与框架固结
牵连运动: 以匀角速度w2作定轴转动
牵连加速度: ae 0
相对运动: 以O为圆心,在铅直面内作匀速圆周运动
相对加速度:a
w2r(1 rsec3 / 2sec2 )
[例4] 矩形板ABCD以匀角速度w 绕固定
轴 z 转动,点M1和点M2分别沿板的对角线
BD和边线CD运动,在图示位置时相对于 A
D
板的速度分别为 v1和 v2 ,计算点M1 、 M2
合成运动--加速度合成
va r0 vevar0
ve r 0 DB l
⑷ 牵连运动为平移,由加速度
合成定理
aa
ae ar
得
aaaenaet ar
大小 √ √ ? ? B 方向 √ √ √ √
y'
A
aenDC 0 30
ar
E
60
x'
aet O aa
aa r02
2)取套筒B为动点,动参考系与滑枕CD固连。相对运动是套筒 B沿滑杆的竖直直线运动,牵连运动是滑枕CD的水平平动,绝 对运动是套筒B绕O2的圆周运动。由速度合成定理 可得:
解:⑴ 取曲柄OA上的A点为动点,动系在丁字杆上
⑵ 研究三种运动
绝对运动:圆周运动 相对运动:直线运动
va
ve
vr
D A
牵连运动:平移
O
⑶
由速度合成定理
va
ve
vr,
B
C
作速度平行四边形
E
va ve vr
va r
大小 √ ? ? 方向 √ √ √
vevasinrsin
在摇杆O1B上滑动并带动摇杆绕固定轴 O1摆动。 OA=r, OO1=l, 求当曲柄在水平位置时摇杆的角速度和角加速度。
解:⑴ 取曲柄O1A上的A点为动点,动系在O1B上
⑵ 研究三种运动
x'
绝对运动:圆周运动 相对运动:直线运动源自 veva
B
vr
牵连运动:转动
O
A
⑶
由速度合成定理
va
ac
21vr
2r3 2l
(r2 l2 )3
2
理论力学课件 点的合成运动2
对加速度与科氏加速度的矢量和。
当vr: ac = 2vr 其方向:由vr按 转向转90o即可。
当vr: ac = 0
23
例题. 半径为r偏心距为e的凸轮,以匀角速度绕O轴转 动,AB杆长l , A端置于凸轮上, B端用铰链支承.在图示瞬 时AB杆处于水平位置. 试求该瞬时AB杆的角加速度 AB .
牵连运动—动系随AB杆的A端作曲线平动.
牵连点—动系上被凸轮O上的C点盖住的C´点.
va= ve + vr
va = e ve = l AB
解得:
AB
e l
vr = 0
27
A
arn r x´
l B
y´ AB
aa = ae+ ar
(2)
aa = aan+ aa
(C´)C
aen
O aan y
沿y轴投影
aa sin 30 aet cos 30 aen sin 30
aet
aa aen sin 30 cos 30
3O2r(l r)
3l
BD
aet BD
3O2 r(l r)
3l 2
19
总结
牵连运动为平动时点的加速度合成定理
aa = ae+ ar
aan
l
2 AB
e2 l
2
aa = l AB
y´ ar = arn+ ar
arn=vr2 /r=r2
x ae = aen+ ae aen= r2sin ae = 0
ac = 2r2 把(1)式向AC方向投影得:
- aancos - aasin = aensin + arn - ac
天津大学理论力学课件运动学3点的合成运动
再如,直管OB以匀角速度绕定轴O转动,小 球M以速度u在直管OB中作相对的匀速直线运 动,如图示。将动坐标系固结在OB管上,以 小球M为动点。随着动点M的运动,牵连点在 动坐标系中的位置在相应改变。设小球在t1、 t2瞬时分别到达M1、M2位置,
➢若选凸轮上的点(例如与A重合之点)为 动点,而动坐标系与AB杆固结,这样,相对
运动轨迹不仅难以确定,而且其曲率半径未 知。因而相对运动轨迹变得十分复杂,这将 导致求解(特别是求加速度)的复杂性。
第三节 牵连运动为平移时,点的加速度 合成定理
➢动点的绝对加速度、相对加速度和牵连加速度
绝对加速度aa:动点相对于静坐标系运动的加速度 相对加速度ar:动点相对于动坐标系运动的加速度
在任意瞬时,只有牵连点的运动能够给动点 以直接的影响。为此,定义某瞬时,与动点 相重合的动坐标系上的点(牵连点)相对于 静坐标系运动的速度称为动点的牵连速度
下图中,动坐标系OA上各点的速度大小不一 样
M点绝对速度va沿着绝对运动轨迹(半圆弧)在点M 处的切线方向,即va垂直于点M与圆心的连线; M点相对速度vr沿着动点M与动系(摇杆OA)的相对 运动轨迹的切线方向,即沿着OA上的滑槽方向;
EF 相接触,在两者接触处套上一小环 M,当 BC 杆
运动时,小环 M 同时在 BC、EF 杆上滑动。设曲柄 AB=CD=r,连杆 BC=AD=l,若曲柄转至图示角位 置时的角速度为,角加速度为,试求小环 M 的
加速度。
解:
动点:小环M
动系:固连在连杆BC上
静系:固连在地面上
绝对运动是沿 EF 的直线运动。aa 方向已知,沿 EF;
理论力学第七版第七章-资料精品教育文档
BDBaetD
302r(lr)
3l2
§7-4 牵连运动(定轴转动)点的加速度 合成定理·科氏加速度
先分析k 对时间的导数。
vA
drA dt
e
rA
rA rO k
drO dt
ddkte(rO k)
因为 vO ddrO t erO
得 i d d kt e ei ,k, j同 e 理 ji,、 可 jk , 即 得 e k
求:气体微团在点C的绝对加速度。
例题7-10
已知 v r, , ,: C O r 求 a a:
解:首先分析
动点:气体微团C,动系 : Ox’y’ 相对运动:曲线运动(AB) 牵连运动:定轴转动(O轴) 绝对运动:未知
例题7-10
2、加速度 aaaear acaenarnac
大小 ?
已知:BC=DE,且BD=CE=l。 求:图示位置时,杆BD的角速度和角加速度。
例题7-9
解:1 动点:滑块A,动系:BC杆
绝对运动:圆周运动(O点) 相对运动:直线运动(BC) 牵连运动:平动
2 速度 大小 方向
va ve vr
r 0 ? ?
√ √√
vrvevar 0
BDBveDrl 0
得 a a ( a e e v r ) ( a r e v r )
aaaear2evr
令 aC 2evr 称为科氏加速度。
§7-4 牵连运动(定轴转动)点的加速度 合成定理·科氏加速度
Ve’
Ve’
Ve’-Ve
VM1
Vr’
VM1-Ve
M3 M1
Ve VM1
§7-4 牵连运动(定轴转动)点的加速度 合成定理·科氏加速度
点的加速度合成定理
ae = α × r + ω × (ω × r )
动系绕定轴 作旋转运动
aa = ae +ar +ac
ae = ao +α × r + ω × (ω × r )
aa = ae +ar +ac
动系作其他 更复杂的运动
动系作平移运动
科氏加速度是怎样产生的?有什么物理意义? 科氏加速度是怎样产生的?有什么物理意义? 下面举例说明,如图,动点M沿杆向右运动,同时杆绕 O点定轴转动,经过时间间隔 ∆t 后动点M移动到M’,不同 位置的各速度如图所示。
方向垂直向下. 方向垂直向下.
vr
下
D. ac=ωvr, 方向沿直径向右.
课堂练习
半径为R的圆轮以匀角速度ω转动,动点M 半径为R的圆轮以匀角速度ω转动,动点M沿轮缘以相 对速度v 运动,如图示. 对速度vr=Rω=C 运动,如图示. (1) 当相对速度与轮的 转向同向时,动点M的绝对加速度( 转向同向时,动点M的绝对加速度( 4Rω2 ); (2) 当相对速 度与轮的转向相反时,动点M的绝对加速度为( 0 ). 度与轮的转向相反时,动点M的绝对加速度为(
r
) (r
r
)
综合(4)、(5)、 (6)式,可得
= ae +ar +2ω×vr = ae +ar +ac
其中
ac = 2ω× vr e
称为科氏加速度(由法国工程师科里奥利首先提出 的),显然它等于动系转动角速度与动点相对速度矢量 积的两倍,它是由牵连运动和相对运动相互影响而产 生的。 科氏加速度的大小
~ dR (其中 dt
为相对导数)
当我们站在定参考系上观察,认为定系不动时,矢量对 时间的导数为绝对导数;当我们站在动参考系中观察,认为 动系不动时,矢量对时间的导数为相对导数。 (基于的参考系不同,对矢量的表示也不同。)
点的合成运动(相对牵连绝对运动)(课堂PPT)
ve O1 A
1 r 2 l2
r 2
r 2 l2
r
r
2
2
l
2
(
)
1
16
[例3] 圆盘凸轮机构
已知:OC=e , R 3e , (匀角速度)
图示瞬时, OCCA 且 O,A,B三点共线。
求:从动杆AB的速度。
解:动点取直杆上A点,动系固结于圆盘,
静系固结于基座。
绝对速度 va = ? 待求,方向//AB 相对速度 vr = ? 未知,方向CA
为什么在不同的坐标系或参考体上观察物体的运动会有不 同的结果呢?我们说事物都是相互联系着的。下面我们就将研 究参考体与观察物体运动之间的联系。为了便于研究,下面先 来介绍有关的概念。
§8-1 点的合成运动的概念
一.坐标系: 1.静坐标系:把固结于地面上的坐标系称为静坐标系,简称静系。 2.动坐标系:把固结于相对于地面运动物体上的坐标系, 称为动坐标系,简称动系。例如在行驶的汽车。
1
7
绝对加速度:aa
相对加速度:ar
牵连加速度:ae
1
8
动点:A1(在O'A1 摆杆上) 动系:圆盘 静系:机架 绝对运动:曲线(圆弧) 相对运动:曲线 牵连运动:定轴转动
动点:A(在圆盘上) 动系:O'A摆杆 静系:机架
绝对运动:曲线(圆周)
相对运动:直线
牵连运动:定轴转动
1
9
若动点A在偏心轮上时
M1 M t
1
11
1
12
va ve vr
即在任一瞬时动点的绝对速度等于其牵连速度与相对速度的 矢量和,这就是点的速度合成定理。
说明: va—动点的绝对速度;
点的加速度合成定理
点的加速度合成定理点的合成运动中,加速度之间的关系比较复杂,因此,我们由简单到复杂,先分析动系作平移的情形。
即先研究牵连运动为平动时的加速度合成定理,然后再介绍牵连运动为转动时的加速度合成定理。
一.牵连运动为平移时点的加速度合成定理设O′x′y′z′为平移参考系,由于x′、y′、z′各轴方向不变,可使与定坐标轴x、y、z分别平行。
其中动点M相对于动系的相对坐标为x′、y′、z′,由于i′、j′、k′ 为平移动坐标轴的单位常矢量,则点M的相对速度和相对加速度为(1)(2)利用点的速度合成定理及牵连运动为平移而得到:两边对时间求导,并注意到因动系平移,故i′、j′、k′ 为常矢量,于是得到其中,所以有:(3)这就是牵连运动为平移时点的加速度合成定理:当牵连运动为平移时,动点在某瞬时的绝对加速度等于该瞬时它的牵连加速度与相对加速度的矢量和。
例题1如下图所示,铰接四边形O1A=O2B=100mm, O1O2=AB,杆O1A以等角速度ω=2rad/s绕轴O1转动。
AB杆上有一套筒C,此套筒与杆CD相铰接,机构的各部件都在同一铅垂平面内。
试求:当 =60o时,CD杆的加速度。
解:1. 运动分析动点:CD上的C点;动系:固连于AB杆于是三种运动分别为:绝对运动:C点的上下直线运动;相对运动:C点沿AB直线运动;牵连运动:随AB杆铅垂平面内曲线平移2.加速度分析:其中由于动系作平移,故动系AB杆上各点的加速度相同,因此动系AB杆上与动点套筒C相重合点C1的加速度即牵连加速度,如下图所示,则:由平行四边形法则,得二.牵连运动为转动时点的加速度合成定理当牵连运动为转动时,加速度合成定理与牵连运动为平移时所得到的结果是不相同的。
如下图所示,圆盘半径为R并以等角速度绕轴O转动,在邻近其边缘的上方,静止地悬挂一个小球P。
若以P为动点,圆盘为动系,则三种运动为:绝对运动静止;牵连运动是绕O轴作定轴转动;相对运动是以点O为圆心、R为半径,与盘上重合点反向的等速圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牵连运动为平移时点的加速度合成定理
va
ve
vr
点的加速度合成定理
点的加速度合成定理
点的加速度合成定理
点的加速度合成定理
主要内容
1、牵连运动为平移时点的加速度合成定理 2、牵连运动为转动时点的加速度合成定理 3、加速度合成定理应用
点的加速度合成定理
点的加速度合成定理
点的加速度合成定理
1、牵连运动为平移时 点的加速度合成定理
点的加速度合成定理
牵连运动为平移时点的加速度合成定理
设动系作平移,由于x'、y'、z'各轴方向不变,故有
di dj dk 0 dt dt dt
ar
~ dvr dt
dvr dt
dve dt
dvO dt
aO
ae
aa
dva dt
Hale Waihona Puke dve dtdvr
dt
ae ar
当牵连运动为平移时,动点在某瞬时的绝对加速度等于该 瞬时它的牵连加速度与相对加速度的矢量和。