电力系统谐波影响及消除
谐波对继电保护的影响与应对策略
谐波对继电保护的影响与应对策略谐波是电力系统中的一种常见电压和电流波动,它们的频率是基波频率的整数倍。
谐波可由非线性负载(如电力电子设备和电弧炉)产生,对继电保护系统造成一些不良影响。
本文将探讨谐波对继电保护的影响以及应对策略。
谐波会导致继电保护系统的误动作。
继电保护通常通过检测系统电流和电压来判断发生故障的位置。
谐波会导致电流和电压失真,使得继电保护系统误以为发生了故障。
谐波可能导致不必要的保护动作,从而影响系统的正常运行。
谐波还会导致继电保护系统的灵敏度下降。
由于谐波的存在,继电保护系统需要更高的灵敏度才能正确地检测和定位故障。
提高灵敏度也可能导致继电保护系统对噪声的敏感性增加,从而引起误动作。
谐波会使继电保护系统在灵敏度和可靠性之间取得平衡变得更加困难。
针对上述问题,一些应对策略被提出:1. 谐波滤波器:通过在继电保护系统中增加谐波滤波器,可以有效降低谐波的影响。
谐波滤波器工作原理是通过选择性地过滤谐波信号,将其从继电保护系统中消除或减弱。
这样可以有效提高继电保护系统的灵敏度,减少误动作的发生。
2. 数字滤波算法:通过采用数字滤波算法,可以对输入信号进行滤波处理,减少谐波信号的干扰。
这些算法通常基于快速傅里叶变换(FFT)或小波变换(Wavelet Transform),能够提供更好的抑制谐波的效果。
3. 谐波抑制器:谐波抑制器是一种专门用于抑制谐波的设备。
它通常是根据谐波组成的特性设计的,可以通过频率选择性地抑制谐波信号。
谐波抑制器可以安装在继电保护系统的输入和输出端口,以减少谐波对继电保护系统的影响。
4. 教育和培训:针对谐波对继电保护的影响,进行相关的教育和培训也是必要的。
培训继电保护系统的操作人员,使其了解谐波现象及其对继电保护的影响,掌握正确的处理方法,能够及时应对谐波带来的问题。
谐波对继电保护系统产生了一些不良影响,包括误动作和灵敏度下降。
通过采取谐波滤波器、数字滤波算法、谐波抑制器等措施,可以减少谐波的影响。
谐波危害及抑制谐波的方法
谐波危害及抑制谐波的方法谐波是指频率高于基波的电磁波,它们会频繁出现在我们的电力系统和其他电力设备中。
虽然谐波在一些应用中可产生有益效果,但在大多数情况下,它们都是一种电力质量问题,会给电力系统和其他设备带来一系列危害。
1.设备损坏:谐波会增加设备内的电流和电压,导致设备发热加剧,并可能引起设备元件过热、熔断或焚毁。
此外,频繁的谐波还会引起设备的机械振动,造成设备损坏。
2.电力系统不稳定:谐波引起系统的电流和电压的波形失真,导致电力系统不稳定。
此外,谐波会导致电力系统中的谐振现象,这些谐振可以引起电力系统中的电流和电压急剧增加,可能破坏设备。
3.通信干扰:谐波会产生大量的高频干扰信号,这些信号可能干扰无线通信和其他电磁波设备的正常运行。
在高度电子化的社会中,这种通信干扰可能会带来严重的问题。
为了抑制谐波带来的危害,可以采取以下方法:1.装置谐波滤波器:谐波滤波器用于减小电力系统中的谐波。
滤波器通常会将谐波通过处理电路转化成其他形式,或者将它们绕过电力系统,以防止它们对设备和系统产生影响。
2.使用变压器:变压器可以用来减小谐波的影响。
通过在电力系统中安装特定的谐波抑制变压器,可以将谐波电流限制在合理的范围内,从而降低谐波的危害。
3.电源滤波器:为敏感设备提供干净的电力供应也是一种有效的抑制谐波的方法。
电源滤波器可以滤除电力供应中的谐波元素,从而降低谐波对设备的危害。
4.合理的电源设计:在电力系统设计阶段,可以采取一些措施来减小谐波的生成。
例如,选择适当的线路,减小高谐波的产生,或者选择低谐波的电力设备。
5.故障检测和维护:及时发现和处理设备和系统中的谐波问题至关重要。
定期进行电力设备的检查和维护,可以发现并消除谐波带来的潜在危害。
总而言之,谐波在电力系统和其他电力设备中的存在可能带来很多危害。
为了抑制这些危害,我们可以采取各种措施,包括使用谐波滤波器、变压器、电源滤波器、合理的电源设计以及进行定期的检查和维护。
电力系统中的谐波及其抑制措施
电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。
谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。
谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。
常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。
谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。
2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。
3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。
为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。
它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。
2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。
3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。
4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。
5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。
综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。
通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。
电力电子中的谐波问题如何解决?
电力电子中的谐波问题如何解决?在当今的电力系统中,电力电子技术的广泛应用带来了诸多便利和效率提升,但同时也引发了一个不容忽视的问题——谐波。
谐波的存在不仅会影响电力设备的正常运行,还可能导致电能质量下降,增加能耗,甚至危及整个电力系统的安全稳定。
那么,如何有效地解决电力电子中的谐波问题呢?要解决谐波问题,首先我们得明白谐波是怎么产生的。
电力电子设备在工作时,由于其非线性的特性,会使得电流和电压的波形发生畸变,从而产生谐波。
比如常见的整流器、逆变器、变频器等,它们在将交流电转换为直流电或者改变交流电的频率和电压时,就容易引入谐波。
既然知道了谐波的来源,那我们就可以有针对性地采取措施来减少谐波的产生。
一种常见的方法是优化电力电子设备的设计。
通过改进电路结构、采用更先进的控制策略以及选择合适的电力电子器件,可以在源头上降低谐波的含量。
例如,在整流电路中,采用多脉冲整流技术,如 12 脉冲、18 脉冲甚至更高脉冲数的整流,可以显著减少谐波的产生。
另外,增加滤波装置也是解决谐波问题的重要手段。
滤波装置可以分为无源滤波器和有源滤波器两大类。
无源滤波器通常由电感、电容和电阻等元件组成,通过谐振原理对特定频率的谐波进行吸收和抑制。
这种滤波器结构简单、成本较低,但存在滤波效果受系统参数影响较大、可能与系统发生谐振等缺点。
相比之下,有源滤波器则具有更好的滤波性能和适应性。
它能够实时检测电网中的谐波电流,并产生与之大小相等、方向相反的补偿电流,从而有效地消除谐波。
有源滤波器虽然性能优越,但成本相对较高,在一些对电能质量要求极高的场合应用较为广泛。
除了在设备端采取措施,合理的系统规划和运行管理也有助于减轻谐波的影响。
在电力系统的设计阶段,就应该充分考虑谐波的问题,合理分配负载,避免谐波源集中在某一区域。
同时,加强对电力设备的运行监测,及时发现和处理谐波超标问题,也是保障系统稳定运行的重要环节。
此外,提高电力用户的谐波意识也非常重要。
电力系统中谐波分析与治理
电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统性能的一个重要因素。
谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。
一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。
在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。
2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。
3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。
二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。
2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。
3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。
4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。
常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。
通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。
2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。
高次谐波对供电系统的危害及消除措施
高次谐波对供电系统的危害及消除措施摘要:现阶段提高供电质量和可靠性成为目前电力企业工作的重点。
在电力电子技术的推动之下,各种各样的供电设备出现在人们的视野中,这就导致高次谐波影响变得越来越广泛。
文章主要分析了高次谐波出现的原因,阐述高次谐波对供电系统产生的危害,最后提出了有效的消除措施。
关键词:高次谐波;供电系统;危害;消除措施高次谐波的出现不仅会影响供电系统,而且还会加速设备绝缘老化,也会对自动化装置以及通讯设施的正常运行产生影响。
主要是由于供电系统在运作过程中,变频器产生的高次谐波会增加电力系统的耗能,导致电机出现发热现象,从而严重影响整个供电系统找稳定性和安全性,不仅会降低供电系统的使用效果,而且还会给电力工作人员带来诸多不便,面对高次谐波对供电系统产生的干扰,人员要尽快的找到解决方案,保障电力系统平稳运作,从而提高电力供应质量。
1高次谐波出现的原因常见的谐波源主要有三类,稳态性谐波、动态性谐波以及暂态性谐波,不管是发电机、变压器还是发动机等电力设备。
如果选择的参数不当,或者是结构设计、制造工艺不良,会产生大量谐波。
一般情况下,电网供电的电压波是正弦波。
如果在线性负载上增加电压,那么电流呈现出的波形几乎和电压波形一样,也是正弦波。
此种情况下,机电电流不会产生。
反之,如果在电力系统运作时,负载中含有非线性的原件。
电路不会再使用平滑的方式吸收电流,而是使用阶跃脉冲的方式。
此时的电力系统不仅会产生高次谐波,而且还会形成一种畸变电流非线性负载电路都会存在此种谐波,高次谐波会引起电力系统出现故障。
目前随着供电压力逐步增大,高次谐波的污染范围也越来越大。
在供电系统运作时加大高次谐波治理,不仅能够有效地减少导体的集肤效应,降低导体温度,而且还能够降低变压器的铁损铜损,提高通讯设备的工作环境,避免数据网络出现阻塞通信线路比特错误率也大大降低,避免出现网络瘫痪。
能够保护装置的误动作,保障精密加工设备的加工精度。
试析电力系统谐振消除方法的分析
试析电力系统谐振消除方法的分析电力系统谐振是指电力系统中存在着频率等于或接近于系统固有频率的电路谐振现象。
谐振会引起系统的不稳定和损坏,因此谐振消除是电力系统中非常重要的问题。
本文将从谐振的危害、谐振消除的分类和方法、谐振消除方法的分析等方面进行探讨。
一、谐振的危害谐振会导致电力系统出现以下危害:1. 电力设备的热损坏,如变压器、电抗器等设备。
这是因为谐振会使系统产生很大的谐波电流,而谐波电流容易引起电力设备的热损坏。
2. 系统的不稳定。
当系统谐振时,会导致系统的电压、频率等参数的波动,从而影响系统的稳定性。
3. 系统电能质量下降。
当系统谐振时,会产生很多谐波,影响系统的电能质量。
二、谐振消除的分类和方法谐振消除的方法可以分为主动消除和被动消除两种。
1. 主动消除方法主动消除方法是通过改变电力系统的结构和参数,使得谐振频率发生变化或者消除谐振。
主动消除方法主要包括以下几种:(1)改变系统结构:例如增加或减少电缆、引入新的谐振回路等。
(2)改变系统参数:例如改变电抗器、电容器等的参数。
(3)控制技术:例如利用调节系统的控制参数来消除谐振。
2. 被动消除方法被动消除方法是将谐振引入到某个特定的电路或设备中,从而消除其他电路或设备上的谐振。
被动消除方法主要包括以下几种:(1)谐振回路:将控制的谐振电路接入电力系统中,从而消除其它谐振。
(2)继电器控制:利用继电器进行控制,以消除谐振。
(3)自动抑制器:将抑制器接入系统电路中,会自动检测并消除谐振。
三、谐振消除方法的分析谐振消除方法的选择需要根据实际情况进行分析,以下几个方面需考虑:1. 系统的特点:不同的系统具有不同的特点,需要根据不同的特点选择不同的谐振消除方法。
2. 技术难度:不同的谐振消除方法在技术上难度不同,需要选择技术难度适当的方法。
3. 经济成本:不同的谐振消除方法在经济成本上也有差异,需要根据实际情况选择经济成本适当的方法。
4. 可行性:不同的谐振消除方法在实际应用中的可行性也有差异,需选择可行性较高的方法。
电力系统谐波影响及消除简单探讨
电力系统谐波影响及消除简单探讨在电力系统中,谐波是一种频率高于基波频率的周期性电压或电流波形。
谐波的产生主要是由于非线性负载的存在,如电弧炉、变频器、电子设备等,这些设备会引入谐波电压和电流。
谐波对电力系统的影响主要集中在以下几个方面:电压、电流波形失真、设备功率损耗和过热、设备寿命缩短、传输和分配线路过载、通讯干扰等。
因此,消除谐波对电力系统的稳定运行和设备安全是非常重要的。
要想消除谐波,需要针对谐波的特点采取相应的措施。
以下是一些常用的谐波消除方法:1.被动滤波器被动滤波器是最常见的谐波消除方法之一、它通过谐波滤波器将谐波电流引入滤波器中,将其吸收或透过,实现对谐波的衰减。
被动滤波器包括谐振回路、调谐电路和滤波电路等。
被动滤波器通常用于少量谐波的消除,但对于大量谐波的消除效果较差。
2.主动滤波器主动滤波器是一种通过逆变器或逆变桥等电子器件生成与谐波相反的电流或电压来消除谐波。
主动滤波器具有较好的谐波消除效果,可以对谐波进行精确的控制和补偿。
但主动滤波器的成本相对较高,对系统的稳定性和可靠性要求也较高。
3.直流侧补偿直流侧补偿是通过在电力系统的直流侧引入逆变器,并对逆变器输出波形进行调整来消除谐波。
这种方法可以提供较好的谐波消除效果,特别适用于大型工业系统。
4.电容器补偿电容器补偿是一种常见的被动补偿方法,通过串联或并联电容器来提供与谐波相位相反的电压或电流,来消除谐波。
电容器补偿具有成本低、结构简单等优点,但对系统的谐波特性、电容器参数等要求较高。
除了上述方法外,还可以采取一些综合措施来减少谐波的影响,如增加电网容量、改善电网结构、优化电网运行方式、提高设备质量等。
此外,对于一些大型非线性负载设备,可以采用有效的滤波器和电源管理系统来减少谐波的产生和传播。
总之,谐波是电力系统中常见的问题,对电力系统的稳定运行和设备安全带来了不利影响。
因此,采取适当的谐波消除方法对于保障电力系统的正常运行至关重要。
电力系统谐波影响及消除对策分析
科
电力系统谐波 影 响及消 除对策 分析
张 志 闻
( 圳 供 电局 , 东 深 圳 5 8 0 ) 深 广 10 1
摘 要: 分析 了电力 系 中谐波的来源及其产 生的影响与危 害, 统 并总结 了相应的消除对策和抑制的方法措施等 关键词 : 电力 系统; 波; 谐 影响 ; 消除对策 随着科学技术的发展 , 工业生产水平和 随着 人民生活水平的提高 , 非线性用电设备在电网中 大量投运,造成了电网的谐波分量占的比 重越来 越大。 它不仅增加了电网的供电损耗 , 而且干扰电 网的保护装置与自 动化装置的正常运行 , 造成了 这些装置的误动与拒动 , 直接威胁电网的安全运 行。因此我们对非线性用电设备产生的谐波必须 进行治理, 使谐波分量不超过国家标准。 1电力系统中谐波的 来源 电力系统中的谐波来 自电气设备 , 也就是说 来自 发电设备和用电设备。由于发电机的转子产 生的磁场不可能是完善的正弦波 , 因此发电机发 出的电压波形不可能是一点不失真的正弦波 。目 前我国应用的发电机有两大类 : 隐极机和凸极机。 隐极机多用于汽轮发电机,凸极机多用于水轮发 电机。对于谐波分量而言, 隐极机优于凸极机 , 但 随着科技进步,可控硅、 B 等电子励磁装置的 I T G 投入。 使发电机的谐波分量有所上升。 当发电机的 端电压高于额定电压的 1 0 %以上时,由于电机的 磁饱和 , 会使电压的三次谐波明显增加。 样在变 同 2 . 增加输电线路的功耗。 1 1 谐波电流使输电 线路的电能损耗增加。当注入电网的谐波频率位 于在网络谐振点附近的谐振区内时,对输电线路 会造成绝缘击穿。 由于谐波次数高频率 E 再加 升, 之电缆导体截面积越大趋肤效应越明显,从而导 致导体的交流电阻增大, 使得电缆的 允许通过电 流减小。 与架空线路相 比电缆线路对地电容要大 1- 0 , 02 倍 而感抗仅为其 1 ~尼, 以 - B 1 所 很容易形成 变压器的铜损和铁损, 降低变压器有效出力 , 谐波 导致的噪声, 会使变电所的噪声污染指数超标 , 影 响工作人员 的身心健康。由于以上两方面的损耗 增加 , 因此要减少变压器的实际使用容量。 除此之 外, 谐波还导致变压器噪声增大 , 有时还发出金属
电网谐波的危害及抑制技术
电网谐波的危害及抑制技术
电网谐波是指在电网中频率等于整数倍基波频率的电信号,这
些信号会引起电网电压和电流的畸变,对电网和电力设备造成一定
的危害。
下面将介绍电网谐波的危害及抑制技术。
一、电网谐波的危害
1. 电压波形畸变:谐波会使电压波形发生变形,增加了设备的
压降,降低了电压质量,给电力系统带来压力。
2. 引起过电压:在谐波频率为倍频时,容易引起设备的过电压,进而引起设备的损坏。
3. 增加线损:当有谐波电流流过电网中的阻抗时,会产生附加
损耗,增加了线损,降低了设备的效能。
4. 造成电力设备损坏:谐波会使变压器、电容器等设备内部产
生热量,长期受煎熬可能导致设备的损坏或缩短使用寿命。
二、电网谐波的抑制技术
为了避免谐波对电网和电力设备造成的危害,可以采用以下抑
制技术:
1. 滤波器技术:将电网谐波通过滤波器滤除,消除畸变,提高
了电力质量,保护设备不受谐波干扰。
滤波器的结构由电阻、电感、电容等器件构成,能够滤除某一特定频率的信号。
2. 无功补偿技术:通过加入无功功率,改善电网的功率因数,
消除电流的谐波,保证电力质量。
3. 中性线滤波器技术:将谐波电流通过中性线滤波器抑制,以达到保护设备和提高电能质量的效果。
4. 散热或更换设备:对于耐高温设备,可以采用散热措施,减缓设备内部的热升,从而减少设备的故障。
对于长期受电网谐波影响的设备,可以考虑更换抗谐波能力更强的设备。
电网谐波对电网和电力设备造成的危害不容忽视,需要采取科学的抑制技术,保障电网的稳定运行和电力设备的使用寿命。
电力系统谐波影响及消除
电力系统谐波影响及消除电力系统中的谐波是指频率为基波频率的整数倍的电压或电流成分。
谐波会对电力系统产生一系列负面影响,如降低设备的效率、增加设备的损耗、引起电力系统的不稳定等。
因此,消除电力系统中的谐波是十分重要的。
谐波对电力系统的影响主要体现在以下几个方面:1.降低设备的效率:谐波使电压和电流波形失真,导致电力设备工作在非线性区域,增加了电力设备的损耗,降低了设备的效率。
尤其是对于变压器、电机等负载设备,谐波会导致设备温升增加、损耗加大,严重时还会引起设备损坏。
2.增加电力设备的损耗:谐波在电力系统中会产生大量的功率损耗,增加电力设备的负荷,使设备的损耗增加。
特别是在高谐波环境下,电力设备的损耗可能会增加几倍甚至十几倍,导致设备寿命大幅缩短。
3.引起电力系统的不稳定:谐波会导致系统电压和电流频谱产生畸变,引起供电质量下降,造成电力系统的不稳定。
尤其是在电力系统中存在共振点的情况下,谐波会引起系统共振,导致电压失真增大、频率波动等问题,进一步影响电力系统的稳定运行。
消除电力系统中的谐波可以采取以下几种方法:1.添加谐波滤波器:谐波滤波器是一种专门用于消除电力系统中谐波的装置。
通过选择合适的谐波滤波器,可以将谐波电流和谐波电压从电力系统中分离出来,减少其对系统的影响。
2.更新设备:对于已经老化的电力设备,特别是变压器、电机等,可以考虑进行更新,采用能够抵抗谐波干扰的新型设备。
新型设备通常具有更好的谐波抑制能力,可以减少谐波对设备的影响。
4.加强电力系统的维护和管理:定期对电力系统进行检查和维护,及时发现和处理谐波问题,可以有效地减少谐波对电力系统的影响。
此外,加强对电力系统的管理,合理规划电力负载,避免负载过大或不平衡,也能够降低谐波的产生和传播。
综上所述,电力系统中的谐波会对系统产生诸多负面影响,因此,消除谐波是电力系统运行和设备保护的重要任务。
通过采取合适的技术手段和管理措施,可以有效地消除谐波,提高电力系统的运行稳定性和设备的使用寿命。
电力系统谐波的危害和治理
电力系统谐波的危害和治理【摘要】随着电力电子装置的应用日益广泛,电网中的谐波污染也日益严重,已经引起了相关部门的关注,为了整个供电系统的供电质量,必须对谐波进行有效的检测和治理。
【关键词】电力电子技术谐波治理【正文】随着我国工业化进程的迅猛发展,电网装机容量不断加大,电网中电力电子元件的使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。
了解谐波产生的机理,研究和清除供配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的意义。
一何为谐波二谐波的危害1.对供配电线路的危害(1)影响线路的稳定运行供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。
但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。
晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。
这样,谐波将严重威胁供配电系统的稳定与安全运行。
(2)影响电网的质量电力系统中的谐波能使电网的电压与电流波形发生畸变。
如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。
另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。
2.对电力设备的危害(1)对电力电容器的危害当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。
对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。
电力系统谐波的影响及消除方法
重威胁供配电系统的稳定与安全运行。 12 影响电网的质量 : . 电力系统中的谐波能使电网
的电压 与 电流波形发 生 畸变 。如 民用配 电 系统 中的
中性线 , 由于荧光灯、 调光灯、 计算机等负载 , 会产生
4% ; O 三相 配电线 路 中 , 相线上 的 3的整 数倍 谐波 在 中性 线上会 叠加 , 中性 线 的 电流 值 可 能超 过 相 线 使
电容 过 载 , 造成 电容 损坏 , 或者熔 丝熔 断 。 15 导致 继 电保护 和 自动装 置误 动 或拒 动 , 不 . 造成 必 要 的损失 , 波会使 电气测 量仪 表测 量不 准确 , 谐 造
成计 量 误差 。
另外 , 谐波还会产生对设备附近的通信系统产
生干扰等其他危害。 既 然谐 波 危 害如 此之 大 , 么谐 波是 如 何 产 生 那 的?又如何能减小它的影响和危害呢?
上的电流。另外 , 相同频率 的谐波电压 与谐波电流 要产生同次谐波的有功功率与无功功率 , 从而降低 电网 电压 , 费 电网的容量 。 浪
・
8・
2 o 第 l 期 o 8年 1
《 州电力技 术》 贵
( 总第 l3期 ) l
而 中频 炉是 工频 电流 整 流 后 再 变 为 中频 , 利 用 电 再 磁 感应来 熔炼金 属 , 因此产 生 大量 的 高次谐 波 , 中 其 以 5次 、 、 次 等奇 次谐 波 为主 。这正 是谐 波 的 7次 1 1
2o o 8年第 l 期 】
《 州电力技 术》 贵
( 总第 l3期 ) 1
电 力 系统 谐 波 的影 响及 消除 方法
铜仁供 电局
摘 要
舒春明
[53o 540 ]
谐波的危害与治(三篇)
谐波的危害与治引言随着现代科技的发展,谐波问题在各个领域中日益突出。
谐波是指在电力系统或电子设备中,在基频上产生的频率是基频的整数倍的特殊电压或电流成分。
尽管谐波本身并不造成太大的危害,但长期存在的谐波问题会导致设备的过载、故障、减寿等问题,甚至可能对人体健康产生负面影响。
因此,对谐波进行合理治理和控制是至关重要的。
本文将探讨谐波的危害以及治理范本。
一、谐波的危害1.设备故障和过载在电力系统中存在谐波电流时,会导致设备的过载和故障。
谐波电流会加大设备的电流负荷,使得设备运行在额定负荷以上,从而加速设备的老化过程,减少设备的使用寿命。
并且,谐波电流还会产生额外的热量,进一步加剧设备的过载,从而引发设备的故障。
2.能源浪费和降效谐波电流会导致能源的浪费。
谐波电流在电力系统中流动时,由于产生压降、损耗等现象,会导致能源的损失。
此外,谐波电流在设备内部的传导和流动过程中也会产生额外的功耗,进一步降低了设备的效率。
3.电网负面影响谐波电流会对电网产生负面影响。
大量的谐波电流会导致电网的电压和电流波形失真,进而影响电网的稳定运行。
在严重的情况下,甚至会导致电网的故障和瘫痪。
4.对人体健康的危害谐波电流还可能对人体健康产生负面影响。
长时间暴露在高谐波电压或电流环境中,可能导致头痛、失眠、神经衰弱等症状。
并且,据研究表明,长期暴露在谐波电流环境中,还可能增加患癌症、心脏病等疾病的风险。
二、谐波治理的范本1.谐波源控制谐波问题的治理首先要从源头入手,减少谐波电流的产生。
可以采取以下措施来控制谐波源:(1)对发电设备进行合理规划和设计,降低发电设备的谐波产生;(2)采用高质量的电力电子设备和组件,降低设备本身产生的谐波;(3)合理设计电力系统的连接和布线,降低谐波电流的传播和影响范围。
2.谐波抑制装置的应用谐波抑制装置是指一种专门用于抑制谐波现象的设备。
通过安装谐波抑制装置,可以有效地降低谐波电流的水平,减小谐波的影响。
电力系统中的谐波分析及消除方法
电力系统中的谐波分析及消除方法摘要:本文针对电力系统中普遍存在的谐波问题进行了分析研究,首先概述了谐波的危害,然后介绍了三种谐波检测的方法,最后从改造谐波源的角度提出了几种谐波抑制方法。
关键词:电力谐波检测治理0 引言目前,谐波与电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的意义。
1 电力系统谐波危害1.1 谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。
大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。
1.2 谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。
1.3 谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。
1.4 谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。
1.5 谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。
1.6 谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。
1.7 谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。
1.8 谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。
2 谐波检测方法2.1 模拟电路消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为先进的是采用有源电力滤波器。
但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控制在10%以内,严重影响了有源滤波器的控制性能。
电力系统中的谐波传播与消除方法研究
电力系统中的谐波传播与消除方法研究第一章引言电力系统中存在各种谐波问题,这些谐波对电力系统的稳定性、可靠性和运行安全性都会带来不良影响。
因此,研究谐波传播与消除方法对于电力系统的优化和提高具有重要意义。
本文将系统介绍电力系统中谐波问题的产生原因,并重点讨论谐波的传播机制和目前常用的消除方法。
第二章谐波产生原因电力系统中的谐波主要由非线性负载和电力设备引起。
非线性负载在电力系统中普遍存在,如电子设备、电触发装置和电力电子传动装置等。
这些非线性负载会引入高次谐波电流,导致电力系统中谐波问题的产生。
第三章谐波传播机制谐波在电力系统中的传播主要通过两种途径:导线传播和耦合传播。
导线传播是指谐波电流通过电力系统中的导线、线路和变压器等设备传递的过程。
耦合传播是指谐波信号通过电力系统中的空间电磁耦合传递的过程。
掌握谐波的传播机制对于谐波消除具有重要的指导意义。
第四章谐波消除方法为了消除电力系统中的谐波问题,人们提出了各种不同的方法。
常见的谐波消除方法包括:1. 有源滤波器:通过向电力系统中注入与谐波相反的信号,实现谐波的消除。
2. 无源滤波器:无源滤波器是通过电路结构来实现谐波的消除,如LC谐振电路和陷波电路等。
3. 闭环控制方法:利用闭环控制系统中的负反馈作用来补偿谐波电流,达到谐波消除的效果。
4. 增设谐波滤波器:通过在电力系统中增设谐波滤波器,将谐波电流引导到地,实现谐波的消除。
5. 降低非线性负载:通过减少电力系统中的非线性负载,降低谐波问题的发生。
6. 谐波自适应补偿技术:利用先进的电力电子技术,实现对电力系统中谐波的在线监测和补偿。
第五章谐波消除方法的评估与选择在实际应用中,选择合适的谐波消除方法非常重要。
选择方法时需要考虑以下因素:1. 谐波消除效果:不同的方法对谐波的消除效果有所差异,需要选择能够满足需求的消除效果。
2. 成本考虑:不同的消除方法在成本上会有很大差异,需要综合考虑经济性。
3. 系统可靠性:消除方法对电力系统的可靠性有一定影响,需要评估其对系统稳定性的影响。
电力系统运行中频率谐波的危害及消除方法
20 年幕 1 期 08 1
民营 科技
囹
电力 伊春市 电业局 , 黑龙江 伊春 1 30 ) 5 0 0
摘 要: 电力系统中长期存在 且极 易发 生的多频率谐波振 荡, 对供配 电系统、 电设备具有很 大的危 害性 。通过对谐 波来源的分析和对谐波危 用 害的认识 , 实践工作 中, 在 需要 总结出对减 少和避免谐波危 害的有效方法和手段。 关键词 : 电力系统 ; 波振 荡; 谐 来源; 害; 危 消除
l 电力频率谐波的来源 增加 , 有时还发出金属声 。 发电源质量不高产生 谐波 , 电系统产生 的谐波 , 输配 用电设备产生 的 由于谐波次数高额频率上升,再加之 电缆导体截面积越大趋肤效应 谐波是 电网谐波产生的主要来源 , 中用电设备产生的谐波最 多。 其 越 明显 , 而导致导体 的交 流电阻增大 , 从 使得电缆 的允许通过 电流减小 , 1 在用 电设备中产生谐波 . 1 另外 , 电缆 的电阻 、 系统母线侧及线路感抗与系统 串联 , 提高 功率 因数用 晶闸管整流设备。由于晶闸管整流在 电力机车、 铝电解槽 、 充电装置 、 的电容器及线路的容抗与系统并联 , 在一定数值的电感与电容下可 能发 开关 电源等许多方 面得到 了越来 越广泛 的应用 ,给电网造成 了大量的谐 生 谐 振 。 波。晶闸管整流装置采用移相控制。从电网吸收的是缺角的正弦波 , 从而 23 对用电设备 的危害 . 给电网留下的也是另一部分缺角的正弦波 ,显然是 留下部分中含有大量 谐波对以上电动机 的影响 ,主要是增加电动机 的附加损耗,降低效 的谐波 , 这是最大的谐波源。 率, 严重 时使 电动机过热。尤其是负序谐波在 电动机中产生负序旋转磁 变频装置。 变频装 置常用于风机、 水泵、 电梯等设备 中, 由于采用了相 场 , 形成与电动机旋转方向相反的转矩 , 制动作 用 , 起 从而减少电动机的 位控制 , 谐波成分很复杂 , 除含有 整数次谐波外 , 还含有分数次谐小组 , 这 出力 , 电动机 中的谐波电流 , 另外 当频率接近某零件的固有频率时还会使 类装置的功率一般较大 , 变频调速 的发展 , 电网造成的谐 波也越来 电动机产生机械振动 , 随着 对 发出很大的噪声 。 越多。 2 对弱电系统设备产生干扰 , . 4 影响电力测量的准确性 电视机、 录像机、 计算 机、 调光灯具 、 调温炊具等家用电器 , 因具有调 对 于计算机 网络、 通信与楼宇 自 动化等弱电设备 , 电力系统中的谐波 压整流装置 , 会产生较深 的奇次谐波。这些家用 电器虽然功率较小 , 但数 通过 电磁感应 、 电感应 与传导方式耦合到这些系统中, 静 产生干扰。其 中 量巨大, 也是谐波的主要来源之一。 电感应与静电感应的耦合强度与干扰频率成正 比, 传导则通过公共 接地 l 发电及输配电过程产生的谐波 - 2 耦合 , 使大量不平衡 电流流入接地极 , 从而干扰弱电系统。 发电机 由于三相绕组 在制作上很难做到绝对对称 , 铁心也很难做到 25 目前采用的电力测量仪表 中有磁电型和感应型 ,它们受谐波的影响 . 绝对均匀一致和其他一些原 因, 发电源多少也会产生一些谐波 , 但一般来 较大 , 特别是 电能表多采用感应型 , 当谐波较大时将产生计量混乱 , 测量 说很少 。输配电系统中主要是 电力变压器产生谐波 , 由于变压器铁心的饱 不准确 , 影响电力测量 的准确性。 和、 磁化 曲线 的非线性 , 加上设计变压器时考虑经济性 , 使得磁化 电流呈 3 谐 波的消除措施 尖顶波形 , 因而含有奇次谐波。它的大小与磁路的结构形式 、 铁心的饱和 31 产生谐波的原因 . 程度有关 , 铁心 的饱和程序越高 , 变压器工作点偏离线性越远 , 波电流 谐 在电流接地 系统 中,当系统不同频率的零序感抗和零序容量相匹配 也就 越 大 。 时, 在外界条 件激发下往往容易产生铁磁谐振波 , 产生谐振过 电压 , 而且产 2 谐 波 的危 害性 生的谐振回路没有固定的 自 振频率 。 在同 的电网中, 样 即可发生基波谐振 , 电力系统中谐波 的危害是多方面的, 对供电配线路 、 电力设备具有危 也可发生高次谐波和分次谐波振荡 , 其特点是具有多频率谐振的可能性 。 害作用 , 还可能干扰电流测量 的准确性。 32 限制谐波振荡过 电压产生的措施 _ 2 对供配电线路的危害 . 1 在 电网中限制谐振波过电压的措施可从两方面解决 。 第一 , 在零序回 供配电系统中的电力 线路 与电力变 压器一般采用电磁式继 电器 , 感 路 里增加 阻尼 , 限制谐振 的产生 和发展 ; 第二 , 设法改变互感器 的感抗或 应式继电器或 晶体管继 电器予 以检测保护 , 使得在故障情况下保证线路 电网对地容抗 , 避免匹配成谐振参数 , 的设施方法有 : 具体 与设备的安全 ,但由于电磁式与感应式继 电器在遇到谐波时能有效地起 1在互感器开 口三角绕组端 口 ) 接阻尼 电阻或消谐装置 ; 到保护作用 , 晶体管继 电器虽然具有许 多优点 , 但由于采用 了整流取样电 2 电压互感器高压侧 中性经电阻接地或经大电容接地 ; ) 3 增加电网对地电容 ; ) 路, 容易受到谐波影 响, 产生误动或拒动, 因此 , 谐波严重威胁供配电系统 的安全运行。 4 电压互感器中性点不接地; ) 影响电网的质量 。电力系统 中的谐波能使 电网的电压与 电流波形发 5选用性能好的电磁式电压互感器或改用电容式电压互感器 ; ) 生畸变。如在三相配电线 中各 , 相线上 的 3 的整数倍谐波在中性线上会叠 6 电网中性点经消弧线线圈接地。 ) 加, 中性线的电流值可能超过相线上 的电流。另外 , 使 相同频率的谐 波电 这些方法各有特点 , 但从经济性、 可靠性 、 用效果和使用时是否方 使 压与谐波电流要产生同次谐波的有 功功率与无功功率 ,从而降低 电网电 便等方面考虑 ,在互感器 开口三角绕组端口接阻尼电阻或消谐装置具有 压, 浪费电网的容量 。 其 它方法无法比拟 的优势。 2 对电 . 2 力设备的危 害 3 互感器三角绕组端 口设置 消谐装置的具体 方法与效果 - 3 当电网存在谐波时 , 投人电容器后其端电压增 大, 通过电容量 的电流 通过 瞬间断续触发接在电压互感器开口的双 向可控硅,瞬间断续短 利用系统 自身的零序电压 , 电阻增 加谐振 回 零序 增加得更大 , 使电容器损耗 功率 增加 , 于膜纸复合介质电容器 , 对 虽然允 接 电压互感器开 口三角 , 许有谐波时的损耗功率为无谐波时损耗功率 的 1 8 ,对于全膜 电容器 路 阻尼 , . 倍 3 释放谐振装置 。事实上 , 在电压互感器开 口 三角绕组端 口接阻尼 允许有谐波时的损耗功率为无谐波时的 1 3 , . 倍 但如果谐波含量较高 , 4 超 电阻消谐 时 , 外接阻尼 电阻越 小消谐效果越好。为零时, 效果最佳 , 双向可 出电容器允许条件 , 就会使 电容器过电流和过负荷 , 损耗功率超过上述 控硅瞬间断续短接 , 就相当于外接阻尼 电阻等于零 , 还不影响其 它 自 动检 值 , 电容器异常发热 , 电场和温度的作用下绝缘介质会加速老化 。尤 测装置和继 电器的正常工作。这种装置在实践应用中, 使 在 可以使 电流系统多 其是电容器投入在电压 已经畸形的电网中时, 还可能使 电网的谐波加剧 , 频率谐振问题得 到比较好的解决 , 能及时检测 到谐波并消谐 , 同时分辩出
谐波、谐振危害及防治措施
谐波、谐振危害及防治措施1. 谐波的概念在电气工程中,谐波是指频率为整数倍于基波频率的电压或电流信号。
谐波可以由非线性负载引起,如电力电子设备、电动机、电感器等。
谐波可能导致电力系统及设备的异常运行,并对系统产生危害。
2. 谐波的危害谐波对电力系统和相关设备产生许多危害,包括但不限于以下几个方面:2.1 电流和电压失真谐波会导致电流和电压的波形失真,使得波形变得不规则。
这可能导致直流电流负载故障、电感设备的过热、降低电力设备的工作效率等问题。
2.2 设备过热谐波引起的电流和电压失真会导致设备过热,进而影响设备的工作寿命。
长期以来,过热问题一直是电力系统中的主要关注点。
2.3 降低功率因素谐波造成的电流和电压失真会降低功率因素,增加功率损耗。
这不仅会增加电力消耗,还会导致供电系统的不稳定,并可能引发其他故障。
3. 谐振的危害除了谐波外,谐振也是电力系统中一个重要的问题。
谐振是指电力系统中特定频率的谐波与系统的固有频率相匹配时,会引发电力设备甚至电力传输线路的超过设计值的振动。
谐振的危害主要包括以下几个方面:3.1 设备振动谐振会导致设备发生振动,从而可能导致设备的机械故障、机械压力增加和增加设备的磨损程度。
3.2 噪音产生谐振还可能导致系统中的设备产生噪音,并可能扩散到周围环境。
噪音会对人体的健康产生负面影响,并且可能影响到附近居民的日常生活。
3.3 系统不稳定谐振会使得电力系统失去稳定性,进而导致系统的失效以及损坏。
这可能导致停电、电网故障和电力设备的破坏。
4. 谐波、谐振的防治措施为了避免或减少谐波和谐振的危害,采取以下防治措施非常重要:4.1 使用滤波器滤波器是减少谐波的有效手段,通过滤波器可以将谐波滤除或降低到可接受的水平。
滤波器可以根据谐波频率进行选择,并根据需要调整谐波的消除程度。
4.2 设备升级与更换对于电力设备来说,采取适当的升级和更换是减少谐波和谐振危害的重要措施之一。
使用新一代的设备可能具有更好的抑制谐波和防治谐振的能力。
谐波的危害与治理
谐波的危害与治理谐波(Harmonics)是一种电力质量问题,指的是电力系统中频率是电力系统基波频率整数倍的电力信号。
由于现代社会对电力供应的要求越来越高,而电子设备的普及也带来了大量频率非线性负载,这使得谐波问题变得日益突出。
谐波的产生会对电力系统及相关设备带来一系列危害,因此需要进行治理。
本文将对谐波的危害及其治理进行全面探讨。
一、谐波的危害1. 对供电网造成负荷加重:谐波电流会增加供电系统的总功率需求,使电网负荷加重。
由于谐波电流的存在,设备的运行效率降低,电网传输能力减小,给供电企业带来电能损失和运行成本的增加。
2. 对设备造成电磁烦扰:谐波电流会引起电力设备内部漏磁力的增加,产生电磁烦扰现象。
这种电磁烦扰会影响到设备的正常运行,造成设备的故障、损坏甚至火灾。
3. 对电力设备造成损坏:谐波电流会引起设备内部电涌、过热等问题,导致电力设备的损坏。
特别是对低压配电设备,谐波容易引起设备的过载和损坏,给用电客户和企业带来不必要的维修成本。
4. 对电力质量造成污染:谐波会引起电压畸变,特别是谐波电压会使系统电压波形变形,导致电压失真。
这不仅影响设备的正常运行,还会在输配电系统中产生大量的电能损耗,降低电力质量,影响用户的用电质量。
5. 对通信设备造成干扰:谐波会产生高频电磁辐射,对无线通信设备产生干扰。
这种干扰会导致通信设备的信号质量下降,甚至影响通信的稳定性和安全性。
二、谐波的治理谐波治理是指采取一系列措施来减少或消除谐波对电力系统造成的危害。
谐波治理需要从源头和末端两个方面进行考虑,下面将介绍一些常见的谐波治理方法。
1. 谐波源控制:谐波源控制是对产生谐波的负载进行控制,减少谐波的产生。
常见的谐波源控制方法有:(1)采用低谐波负载:选择具有较低谐波水平的负载设备,例如使用变频器时选择带有滤波器的变频器,这样可以减少负载引起的谐波电流。
(2)限制非线性负载容量:对于存在大量非线性负载的设备,可以分时控制其使用量,减少谐波产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统谐波影响及消除(网络摘录)2011.12.20返回日志列表从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。
但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。
这是为什么呢?经过对该地区的供电现状分析,这是由于谐波引起的。
所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。
因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。
谐波对于电网的危害非常大,主要表现在以下方面:1.由于电网主要是按基波设计的。
由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。
特别是对电容器和与之串联的电抗器。
其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。
2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。
3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。
另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。
既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢?谐波来源1、中频炉、电弧炉等设备是该地区谐波的主要来源对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。
电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。
而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。
这正是该地区谐波的主要来源。
2、用户变压器群是该地区谐波的重要来源一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。
所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。
虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。
例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。
在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。
3、谐波的其他来源事实上,谐波还有其他的来源,各类生产用电如电镀、电泵等,生活用电中如电视机、电脑、荧光灯等采用开关电源或其他电力电子技术的装置,单独来看,所产生的谐波非常微小,但是由于其数量的极其庞大,也是不可忽视的一部分。
谐波治理:根据GB/T14549-93《电能质量公用电网谐波》规定,在0.4kV/10kV/35kV时,电网谐波电压谐波占有率分别不得大于4%/3.2%/1.2%.很显然,在该地区,电网已经严重“污染”了。
针对以上情况,为减少谐波产生的机会、减小谐波对对电网的危害,我们提出下列建议:1.针对谐波源进行治理。
按"谁干扰,谁污染,谁治理"的原则,进行谐波源当地治理。
即对于产生大量谐波的用户,在用户变的低压侧加装滤波装置。
根据装置的原理不同,可分为无源电力滤波器(PPF)和有源电力滤波器(APF)。
无源电力滤波器利用电容、电感谐振的原理"吸收"阻止相应次谐波,从而保证电压畸变率处在较低水平。
一般根据需要吸收的谐波次数,设置合适的LC参数,分别设置滤波装置。
该地区已有用户装设了此类无源滤波补偿装置。
装设5、7次滤波装置,采用可控硅自动投切,在滤除谐波的同时,对无功也进行了补偿。
但此类无源装置不能满足对无功功率和谐波进行快速动态补偿的要求。
同时还要注意不能在滤除某次谐波时,LC参数恰好是另一个谐波的谐振参数,而使此谐波放大电力系统中谐波的来源及抑制(摘录)2011.12.20阅读(1)下一篇:唐僧、孙悟空与白...|返回日志列表•赞•转载•分享•评论•复制地址•更多(1)电网谐波来自于3个方面:一是发电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
二是输配电系统产生谐波:输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。
它的大小与磁路的结构形式、铁心的饱和程度有关。
铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。
三是用电设备产生的谐波:晶闸管整流设备。
由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。
经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置。
变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉。
由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。
其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。
气体放电类电光源。
荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。
分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。
家用电器。
电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。
在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。
这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。
(2)主要是变频、整流设备在工作中会产生谐波。
谐波的影响如下:1、变压器对变压器而言,谐波电流可导致铜损和杂散损增加,谐波电压则会增加铁损。
与纯正基本波运行的正弦电流和电压相较,谐波对变压器的整体影响是温升较高。
须注意的是; 这些由谐波所引起的额外损失将与电流和频率的平方成比例上升,进而导致变压器的基波负载容量下降。
而当你为非线性负载选择正确的变压器额定容量时,应考虑足够的降载因数,以确保变压器温升在允许的范围内。
还应注意的是用户由于谐波所造成的额外损失将按所消耗的能量(仟瓦小时)反应在电费上,而且谐波也会导致变压器噪声增加。
2、电力电缆在导体中非正弦波电流产生的热量与俱有相同均方根值的纯正弦波电流相较,则非正弦波有较高的热量。
该额外温升是由众所周知的集肤效应和邻近效应所引起的,而这两种现象取决于频率及导体的尺寸和间隔。
这两种效应如同增加导体交流电阻,进而导致I2RAC损耗增加。
3、电动机与发电机谐波电流和电压对感应及同步电动机所造成的主要效应为在谐波频率下铁损和铜损的增加所引起之额外温升。
这些额外损失将导致电动机效率降低,并影响转矩。
当设备负荷对电动机转矩的变动较敏感时,其扭动转矩的输出将影响所生产产品的质量。
例如: 造纸业、人造纤维纺织业、塑料薄膜行业和一些金属加工业。
对于旋转电机设备,与正弦磁化相比,谐波会增加噪音量。
像五次和七次这种谐波源,在发电机或电动机负载系统上,可产生六次谐波频率的机械振荡。
机械振荡是由振动的扭矩引起的,而扭矩的振荡则是由谐波电流和基波频率磁场所造成,如果机械谐振频率与电气励磁频率重合,会发生共振进而产生很高的机械应力,导致机械损坏的危险。
4、电子设备电力电子设备对供电电压的谐波畸变很敏感,这种设备常常须靠电压波形的过零点或其它电压波形取得同步运行。
电压谐波畸变可导致电压过零点漂移或改变一个相间电压高于另一个相间电压的位置点。
这两点对于不同类型的电力电子电路控制是至关重要的。
控制系统对这两点(电压过零点与电压位置点)的判断错误可导致控制系统失控。
而电力与通讯线路之间的感性或容性耦合亦可能造成对通讯设备的干扰。
计算器和一些其它电子设备,如可编过程控制器(PLC),通常要求总谐波电压畸变率(THD)小于5%,且个别谐波电压畸变率低于3%,较高的畸变量可导致控制设备误动作,进而造成生产或运行中断,导致较大的经济损失。
5﹑开关和继电保护谐波电流也会引起开关之额外损失,并提高温升使承载基波电流能力降低。
温升的提高对某些绝缘组件而言会降低其使用寿命。
低压断路器之固态跳脱装置,系根据电流峰值来动作,而此种型式之跳脱装置会因馈线供电给非线性负载而导致不正常跳闸。
6、功率因数补偿电容器电容器与其它设备相较有很大区别,因其容性特点在系统共振情况下可显着的改变系统阻抗。
电容器组之容抗随频率升高而降低,因此,电容器组起到放大谐波电流的作用,从而提高温升并增加绝缘材料的介质应力。
频繁地切换非线性电磁组件会产生谐波电流如变压器,这些谐波电流将增加电容器的负担。
应当注意的是熔丝通常不是用来当作电容器之过载保护。