信道容量的计算
信道容量计算公式
信道容量计算公式信道容量计算公式是通信领域中最为重要的公式之一。
它用于衡量在给定的信道条件下,所能传送的最大数据速率。
通俗地说,信道容量就是一条通信信道所能传输的最大数据量。
在通信领域中,信道容量是评估通信系统性能的重要指标之一。
信道容量通常用C来表示,它的计算公式是C=B*log2(1+S/N),其中B代表信道带宽,S代表信号功率,N代表噪声功率。
这个公式表明,信道容量与信道带宽、信号功率和噪声功率都有关系。
信道带宽越大,信道容量就越大;信号功率越高,信道容量也越大;噪声功率越小,信道容量也越大。
在信道容量计算公式中,信噪比是一个重要的概念。
信噪比是信号功率与噪声功率之比。
当信噪比增大时,信道容量也会随之增大。
这是因为信号的功率增大,噪声对信号的影响就相对减小了,从而提高了信道的传输能力。
信道容量计算公式的应用非常广泛。
在无线通信系统中,信道容量是评估无线信道质量的重要指标之一。
在数字通信系统中,信道容量是评估数字通信系统性能的重要指标之一。
在信息论中,信道容量是研究通信系统极限性能的重要概念之一。
在实际应用中,为了提高通信系统的性能,我们需要尽可能地提高信道容量。
一种常用的方法是通过增加信道带宽来提高信道容量。
另外,也可以通过增加信号功率或减小噪声功率来提高信道容量。
在无线通信系统中,还可以采用编码和调制技术来提高信道容量。
信道容量计算公式是通信领域中最为重要的公式之一。
它不仅能够评估通信系统的性能,还能够指导我们在实际应用中如何提高通信系统的性能。
在未来的发展中,信道容量计算公式将继续发挥着重要的作用,促进通信技术的不断发展。
几种特殊信道的信道容量
0 0
0 1
在信道中传递一个符号需要t秒,求信道每秒钟最大的信 息传输率。
解:
信道容量: C = logs=log2=1, 最佳分布为输出符号等概率 分布。
信道每秒钟最大的C信t 息C传t 输 率1t 为( b:it / s )
5
5
4. 有噪打字机信道
A
0.5
A
0.5
B
0.5
B
C
1 py|x
1
1
1-α
x
px
y
py|x
log
1 py|x
pxH ( )
x
H ( )
10
6. 二元删除信道(BEC)(续)
0
1-α
(1 )(1 )
0
而
PY
PY |X PX
(1 )
α
故 H (Y )
e
py log
pi
log
1 pi
信道容量为:
C max[H (Y ) H (Y | X )] p(x)
max p(x)
H (Y )
H ( p1,
p2, ,
pn )
最佳分布为输出符号等概率分布。
13
7. 对称离散信道
信道传递概率矩阵P中,每行都是同一个集合{p1, p2, …, ps}中的诸元素的不同排列组成,而且每列也都是另 一个集合{q1, q2, …, qr}中的诸元素的不同排列组成。
P
1/ 1/
3 6
1/ 3 1/ 6
1/ 6 1/ 3
1/ 6 1/ 3
P
MIMO信道容量计算公式
MIMO信道容量计算公式
MIMO(Multiple-Input Multiple-Output)是一种通过同时使用多个发射天线和接收天线来增加无线通信系统容量的技术。
MIMO技术可以利用信道的冗余和多路径效应,提高信号的传输速率和可靠性。
1.SISO信道容量计算公式:
SISO信道容量的计算公式使用香农公式,用于计算传输速率。
香农公式如下:
C = B * log2(1 + SNR)
其中,C是信道容量,B是带宽,SNR是信噪比(Signal-to-Noise Ratio)。
SISO信道容量计算公式适用于只有一个天线的系统。
2.MIMO信道容量计算公式:
C = log2(det(I + H*SNR*H^H))
其中,C是信道容量,H是MIMO信道的传输矩阵,SNR是信噪比。
除了以上基本的MIMO信道容量计算公式,还有一些进一步考虑调制方式、信道状态信息等因素的改进公式,如ZF(Zero Forcing)和MMSE (Minimum Mean Square Error)等方法,用于提高MIMO系统的容量。
这些方法考虑了天线之间的干扰和多径效应,可以优化信号的传输和接收性能。
总结起来,MIMO信道容量的计算公式可以通过SISO信道容量公式和MIMO信道容量公式来表示,具体的计算方法需要综合考虑信道状况和系
统参数,并结合数值计算方法进行分析。
通过合理设计和优化,MIMO技术可以显著提高无线通信系统的容量和性能。
信道容量的计算方法
信道容量的计算方法信道容量的计算方法:1、对于离散无记忆信道,香农公式是计算信道容量的重要方法。
香农公式为C = W log₂(1 + S/N),其中C表示信道容量,W表示信道带宽,S表示信号功率,N表示噪声功率。
2、在计算信道容量时,先确定信道带宽W的值。
例如,在一个无线通信系统中,经过测量或者根据通信标准规定,信道带宽可能是20MHz。
3、接着确定信号功率S。
信号功率可以通过功率测量仪器得到,比如在一个发射机输出端测量到的功率为10W。
4、然后确定噪声功率N。
噪声功率的确定需要考虑多种因素,如热噪声、干扰噪声等。
热噪声功率可以根据公式N₀= kT₀B计算,其中k是玻尔兹曼常数,T₀是绝对温度,B是等效噪声带宽。
在常温下,假设T₀= 290K,若等效噪声带宽与信道带宽相同为20MHz,可算出热噪声功率,再加上其他干扰噪声功率得到总的噪声功率N。
5、将确定好的W、S、N的值代入香农公式计算信道容量C。
6、对于离散有记忆信道,计算信道容量会更复杂。
需要考虑信道的记忆特性,通常采用马尔可夫链来描述信道状态的转移概率。
7、构建马尔可夫链的状态转移矩阵,矩阵中的元素表示从一个状态转移到另一个状态的概率。
8、通过求解马尔可夫链的稳态分布,结合输入符号的概率分布,利用信息论中的互信息公式来计算信道容量。
9、在多输入多输出(MIMO) 系统中,信道容量的计算又有不同。
需要考虑多个发射天线和多个接收天线之间的信道矩阵H。
10、利用矩阵H的特征值等信息,根据MIMO信道容量公式C = log₂det(I + ρHH*)计算信道容量,其中ρ是信噪比,I是单位矩阵,H*是H的共轭转置矩阵。
信息论基础——信道容量的计算
0
[P]=
0
1-p
1
0
2.2.二进删除
信道—M信道
X={0,1}; Y={0,2,1}
0
1-p p
p
0
2
1 1-p
1
2
1
p 0
p
1-p
C=1-p 最佳入口分布为等概分布
1
离散无记忆信道和信道容量
对称离散信道的信道容量
I(X;Y)=H(Y)-H(Y/X) 而
H (Y
/
X ) P(x) P( y / x) log
p(y) C t
15
信道容量的计算
③常见信道的信道容量C:
——无噪信道
I(X;Y) H(X )
C log || ||
16
11
移动通讯技术的分类 移动通信系统有多种分类方法。例如按信号性质分,可分为模拟、数
字;按调制方式分,可分为调频、调相、调幅;按多址连接方式分, 可分为 频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)。 目前中国联通、中国移动所使用的GSM移动电话网采用的便是FDMA 和TDMA两种方式的结合。GSM比模拟移动电话有很大的优势,但是, 在频谱效率上仅是模拟系统的3倍,容量有限;在话音质量上也很难 达到有线电话水平;TDMA终端接入速率最高也只能达到9.6kbit/s; TDMA系统无软切换功能,因而容易掉话,影响服务质量。因此, TDMA并不是现代蜂窝移动通信的最佳无线接入,而CDMA多址技术 完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切 换等,正受到越来越多的运营商和用户的青睐。
C log s H ( p1' , p2' ... ps' ) 3
第三章 信道和信道容量
I(X;Y):接收到Y前、后关于的平均不确定性 的消除 ;或发送X前、后关于Y的平
均不确定性的消除。
可见:熵只是平均不确定性的描述,而不确定性 的消除(两熵之差)才等于接收端所获得的信息 量。获得的信息量不能和不确定性混为一谈。
第三章 信道和信道容量
关于信道容量: 研究:信道中平均每个符号所能传送的信息量,
有损失,是无噪有损信 道,也称确定信道,即: 损失熵:H(X/Y) ≠ 0; 噪声熵:H(Y/X) = 0, I(X;Y)=H(Y)=H(X)-H(X/Y) <H(X)
第三章 信道和信道容量
信道容量仍是最大熵问题(最大H(Y)):
C=max H(Y)=log s bit/符号
P(X)
(设Y有s个符号)
不相交的子集mk,由mk组成的矩阵[P]k是对称矩阵 (具有可排列的性质),则称此信道为准对称信道, 其信道容量:
r为输入符号集个数 即信道矩阵行数 准对称信道中的 行元素 第k个子矩阵 中行元素之和
第k个子矩阵 中列元素之和
第三章 信道和信道容量
例3-1:二元对称删除 信道如图,计算信道容量。
例3-2:准对称信道的信道矩阵为: P(y/x)= 0.5 0.3 0.2 0.3 0.5 0.2 当输入概率分布为p(x1)=ɑ,p(x2)=1-ɑ
且:p=0时,信道无干扰; P=1/2时,信道干扰最为严重。
第三章 信道和信道容量
二、二元删除信道
难以区分原发送信号时,不硬性
判断0或1,而作删除处理。 删除信道中,p=q时,则为 对称删除信道。 三、Z信道 信道特性:0错成1的概率为0, 1错成0有一定可能。
1
0 1 0
p
1-p
1
第三章 信道和信道容量
MIMO信道容量计算公式
MIMO系统容量的计算方法上网时间:2007年11月06日打印版推荐给同仁发送查询用于多输入多输出结构的天线单元会影响无线通信系统的容量并能对抗多径效应。
提高性能的一个关键是为系统方案寻找MIMO优化设计,使得无需增加天线单元,只优化现有天线就能达到目的。
Thaysen等人描述了互方向、位置以及互耦对在无限大地平面上两个相同天线间包络互相关性的影响,为确定包络相关与固定方向上距离的关系以及互耦合同固定距离时天线方向旋转的关系,他们还研究了使用两个彼此靠近,在同一地平面的相同PIFA时的对称和非对称耦合的情况,其结果(使用IE3D仿真软件仿真)阐明了如何确定天线指向与位置来使包络相关最小。
研究了两种不同情形:一种是使用平行PIFA,另一种是天线间具有垂直关系,如图1所示(水平距离d的定义使得图1a的情形中,d为正值。
)对于平行情况(图1a),天线间距为10毫米,这时包络相关系数是ρe=0.8,把其中一副天线简单地旋转180度,包络相关系数就降低到ρe=0.4。
类似结果对于垂直天线结构(图1b)也能观察到,这时包络相关系数从ρe=0.5下降到ρe=0.25。
在垂直结构中,当开路端与馈线垂直时包络相关系数最大。
研究者们发现在平行天线情况下中心频率偏移(|S11|最小)受影响最大,每副天线在相同端都有馈入点,可观察到12%的频偏变化。
与单副PIFA单元相比,另一种情形(两副天线互相垂直情况)变化量低于2%。
平行结构的最大包络相关系数是ρe=0.8,当天线彼此交叠垂直时,馈线均在同一端的情况下包络相关系数取得最大值。
此外,可发现互耦与包络相关系数几乎呈指数关系。
研究发现,互耦极限为-10dB,在该极限以下,包络相关系数几乎为恒定值,达到ρe=0.15,因此,降低互耦的努力将受限于这个水平。
把天线置于有限平面会影响其性能。
图2给出的设计,是按照平面倒F天线(PIFA)的输入阻抗和带宽来优化天线(即改变馈入点跟到地点间的距离,这取决于PIFA在地平面的位置)。
连续信道的信道容量公式
连续信道的信道容量公式
连续信道容量是指由若干连续频道组成的信道容量,其计算公式为:C=B log2 (1+SNR),其中B为信号带宽,SNR即信噪比。
连续信道信号容量的估计与信号带宽、信噪比等参数密切相关。
在信道带宽固定的情况下,信号容量随信噪比的增大而增大。
即当信噪比增大时,信号容量也会相应增大。
因此,为了提高信号容量,在设计信号量化之前,应充分考虑信噪比,以最大限度提高信号容量。
由于连续信道容量紧密联系信号带宽与信噪比,为计算连续信道容量,应确定信号带宽及相应的信噪比。
以确定连续信道容量时,不同系统或应用场合,信号带宽及信噪比也不尽相同,选取参数则会有所差异。
考虑到防止信噪比损失过大的情况,在参与系统的比特率及频带带宽都有限的情况下,连续信道容量高信道容量可以通过改善信噪比来提升。
另外,改善系统的外部条件也会促进信号容量的增长,例如改善环境噪声及其他外部干扰因素。
如此可以使连续信道带宽进一步扩大,可产生更大的信号容量。
总之,带宽与信噪比是影响信号容量的两个重要因素,考虑到这两个参数,可以准确地估计连续信道容量。
改善信噪比及相应的外部条件是提高连续信道容量的主要手段,此外还要正确合理的选择信号带宽,以较大程度提升连续信道容量。
信道容量的计算公式
信道容量的计算公式
信道容量,即为一个通信系统情况下,传输单位时间所能发出信号的承载最大
量大小。
它是由通道的有效利用率、带宽以及传输信噪比(SNR)等因素共同影响
的结果,可用下面的公式来表示:
C=B \cdot log_2(1+S/N)
其中C为信道容量,单位为bps,B为信道带宽,单位为Hz,S/N为信号和噪
声之间的功率比,它表示通过此信道可以得到的信噪比,即任何一个噪声功率均等或小于其功率水平的情况都可以忽略不计。
信道容量是在可接受的噪声环境下,最大化信号的传输率的一项指标。
它的确
定性取决于信道在被激发的情况下具有的带宽和信噪比,因此,原则上讲,若把带宽B和S/N调大,信道容量也会有所增加,而若把带宽B和S/N调小,则信道容量会减少,即信道容量与带宽B、S/N成正比。
信道容量可用来衡量音频、视频等数据流在某特定带宽限制和噪声环境下传输
的能力,从而能够定制合适的通信系统结构。
因此,若想要得到高质量的通信体验,就必须了解其信道容量的大小以及构建可靠、高效的通信系统。
信息论基础——信道容量的计算
p p1 p 1
将p=3/5代入(2),得到信道容为:C=0.32bit/sym.
20
信道容量的计算
2 达到信道容量输入分布的充要条件
令
I (xi ;Y )
s j 1
p( y j
|
xi ) log
p( y j | xi ) p( yj )
def
D(Q( y |
x) ||
p( y))
定理4.2.2 一般离散信道的互信息I(X;Y)达到极大值
1 信道容量的计算原理
C是选择不同的输入概率分布p(x),在满足
∑p(x)=1条件下,求互信息的极大值:
I(X ;Y )
r i 1
s j 1
p(xi ) p( y j | xi ) log
p( y j | xi ) p(yj )
Lagrange乘子
法
17
信道容量的计算
例1、设某二进制数字传输系统接收判决器
6
数据可靠传输和信道编码
4.1 离散无记忆信道和信道容量 4.2 信道容量的计算
4.3 信道编码理论 4.4 带反馈的信道模型 4.5 联合信源-信道编码定理 4.6 线性分组码 习题四
7
8
接入信道容量的分析与寻呼信道不一样,寻呼信道用于前 向链路,容量的分析主要在于对寻呼信道占用率的计算, 而接入信道用于反向链路,对 CDMA 系统来说,反向链 路容量主要用于干扰的分析。即使采用时隙化的随机接入 协议,接入信道也可能有较高的通过量,大量的接入业务 会在反向链路中产生无法接受的干扰。如前所述,第一个 接入试探失败后,下一个接入试探将增加一定量的功率, 最终的结果将导致小区接收功率的增加以及反向链路容量 的减少。
4-第四讲-信道容量及其计算
Байду номын сангаас
0
1
q
1-p
1-q
p
1
2
0
删除信道的必要性
2、 信道容量定义
信息传输率:信道中平均每个符号所能传送的信息量。 R = I(X;Y) = H(X)-H(X|Y) (bit/符号)
有时我们需要关心单位时间内(一般为秒为单位)平均传输的信息量,若平均传输一个符号需要 t 秒,则信道每秒平均传输的信息量为(速率)
例:
( P 95-例3. 5 )
输出符号集个数
(2)、准对称信道的容量
准对称信道:信道矩阵(列)的子阵是对称矩阵。
定理:达到准对称离散信道信道容量的输入分布为 等概分布。
r是输入个数,n是不相交子集数,Nk是行之和,Mk是列之和
解:达到信道容量的输入分布为等概分布。
此时输出分布为:
I(X;Y)是输入随机变量的概率分布的上凸函数,所以对于固定的信道,总存在一种信源分布,使传输每个符号平均获得的信息量最大,也就是说,每一个固定信道都有一个最大的信息传输率。 信道容量定义为信道中每个符号所能传递的最大信息量,也就是最大 I (X;Y)值。
此时输入的概率分布称为最佳输入分布。
感谢阅读
感谢阅读
第四讲
4-1 信道容量 4-2 信道容量的计算方法
信道容量及其计算
do
something
1、常见的简单DMC离散信道:
二元对称信道 (DSC):输入符号X取值于{0,1}, 输出符号取值于{0,1},传递概率为
4-1 信道容量
二元删除信道 (BEC):输入符号X取值于{ 0, 1}, 输出符号取值于{ 0, 2, 1},传递概率为
信道容量的一般计算方法
信道容量的一般计算方法
信道容量是指在给定带宽条件下,信道可以传输的最大数据速率。
信道容量的计算是通过信道的带宽和信噪比之间的关系来确定的。
Step 1: 确定信道带宽(B)
信道带宽是指信道能够传输信号的频率范围,通常以赫兹(Hz)为单位。
确定信道带宽是计算信道容量的第一步。
Step 2: 确定信噪比(SNR)
信噪比是指信号和噪声的比例,以分贝(dB)为单位。
信噪比越高,信道传输的可靠性越高。
信噪比的计算需要根据具体信道的特性和环境条件进行。
Step 3: 计算信道的最大传输速率(C)
根据香农定理(Shannon's theorem),信道的最大传输速率(C)可以通过以下公式计算:
C = B * log2(1 + SNR)
其中,B为信道的带宽,SNR为信噪比。
这个公式表明,信道容量与信道带宽和信噪比的对数成正比。
Step 4: 优化信噪比以提高信道容量
为了提高信道容量,可以采取一些措施来优化信噪比,例如增加发射功率、减少噪声源、改善接收设备等。
Step 5: 考虑误码率和纠错编码
实际的信道容量还需要考虑误码率和纠错编码。
误码率是指在信道传
输过程中出现错误比特的概率,而纠错编码是一种冗余编码技术,可以在
接收端纠正部分错误。
综上所述,信道容量的计算方法主要包括确定信道带宽、信噪比和使
用香农定理计算最大传输速率。
通过优化信噪比和考虑误码率和纠错编码,可以进一步提高信道容量。
这些方法可以用于计算各种无线通信系统、光
纤通信系统等的信道容量,并对系统性能进行评估和优化。
信道容量的计算
(bit/符号)
最佳分布是
若设输入分布为 。同理可得 ,根据定理有
从而,输入分布 也是最佳分布,可见,信道最佳输入分布不是唯一的。
对于一般的离散信道,我们很难利用特殊计算方法,因此只能采用解方程组式()的方法。
我们将()式的前r个方程组改写成
移项后得
令 ,代入上式得
化为矩阵形式为
这是含有 个未知数 个方程的非齐次线性方程组。
如果设 ,信道矩阵 为非奇异矩阵,则此方程组有解,并且可以求出 的数值,然后根据 求得信道容量
(bit/符号)
由这个 值可解得对应的输出概论分布 。
再根据 即可解出达到信道容量的最佳输入分布 。
下面给出一例。
例设离散无记忆信道输入 的符号集为 ,输出 的符号集为 ,如图所示。其信道矩阵为
上式只与対称信道矩阵中行矢量 和输出符号集的个数s有关。
证明
而
由于信道的对称性,所以 与 无关,为一常熟,即
接着举一个例子加以说明。
例某对称离散信倒的信道矩阵为
用公式计算信道容量
(bit/符号)
定义若信道矩阵Q的列可以划分成若干互不相交的子集矩阵 ,即 且 。由 为列组成的矩阵 是对称矩阵,则称信道矩阵Q所对应的信道为准对称信道。
如果信道的噪声熵 ,则此信道容量为
(bit/符号)
这里输出信源符Y的符号个数为s.
定义一个信道Q称为对称离散信道,如果它满足下面的性质:
(1)信道Q矩阵中每一行是另一行的置换;
(2)每一列式另一列的置称离散信道。
定义对称离散信道的信道容量为
(bit/符号)
只有当输入符号 互相独立,且输入符号 的概率分布达到各子信道容量的概率分布时,独立并联信道的信道容量才等于各信道容量之和,即
信道容量的计算
(4o 2o。
(沽)§ 4.2信道容量的计算这里,我们介绍一般离散信道的信道容量讣算方法,根据信道容量的定义,就是在固定信 道的条件下,对所有可能的输入概率分布P (x )求平均互信息的极大值.前面已知/(XV )是 输入概率分布的上凸函数,所以极大值一定存在•而/(XV )是厂个变虽:{"(州),〃(花),…"(》)}的多元函数。
并且满足工”(兀・)=1。
所以可用拉格朗日乘子法来 r-I 计算这个条件极值。
引入一个函数:0 = /(X;Y ) — /l 工〃©)解方程组.2>(易)=1 1)可以先解岀达到极值的概率分布和拉格朗日乘子久的值,然后在解出信道容MCo 因为/(xv )=£j>a)e (xk )iog/=| >1而卩(必)=£卩(兀)2(牙也),所以r-1希log 〃();)=(為 In 〃(x )) log e =岑勢 log e 。
解(4。
2。
1)式有£ Q (x |兀)-XX 〃(兀 Q ()'i k') loge -兄=0気p (x ) 务気 p (yj(对i = i,2,都成立)又因为C $>(丑)2(片|无)=〃(丹)A-! <乞。
(兀X )TJ T,2,…,厂 9 7=1所以(4.2。
1)式方程组可以转化为'C (Vj\Xi )log^—J —=24-logeQ = l,2,- -,r ) j=i p (yj ) i>u )TWi>3X2(y_,k)i。
(儿|兀)= 2 +logt?现在令z(x f .;y)= ^(2(y >|\)iog冃假设使得平均互信息/(XV )达到极值的输入概率分布{p v p 2^ P r }这样有从而上式左边即为信道容咼,得 C = A + \oge0(儿|兀) 丽式中,I (Xi ;Y )是输岀端接收到Y 后获得关于X=Xj 的信息量.即是信源符号X=£对输 出端Y 平均提供的互信息.一般来讲,心;Y )值与為有关•根据(4。
信道容量的迭代算法
输入
s P(y j | x i ) ai(n) exp y j | x i ) ln q(y j ) j 1 (i=1,2...)
u (n) p(x i )ai (n)
i
I L log 2 (u (n) ), IU log 2 (max(a i(n) ))
I (X; Y) p(x i ) p(y j | x i ) ln
i j
p(x ) p(y
i i
p(y j | x i )
j
| xi )
(1)
要求信道容量 C 就是要在 p(x i ) 的约束下,求 I (X; Y) 的极大值。 首先引入后验概率,即:
q(x i | y j )
p(x ) p(y
表 1.1 ε的选取与信道容量关系 因此,使用该算法计算 C 的时候要选取适当的ε值,才能保证 值的准确性。
四 程序说明 1、程序采用的是C++语言,编译环境为visual studio 2010 2、信道矩阵放在“Channel_matrix.txt”中,其中初始信源为等概 1/R(R表示信源个数),并放在vector<float> pxi中。 3、本程序使用#define wucha ε 定义误差,因此通过改变 wucha 的值就可以控制迭代的次数 4、程序为:channel_code.cpp 信道矩阵为:Channel_matrix.txt
信道容量的迭代算—彭海军
研究信道的目的是要讨论信道中平均每个符号所能传送的信息 量,而将最大的信息传输率称为信道容量。由于对于普通的线性信 道(信道矩阵 r=s),直接可以采用 C ln e 求解信道容量。但当
信道容量计算(包含子信道)
������ =0 −∞
������ =0 −∞
������ ������ ������������ ∙ log 2
������−1 ������ =0 ������
������ ������ ������������ ������������ ������ ������������
−
������ =0
������ ������ ∙
−∞ +∞ ������−1
������ ������ a������ ∙ log 2
������������
=
Q 0 ⋯������ ������−1
max
−∞ ������ =0 ������−1
������ ������ ∙ ������ ������ a������ ∙ log 2
������ =0 ������ =0
exp −
������ − ������������
− ������ − ������������ 2������ 2
2
(10)
子信道信道容量的计算
1、MLC-MSD 子信道信道容量的理论推导。 依据互信息链式法则: I X;Y = I b1 ,b2 ,…,bM ;Y =I b1 ;Y +I b2 ;Y b1 +…+I bM ;Y b1 ,b2 ,…,bM-1 (1) 可得第 i 级子信道的信道容量: Ci = I bi ;Y b1 ,b2 ,…,bi-1 (2)
(6) 由于 ������ ������������ ������������ = 1,则:
������−1 +∞
1 ������ = log 2 ������ + ������
2019学海领航-计算机网络技术_2
2019学海领航-计算机网络-第二章【高考回顾】1. 信道容量的计算公式为:C=Blog2(1+S/N),其中表示信道带宽的是()A. CB. BC. SD. N2. 关于误码率,以下说法错误的是()A. 误码率是衡量数据通信系统正常工作状态下传输可靠性的指标B. 当传输的总量很大时,误码率在数值上等于出错的位数与传送总位数之比C. 在数据传输率确定的情况下,误码率越低,传输系统设备越复杂D. 在实际应用中,数据传输系统的误码率大多为零3. 一条通信信道可以接受1000Hz-9000Hz的频率,则该信道的带宽是()A. 1000HzB. 9000HzC. 8000HzD. 4000Hz4. 如图所示的数据线路通信方式是()A. 单工通信B. 半双工通信C. 全双工通信D. 混合通信5. 关于报文交换,下列说法错误的是()A. 适用于对带宽要求高和对服务质量要求高的应用B. 可以实现两个数据速率不同的工作站之间的通信C. 网络延时较长,不适合于交互式通信D. 采取“存储转发”方式,通信前无需建立专用物理线路6. 对于带宽要求高和服务质量要求高的通信,最适合的数据交换技术是()A. 电路交换B. 报文交换C. 分组交换D. 信元交换【课堂练习】一、选择题1.( )是信息传输的物理通道A. 信号B. 编码C. 数据D. 介质2. 在数据传输中,()的延时最小A. 电路交换B. 分组交换C. 报文交换D. 信元交换3. 在传输过程中,接收和发送共享同一信道的方式称为()A. 单工B. 半双工C. 双工D. 自动4. 把网络分为电路交换网、报文交换网、分组交换网属于按()进行分类A. 连接距离B. 服务对象C. 拓扑结构D. 数据交换方式5. 数据传输方式不包括()A. 基带传输B. 频带传输C. 宽带传输D. 并行传输6. 基带系统是使用()进行传输的A. 模拟信号B. 多信道模拟信号C. 数字信号D. 多路数字信号7. 下列关于电路交换说法正确的是()A. 线路利用率高B. 电路交换中的结点对传输的信号不做任何处理C. 信道的通信速率低D. 通信双方不必同时工作8. 传输二进制数字信号需要的带宽()A. 比模拟信号所需要的带宽小B. 比模拟信号所需要的带宽大C. 和模拟信号所需要的带宽相同D. 无法与模拟信号的带宽比较9. 警察同志用对讲机通话,对讲机属于()A. 单工通信B. 全双工通信C. 半双工通信D. 以上都不对10.在同一信道上,可以进行数字信息和模拟信息传输的数据传输方式为()A. 信道传输B. 串行传输C. 频带传输D. 宽带传输11.基带传输与宽带传输中说法不正确的是()A. 基带传输快,而宽带传输速度慢B. 基带传输要占据整个信道的频率范围,即在同一时刻一条线路只能传送一路基带信号,而宽带传输中可将多种信息综合在一个物理信道中C. 基带传输只能传送数字信号D. 基带传输适应远距离传输12.在数据传输过程中,接收方和发送方在任何时刻均可以进行双向通信的是()A. 单工B. 半双工C. 全双工D. 自动13.在数据通信系统中,当调制电平数为4的时候,比特率与波特率的比值是()A. 4:1B. 1:4C. 1:2D. 2:114.分组交换还可以进一步分成()和虚电路两种A. 永久虚电路B. 数据报C. 呼叫虚电路D. 包交换15. 数据传输的可靠性指标是()A. 速率B. 误码率C. 带宽D. 传输失败的二进制信号的个数16.在数据传输中不需要建立连接的是()A. 电路交换B. 信元交换C. 报文交换D. 虚电路分组交换17.关于信元交换说法错误的是()A. 信元交换分为三个功能层:ATM物理层、ATM层、ATM适配层B. 信元交换适合于对带宽要求高和对服务质量要求高的应用C. 信元交换采用53字节的固定长度信元进行传输D. 信元交换是一种无连接的交换技术18.在数据传输期间,源结点和目的结点之间有一条利用若干个中间结点构成的专用物理连接线路,直到传输结束。
信道容量
3. 信道容量信道容量指信道所能承受的最大数据传输速率,单位为bps或b/s。
信道容量受信道的带宽限制,信道带宽越宽,一定时间内信道上传输的信息就越多。
带宽指物理信道的频带宽度,即信道允许的最高频率和最低频率之差。
按信道频率范围的不同,通常可将信道分为窄带信道(0~300Hz)、音频信道(300~3400Hz)和宽带信道(3400Hz以上)三类。
信道容量有两种衡量的方法:奈奎斯特公式和香农公式。
(1) 奈奎斯特公式(Nyquist)对有限带宽无噪声信道,信道容量可用如下公式计算:其中,C —最大数据速率(信道容量)H —信道的带宽(Hz)N —一个脉冲所表示的有效状态数,即调制电平数例如,若某信道带宽为4kHz,任何时刻信号可取0、1、2和3四种电平之一,则信道容量为:奈奎斯特公式表明,对某一有限带宽无噪声信道,带宽固定,则调制速率也固定。
通过提高信号能表示的不同的状态数,可提高信道容量。
(2) 香农公式(Shannon)对有限带宽随机噪声(服从高斯分布)信道,信道容量可用如下公式计算:其中,H —信道的带宽(Hz)S —信道内信号的功率N —信道内服从高斯分布的噪声的功率S/N是信噪比,通常用表示,单位dB(分贝)例如,计算信噪比为30dB,带宽为4kHz的信道最大容量:由,得出S/N=1000 则,C=4k×log2(1+1000)≈40kbps表示无论采用何种调制技术,信噪比为30dB,带宽为4kHz的信道最大的数据速率约为40kbps。
4. 三个指标之间的关系从上面的分析可以看出,数据速率用于衡量信道传输数据的快慢,是信道的实际数据传输速率;信道容量用于衡量信道传输数据的能力,是信道的最大数据传输速率;而误码率用于衡量信道传输数据的可靠性。
信道带宽与信道容量的区别是什么?增加带宽是否一定能增加信道容量?带宽:信道可以不失真地传输信号的频率范围。
为不同应用而设计的传输媒体具有不同的信道质量,所支持的带宽有所不同。
计算出信道容量C
下面讨论几种特殊类型的信道
1、离散无噪信道的信道容量
(1)具有一一对应关系的无噪声信道
x1
y1
x2
y2
x3
y3
此时由于信道的损失熵和疑义度都等于0,所以
I(X;Y)=H(X)=H(Y)
C=logr=logs
(2)有噪无损信道
x2
y4 y5
x3
信道容量式中cn总n个独立并联信道的cck第k个单符号离散无记忆信道的c当n个输入变量间统计独立且每个输入变量xk的概率分布均为最佳分布时串联信道的互信息和数据处理定理z出现情况下若x和y独立数据处理定理可以将信道的扩展和信源的扩展联系起来看当信源扩展以后信道也就成为了扩展信道
如果每个符号的传送时间为t,则每秒钟有1/t 个符号被 传送,因此每秒钟最大信道传输率(信道传输速率)或信道 容量为:
y6
y6
x1
y1 y2
1/ 2 1/ 2 0 0
0
0
P 0
0
3 / 5 3 /10 1/10 0
0
0
0
0
0
1
可见,信道矩阵中每一列有且只有一个非零元素时,这
个信道一定是有噪无损信道
此时信道疑义度为0,而信道噪声熵不为0,从而
C=max{I(X;Y)}=max{H(X)-H(X|Y)}=max{H(X)}=logr
P(b1)
P(b4 )
22log 51
1 10
P(b2 )
P(b3 )
20log 51
4 10
最佳输入分布为
P(a1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.2信道容量的计算这里,我们介绍一般离散信道的信道容量计算方法,根据信道容量的定义,就是在固定信道的条件下,对所有可能的输入概率分布)(x P 求平均互信息的极大值。
前面已知()Y X I ;是输入概率分布的上凸函数,所以极大值一定存在。
而);(Y X I 是r 个变量)}(),(),({21r x p x p x p 的多元函数。
并且满足1)(1=∑=ri i x p 。
所以可用拉格朗日乘子法来计算这个条件极值。
引入一个函数:∑-=iix p Y X I )();(λφ解方程组0)(])();([)(=∑∂-∂∂∂i ii i x p x p Y X I x p λφ1)(=∑iix p (4.2.1)可以先解出达到极值的概率分布和拉格朗日乘子λ的值,然后在解出信道容量C 。
因为)()(log)()();(11i i i i i ri sj i y p x y Q x y Q x p Y X I ∑∑===而)()()(1i iri ii x yQ x p y p ∑==,所以e e y p y p i i i i i y p x y Q i x p i x p l o g l o g))(ln ()(log )()()()(==∂∂∂∂。
解(4.2.1)式有0log )()()()()()(log )(111=--∑∑∑===λe y p x y Q x y Q x p y p x y Q x y Q ii i i i r i s j i i i i sj i i (对r i ,,2,1 =都成立) 又因为)()()(1j k krk ky p x yQ x p =∑=ri x y Q sj i j,,2,1,1)(1==∑=所以(4.2.1)式方程组可以转化为),,2,1(log )()(log)(1r i e y p x y Q x y Q j i j sj i j =+=∑=λ1)(1=∑=ri ix p假设使得平均互信息);(Y X I 达到极值的输入概率分布},,{21r p p p 这样有e y p x y Q x y Q x p j i j i j r i sj i log )()(log)()(11+=∑∑==λ从而上式左边即为信道容量,得 e C log +=λ 现在令)()(log)();(1j i j sj i j i y p x y Q x y Q Y x I ∑==式中,);(Y x I i 是输出端接收到Y 后获得关于i x X =的信息量,即是信源符号i x X =对输出端Y 平均提供的互信息。
一般来讲,);(Y x I i 值与i x 有关。
根据(4.2.2)式和(4.2.3)式, C Y x I i =);( ),,2,1(r i = 所以对于一般离散信道有如下定理。
定理 4.2.1 一般离散信道的平均互信息);(Y X I 达到极大值(即等于信道容量)的充要条件是输入概率分布)}(,),({1n x p x p 满足)(a C Y x I =);(1 对所有的0)(,≠i i x p x )(b C Y x I i ≤);( 对所有的0)(,=i i x p x 这时C 就是所求的信道容量。
对于离散信道来说,其实信道容量还有一个解法:迭代解法。
定理4.2.2 设信道的向前转移概率矩阵为J K i j x y Q Q ⨯=))((,0P 是任给的输入字母的一个初始概率分布,其所有分量0)(0≠k x P 。
按照下式不断地对概率分布进行迭代,更新:∑=+=Ki riirr k k rk r P x P P x P x P 11)()()()()(ββ其中 r P P k rk Y x X I P ===)];(exp[)(β()()()⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=∑∑==J j K i i j r i j k j x y Q P x y Q x y Q 11log exp由此所得的()Q P I r,序列收敛于信道容量C 。
我们还可以将上述过程写成算法以便编制程序实现(如图4.2.1) })()(log{1∑==Kk kkL P x P I β)}(log{P x ma I k kU β=})()(log{1∑==Kk k k L P x P I β)}(log{P x ma I k kU β=图4.2.1 信道容量的迭代算法对于一些特殊的离散信道,我们有方便的方法计算其信道容量。
定义4.2.1 设X 和Y 分别表示输入信源与输出信源,则我们称()Y X H 为损失熵,()X Y H 为信道噪声熵。
如果信道的损失熵()0=Y X H ,则次信道容量为开始 PP →0)(P k β)(P I L )(P I U ε<-L U I I L I C =∑-=1)()()()()(P x P P x P x P ββ()()()ogr X H Y X H x H I C x P x x P 1)(max )(max Y X;max )()(P )(==-=='(bit/符号)这里输入信源X 的信源符号个数为r 。
如果信道的噪声熵()0=X Y H ,则此信道容量为()s Y H Y X I C x P x P log )(max ;max )()(===''(bit/符号)这里输出信源符Y 的符号个数为s.定义4.2.2 一个信道Q 称为对称离散信道,如果它满足下面的性质: (1)信道Q 矩阵中每一行是另一行的置换; (2)每一列式另一列的置换。
例如,信道矩阵⎪⎪⎪⎪⎭⎫ ⎝⎛=3131616161613131Q 和⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=216131312161613121Q 满足对称性,所以对应信道是对称离散信道。
定义4.2.3 对称离散信道的信道容量为()s P PP H s C '''-=,,,log 21 (bit/符号) 上式只与対称信道矩阵中行矢量},,,{21s P PP ''' 和输出符号集的个数s 有关。
证明 ()X Y H Y H Y X I -=)();( 而 ()()()x y p x y P x P X Y H yx1log )(∑∑=()x X Y H x P x==∑)(由于信道的对称性,所以()x X Y H =与x 无关,为一常熟,即()[]s x P P PP H Y H C '''-=,,,)(max 21)( ),,,(log 21s P PP H s '''-= 接着举一个例子加以说明。
例4.2.1 某对称离散信倒的信道矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=3131616161613131P用公式计算信道容量)61,61,31,31(4log H C -= ⎪⎭⎫⎝⎛++++=61log 6161log 6131log 3131log 312 0817.0=(bit/符号)定义4.2.3 若信道矩阵Q 的列可以划分成若干互不相交的子集矩阵K B ,即)(,j i B B j i ≠=⋂φ且Y B B B n = 21。
由K B 为列组成的矩阵k Q 是对称矩阵,则称信道矩阵Q 所对应的信道为准对称信道。
例如,信道矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=31613161616131311P ⎪⎪⎭⎫⎝⎛=7.01.02.02.01.07.02P 都是准对称信道,在信道矩阵1P 中,Y 可以划分为三个子集,由子集的列组成的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛31616131 , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3131 , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3161 它们满足对称性,所以1P 对应的信道是准对称信道。
同理2P 可划分为 ⎪⎪⎭⎫⎝⎛7.02.02.07.0 , ⎪⎪⎭⎫ ⎝⎛1.01.0 这两个矩阵也满足对称性。
下面,我们给出准对称离散信道的信道容量计算公式∑=-'''-=nk k ks M NP PP H r C 121log ),,,(log其中,r 是输入符号集的个数,),,,(21s P PP ''' 为准对称信道矩阵中的行矢量。
设矩阵可划分为n 个互不相交的子集。
k N 是第k 个子矩阵k Q 中行元素之和,k M 是第k 个子矩阵k Q 中列元素之和,即 ()∑∈=kY y ik x y P N()),,2,1(,,n k Y y x y P M kxik =∈=∑并且可以证明达到准对称离散信道容量的输入分布式等概分布,我们将推导作为习题留给读者。
例4.2.2 设信道传递矩阵为⎪⎪⎭⎫ ⎝⎛----=q p q p p q q p P 11 可表示成如图4.2.2所示,计算其信道容量根据上面计算公式可得q N q N =-=21,1 q M q M 2,121=-= 则有),,1(2l o g p q q p H C ---= q q q q 2l o g )1l o g()1(---- qq q p q p p p --+----+=12l o g)1()1l o g ()1(l o g 图4.2.2 下面我们举一些其他信道容量的例子例4.2.3 设离散信道如图4.2.3所示,输入符号集为},,,,{54321a a a a a ,输出符号集为},{21b b ,信道矩阵为X Y1a 2a 1b3a4a 2b5a图4.2.30 01-p-q qpp 2q1-p-q1 1⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=101021210101P由于输入符号3a 传递到1b 和2b 是等概率的,所以3a 可以省去。
而且21,a a 与4a ,5a 都分别传递到1b 和2b ,因此可只取1a 和5a ,所以设输入概率分布21)()(51==a P a P ,0)()()(432===a P a P a P ,可以计算得21)()(21==b P b P ,由定理4.2.1得 2log );();(21====Y a x I Y a x I 2log );()Y ;(54====Y a x I a x I 0);(3==Y a x I可见,此假设分布满足定理4.2.1,因此,信道容量 12log ==C (bit/符号)最佳分布是0)()()(,21)()(43251=====a P a P a p a P a P 若设输入分布为0)(,41)()()()(35421=====a P a P a P a P a P 。
同理可得21)()(21==b P b P ,根据定理4.2.1有2log );(=Y x I i ),,,(5421a a a a x i = 2log );(<Y x I i )(3x x i = 从而,输入分布0)(,41)()()()(35421=====a P a P a P a P a P 也是最佳分布,可见,信道最佳输入分布不是唯一的。