传热学-第二章(二)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.4 带第二类、第三类边界条件的导热实例
2.3.5 变截面或变导热系数的一维问题
求解导热问题主要有两种途径:
(1) 求解导热微分方程,获得温度场;根据Fourier定律计 算热流量;
(2) 对于稳态、无内热源、第一类边界条件下的一维导热
问题,可以不通过温度场而直接应用Fourier定律获得 热流量。此时, 一维Fourier定律:
Φ A dt
dx
当=(t), A=A(x)时,
Φ (t) A(x) dt
dx
分离变量后积分,并注意到热流量Φ与x 无关(稳态),得
x2 x1
dx A( x)
tt1Φ2 (t)d(tt()ttA22(x)ttdd11x)t
t2
t1
(t
)
t2 t1
(t2
t1 )
t2
t1
(t )dt
t2 t1
(t1 t2 )
x2 x1
dx A( x)
当 随温度呈线性分布时,即 = 0+at,则
0
a t1
t2 2
实际上,不论 如何变化,只要能计算出平均导热系
数,就可以利用前面讲过的所有定导热系数公式,只
是需要将换成平均导热系数。
§2-4 通过肋片的导热
第三类边界条件下通过平壁的一维稳态导热:
• 假设各层之间接触良好,可以近似地认 为接合面上各处的温度相等
t2
t3 t4
❖ 边界条件: x 0
n
x i i1
t t1 t tn1
❖ 热阻:
r1
1 1
, , rn
n n
t1
t2
t3
t4
三层平壁的稳态导热
由热阻分析法:
q
t1 tn1
n
ri
i 1
t1 tn1
n i i1 i
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
q dt tw1 tw2
dr r ln(r2 r1)
W m2
虽然是稳态导热,但 热流密度 q 与半径 r
成反比!
Φ
2
rlq
tw1 ln( r2
tw2 r1 )
tw1 tw2 R
2 l
W
长度为 l 的圆筒 壁的导热热阻
4 n层圆筒壁 •由 不 同 材 料 构 成 的 多 层 圆 筒 壁 , 其 导热热流量可按总温差和总热阻计算
tw1 tw2 1 ln(r2 r1) r 2
若 tw1 tw2 :
d 2t 0 dr2
向上凹
若 tw1 tw2 :
d 2t dr 2
0
向上凸
下面来看一下圆筒壁内部的热流密度和热流分布情况
t
tw1
(tw1
ln( r tw2 ) ln( r2
r1 ) r1 )
dt tw1 tw2 1 dr ln(r2 r1) r
h2
ql
1
tf1 tf 2 1 ln r2
1
h1 2r1 2 r1 h2 2r2
tf1 tf 2 Rl
W m
通过单位长度圆筒壁传热过程的 热阻 [mK/W]
多层圆筒壁传热
ql
1
tf1 tf2
n
1
ln di1
1
h1d1 i1 2i di h2dn1
2.3.3 通过球壳的导热
类似地,可通过球壳的导热推导出2-33,2-34,2-35式
ห้องสมุดไป่ตู้
t
tw1
tw2 ln( r2
tw1 r1 )
ln(
r
r1 )
将积分常数带入通解
显然,温度呈对数曲线分布
圆筒壁内温度分布:
t
tw1
(tw1
tw2
)
ln( r ln( r2
r1 ) r1 )
•圆筒壁内温度分布曲线的形状?
dt tw1 tw2 1; dr ln(r2 r1) r
d 2t dr 2
Φ
tf1 tf2
1
1
W
h1A A h2 A
为了增加传热量,可以采取哪些措施?
(1)增加温差(tf1 - tf2),但受工艺条件限制 (2)减小热阻:
a) 金属壁一般很薄( 很小)、热导率很大,故导热热阻一般可忽略
c 时间条件: 稳态导热 : t 0
d 边界条件:第一类
o x
根据上面的条件可得:
控制
方程
c t ( t ) Φ x x
d2t dx2
0
边界
条件
第一类边条:
x 0,
x ,
t t
tw1 tw2
t
x
直接积分,得:
dt dx
c1
t c1x c2
带入边界条件:
c1
t2
t1
c2 t1
t1 t2
o
线性分布
t
t2
t1
x
t1
dt
t2
t1
dx
带入Fourier 定律
q
t2
t1
t
t
(A)
r
R A
热阻分析法适用于一维、稳态、无内热源的情况
2 多层平壁的导热
• 多层平壁:由几层不同材料组成
t1
• 例:房屋的墙壁 — 白灰内层、水泥 沙浆层、红砖(青砖)主体层等组成
2.3.2 通过圆筒壁的导热
1 单层圆筒壁
圆柱坐标系:
c t
1 r
(r t ) r r
1 r2
(
t ) z
(
t ) Φ z
假设单管长度为l,圆筒壁的外半 径小于长度的1/10。
一维、稳态、无内热源、常物性:
d (r dt ) 0
(a)
dr dr
第一类边界条件:
r r
r1时 r2时
t tw1 t tw2
对上述方程(a)积分两次:
第一次积分
第二次积分
r
dt dr
c1
t c1 ln r c2
tw1 c1 ln r1 c2 ; tw2 c1 ln r2 c2
应用边界条件 获得两个系数
c1
tw2 tw1 ln( r2 r1)
;
c2
tw1
(tw2
tw1)
ln r1 ln( r2 r1)
Φ tw1 tw(n1)
n
i1
1
2i
L
ln
ri1 ri
ql
tw1 tw(n1)
n
i1
1
2i
ln
ri1 ri
W W m
通过单位长度圆筒壁的热流量
单层圆筒壁,第三类边界条件,稳态导热
ql r1 2r1h1 (t f 1 tw1 ) ql
tw1 tw2 1 ln r2
2 r1
h1
ql r 2 2r2h2 (tw2 t f 2 )
第一层:q
1 1
(t1
t2
)
t2
t1
q
1 1
第二层:q
2 2
(t2
t3
)
t3
t2
q
2 2
第
i
层:q
i i
(ti
ti11)
ti1
ti
q
i i
多层、第三类边条
q
1 h1
tf1 tf2
n
i1
i i
1 h2
tf1 h1
t2
t3
h2
tf2
单位:
W m2
传热系数?
?
?
tf1
t1
t2
t3
t2
tf2
三层平壁的稳态导热
§2-3 典型一维稳态导热问题的分析解
本节将针对一维、稳态、常物性、无内热源情况,考察平 板和圆柱内的导热。 直角坐标系: c t ( t ) ( t ) ( t ) Φ
x x y y z z
2.3.1 通过平壁的导热
1 单层平壁的导热
a 几何条件:一维大平壁厚度;
b 物理条件:、c、 已知;无内热源