工程力学实验
工程力学实验报告(全)
工程力学实验报告学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验 2 实验二金属材料的压缩试验 6 实验三复合材料拉伸实验9 实验四金属扭转破坏实验、剪切弹性模量测定12 实验五电阻应变片的粘贴技术及测试桥路变换实验16 实验六弯曲正应力电测实验19 实验七叠(组)合梁弯曲的应力分析实验23 实验八弯扭组合变形的主应力测定32实验九偏心拉伸实验37 实验十偏心压缩实验41 实验十二金属轴件的高低周拉、扭疲劳演示实验45 实验十三冲击实验47 实验十四压杆稳定实验49 实验十五组合压杆的稳定性分析实验53 实验十六光弹性实验59 实验十七单转子动力学实验62 实验十八单自由度系统固有频率和阻尼比实验65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l = mm实验前低碳钢弹性模量测定()F lE l Aδ∆⋅=∆⋅ =实验后屈服载荷和强度极限载荷载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。
金属材料的拉伸及弹性模量测定原始试验数据记录实验二金属材料的压缩试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)观察铸铁试样的破坏断口,分析破坏原因;(2)分析比较两种材料拉伸和压缩性质的异同。
金属材料的压缩试验原始试验数据记录实验三复合材料拉伸实验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理试件尺寸电阻应变片数据载荷和应变四、问题讨论复合材料拉伸实验原始试验数据记录实验四金属扭转破坏实验、剪切弹性模量测定实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理弹性模量E= 泊松比 =实验前低碳钢剪切弹性模量测定PI l T G ⋅⋅=ϕ∆∆0=理论值)1(2μ+=EG = ;相对误差(%)==⨯-%100理实理G G G 载荷―变形曲线(F ―Δl 曲线)及结果四、问题讨论(1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成45o 螺旋断裂面?(2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。
工程力学实验
工程力学实验力学实验1材料的拉伸实验拉伸实验是对塑性材料和脆性材料在常温静载作用下,测定其力学性能的试验。
试验中测得的力学性能指标,是工程设计以及鉴定工程材料的主要依据。
本试验采用低碳钢和铸铁作为塑性材料和脆性材料的代表,分别进行拉伸试验。
一、实验目的:(1)了解材料受拉伸时,力与变形的关系,绘制拉伸图(F-AI曲线)。
⑵测定低碳钢的屈服极限bs、强度极限bb、延伸率3和截面收缩率⑶测定铸铁的强度极限bb、延伸率3和截面收缩率(4)比较低碳钢与铸铁的力学性能、破环过程和现象。
二、实验设备:万能试验机、游标卡尺。
三、试件:实验表明,试件的尺寸和形状对实验结果有影响,为了避免这种影响和便于对各种材料力学性能的测试结果可进行比较,国家标准对试件的尺寸、形状作了统一规定,根据规定,拉伸试件可制成圆形或矩形截面,实验前、后的试件如图所示。
图3-1低碳钢拉伸前后试件比较其中拉伸试件还可分为比例试件和非比例试件两种。
比例试件应符合如下关系:LK「Ao式中L为标距即计算长度;Ao-----为初始横截面面积;K――系数,通常为5.65和11.3,前者称短试件,后者称长试件。
对圆形截面:长试件L=10do短试件L=5do对矩形截面:长试件L=11.3VAo短试件L=5.65VAo对于非比例试件,例如成品材料型材、板材、管材或细丝等,测试长度与横截面面积无一定比例关系。
试件两端较粗部分是为装入试验机夹头中的夹持部分,该部分形状视试验机夹头的要求而定,可制成圆柱形、阶梯形或螺纹形,其长度至少应为试验机楔形夹具长度的三分之二。
四、实验原理:1、低碳钢拉伸:金属材料拉伸时的力学性能指标,是由拉伸试验来确定的。
为此,将试件按国标规定加工成标准试件,在万能试验机上进行加载试验。
试验时,禾U用试验机的绘图装置可以绘出测试材料的拉伸曲线图,下图为低碳钢的拉伸曲线图(F-AI)。
图3-2低碳钢拉伸曲线图(F-AI)应当指出,由于在加载的最初阶段,试件夹持部分在夹头内有滑动等因素,因此绘出的拉伸图的最初一段呈现曲线。
工程力学实验报告(完整版)
报告编号:YT-FS-3164-69工程力学实验报告(完整版)After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.互惠互利共同繁荣Mutual Benefit And Common Prosperity工程力学实验报告(完整版)备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。
文档可根据实际情况进行修改和使用。
拉伸实验是测定材料在常温静载下机械性能的最基本和重要的实验之一。
这不仅因为拉伸实验简便易行,便于分析,且测试技术较为成熟。
更重要的是,工程设计中所选用的材料的强度、塑形和弹性模量等机械指标,大多数是以拉伸实验为主要依据。
实验目的(二级标题左起空两格,四号黑体,题后为句号)1、验证胡可定律,测定低碳钢的E。
2、测定低碳钢拉伸时的强度性能指标:屈服应力Rel和抗拉强度Rm。
3、测定低碳钢拉伸时的塑性性能指标:伸长率A 和断面收缩率Z4、测定灰铸铁拉伸时的强度性能指标:抗拉强度Rm5、绘制低碳钢和灰铸铁拉伸图,比较低碳钢与灰铸铁在拉伸树的力学性能和破坏形式。
实验设备和仪器万能试验机、游标卡尺,引伸仪实验试样实验原理按我国目前执行的国家GB/T 228—20xx标准——《金属材料室温拉伸试验方法》的规定,在室温10℃~35℃的范围内进行试验。
将试样安装在试验机的夹头中,固定引伸仪,然后开动试验机,使试样受到缓慢增加的拉力(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。
工程力学实验一拉伸实验
个人收集整理勿做商业用途工程力学实验一、拉伸实验班级姓名实验日期一、实验目的1.测定低碳钢的机械性质:屈服极限σs、强度极限σb、延伸率δ及断面收缩率Ψ;2.测定铸铁的机械性质:强度极限σb。
二、试件按实验要求规定,本实验试件如图所示:三、实验设备及仪器1、液压式万能材料实验机;2、游标卡尺;3、划线机(铸铁试件不能使用)。
四、实验原理及方法1.屈服极限σs的测定P—ΔL曲线实验时,在向试件连续均匀地加载过程中。
当测力的指针出现摆动,自动绘图仪绘出的P—ΔL曲线有锯齿台阶时,说明材料屈服。
记录指针摆动时的最小值为屈服载荷P s,屈服极限σs计算公式为σs=P s/A02、屈服极限σs的测定实验时,试件承受的最大拉力Pb所对应的应力即为强度极限。
试件断裂后指针所指示的载荷读数就是最大载荷Pb,强度极限σb 计算公式为:σb=P b/A03、延伸率δ和断面收缩率Ψ的测定计算公式分别为:δ=(L1-L)/L ×100% Ψ=(A0-A1)/A0×100%L:标距L1:拉断后的试件标距。
将断口密合在一起,用卡尺直接量出。
A0:试件原横截面积。
A1:断裂后颈缩处的横截面积,用卡尺直接量出。
五、实验步骤1.试件准备:量出试件直径d0,用划线机划出标距L和量出L;2.按液压万能实验机操作规程加载实验,加载至试件断裂,记录Ps 和Pb ,并观察屈服现象和颈缩现象;3. 将断裂的试件对接在一起,用卡尺测量d1和L1 ,并记录。
六、实验数据处理1、记录d0、L 、d1 、L1及过程中的实验数据,求取σs、σb、δ、Ψ2、绘制σ与ε图1 / 1。
工程力学实验报告 工程力学实验大全
工程力学实验大全目录实验一金属材料的拉伸及弹性模量测定试验 (2)实验二金属材料的压缩试验 (6)实验三复合材料拉伸实验 (9)实验四金属扭转破坏实验、剪切弹性模量测定 (14)实验五电阻应变片的粘贴技术及测试的桥路变换实验 (18)实验六弯曲正应力电测实验 (21)实验七叠(组)合梁弯曲的应力分析实验 (24)实验八弯扭组合变形的主应力测定 (28)实验九偏心拉伸实验 (32)实验十偏心压缩实验 (35)实验十一组合结构应力测试实验 (38)实验十二金属轴件的高低周拉、扭疲劳演示实验 (40)实验十三冲击实验 (43)实验十四压杆稳定实验 (47)实验十五组合压杆的稳定性分析实验 (50)实验十六光弹性实验 (53)实验十七单转子动力学实验 (59)实验十八单自由度系统固有频率和阻尼比的测定 (64)实验一金属材料的拉伸及弹性模量测定试验一、实验目的与要求1.观察低碳钢和铸铁在拉伸试验中的各种现象。
2.测绘低碳钢和铸铁试件的载荷―变形曲线(F―Δl曲线)。
3.测定低碳钢的拉伸屈服点σs、抗拉强度σb、伸长率ψ、断面收缩率δ和铸铁的抗拉强度σb。
4.测定低碳钢的弹性模量E。
5.观察低碳钢在拉伸强化阶段的卸载规律及冷作硬化现象。
6.比较低碳钢(塑性材料)和铸铁(脆性材料)的拉伸力学性能。
二、实验设备和仪器1.微机控制电子万能试验机。
2.电子式引伸计。
3.游标卡尺。
4.钢尺。
三、实验原理与方法金属材料的屈服点σs、抗拉强度σb、伸长率ψ和断面收缩率δ是由拉伸试验测定的。
试验采用的圆截面短比例试样按国家标准(GB/T 228-2002)制成,如图1-1所示。
这样可以避免因试样尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。
图中:d0为试样直径,l0为试样的标距,并且短比例试样要求l0=5d0。
国家标准中还规定了其他形状截面的试样,可适用于从不同的型材和构件上制备试样。
图1-1金属拉伸试验应遵照国家标准(GB/T 228-2002)在微机控制电子万能试验机上进行,在实验过程中,与微机控制电子万能试验机联机的微型电子计算机的显示屏上实时绘出试样的拉伸曲线(也称为F ―Δl 曲线),如图1-2所示。
工程力学试验的任务课件
有限元分析软件
对试验结果进行有限元分析,模拟结构的应力、应变分布等。
05
安全注意事与
试验操作安全
试验前确保所有设备完好 在开始试验前,应检查试验设备和工具,确保它们处于良 好状态,无损坏或故障。
遵守操作规程 在进行试验时,应严格遵守操作规程,按照规定的步骤进 行操作,避免因误操作导致安全事故。
特殊试验机
针对特定需求设计的试验机,如高温、低温、腐蚀等特殊环境下的 试验。
传感器与测量仪器
01
02
03
应变片
用于测量结构应变。
力传感器
用于测量施加在结构上的力。
位移计
用于测量结构位移或变形。
04
温度计
用于测量温度。
数据采集与分析软件
数据采集系 统
实时采集试验数据,包括载荷、位移、应变等。
分析软件
环境力学试验
总结词
环境力学试验主要研究物体在不同环境条件下的性能表现。
详细描述
环境力学试验通过模拟不同的环境条件,如温度、湿度、 压力、辐射等,测试物体的性能变化和适应性。
总结词
环境力学试验的目的是为了了解物体在不同环境条件下的 性能表现,为工程设计和耐久性评估提供依据。
详细描述
在环境力学试验中,需要模拟各种极端或恶劣的环境条件, 观察物体的性能变化和损伤情况,分析物体在不同环境条 件下的耐久性和适应性。
遵守环保法规
在进行试验时,应遵守 国家和地方的环保法规, 确保试验过程符合环保 要求。
感您 看
THANKS
穿戴防护装备 在进行试验时,应穿戴符合要求的防护装备,如安全帽、 防护眼镜、手套等,以保护试验人员的人身安全。
工程力学实验
5.数据记录
注:正交测量直径 以最小平均直径计算最小截面积
材标
直 径 D o(mm)
最小
截面Ⅰ 截面Ⅱ 截面 Ⅲ 截面积
料
距
Lo(mm) (1)
(2) 平均
(1)
(2) 平均
(1)
(2) 平均Ao(mm2)
低碳钢
铸铁
二、铸铁压缩
P
Pb
强度极限
D
bPb AOoFra bibliotek△L铸铁压缩图
H
铸铁压缩试件
三、观察断口形式
二、测量分类
1.直接测量。 通过量具或仪器直接得到被测量,相应的被测 量称为直接测量量。 2.间接测量。 若被测量是由几个直接测量量经过函数关系式 计算得到的,相应的被测量称为间接测量量。 有些物理量直接测量起来有困难或难以达到测 量精度要求,通常采用这种测量方法。
三、测量系统的三大部分
输
传 中间变 显示
2.灵敏度
灵 敏 度 y
=
x
X
灵敏度↑→ → 稳定性↓
3.灵敏限和分辨率
Y
Xmin
△y
△Xmin
X
测量系统能够检测到输出 所对应的最小输入值Xmin, 称为灵敏限
系统能够检测到输出变化 所对应的最小输入变化量 △Xmin,称为分辨率
Y
Ymax
4.滞后
滞后量=
Y2 Y1
| y2 y1 |max 100 % ymax
1.测定材料的力学性能
强度和刚度等性能指标 测定材料的静、动态应力、应变关系 以及强度极限,弹性模量等基本参数 如: s 、 b 、δ、ψ、E、等
2.验证和发展理论
工程力学的理论及其公式是在一些简化和假 设的基础上得到的,事实上材料性质、构件所 受的载荷、边界条件等与假设的理想情况是有 差异的 通过实验,可以检验理论的正确性,确定公 式适用范围,发现现有理论的不足之处和尚未 解决的问题,发展新的理论。
工程力学实验
应变计粘贴程序:检查分选应变计、构件表面处理、粘贴应变计、应变计的干燥固化、焊接引出线、应变计防护、粘贴质量的检查。
质量检查要求:粘贴位置方位正确、粘贴缝内无气泡孔隙、粘贴前后应变计阻值无变化、引出线与构件间的绝缘电阻大于100兆欧。
机械滞后:恒定温度下,应变计在加卸载过程中的指示应变关系曲线不重合的现象减小滞后:采用高质量应变计、应变计粘贴后应完全干燥固化、正式测量前,预先加卸载3-5次。
零点漂移:温度恒定,无机械应变作用时,应变计的指示应变随时间变化的现象。
漂移修正法:1、取两个标准精密电阻(120欧)作为应变计,按半桥接法接在应变仪的一个通道上,调平。
2、在记录其他通道的读数时,同时记录该通道的读数,该通道的读数为应变仪的零点漂移。
3、各通道的读数减去该通道的读数即为修正后的读数。
减小湿度的措施:选用胶基应变计、应变计粘贴后应充分干燥固化、采取有效的防潮措施。
减小电磁场措施:将测量导线捆扎成束、改变应变仪方向、使用屏蔽电缆线。
减小温度影响的措施:采用桥路补偿法、避免环境温度剧烈变化、考虑测量导线的温度补偿、多点测量时,常常若干工作片公用一个补偿片。
消除平台自重:1打开油泵,打开送油阀,使工作平台上升1-2cm 2调整平衡陀使摆杆铅垂3调整示力度盘指针对零。
液压式摆锤万能试验机,确认摆杆铅垂三种方法:1看摆杆标示牌上的刻度与缓冲挡座的指示刻线是否对齐2看水准仪气泡是否居中3增减摆锤,看示力度盘上指针位置有无变化。
简述力/应变综合参数测试仪的使用方法:1接通电源,使仪器预热30分钟;2连接传感器和测量桥路;3选择测力单位,调整测力仪初读数为零。
4调整应变仪的灵敏系数。
5调整应变仪各通道读数为零。
6加载测量各通道的应变。
7将各仪器恢复原来状态。
静态电阻应变测量程序:确定测点位置和布片方案、选择应变计和应变仪、应变计粘贴防护、连接测量系统预测、实测、数据处理、结束。
应变计粘贴程序:检查分选应变计、构件表面处理、粘贴应变计、应变计的干燥固化、焊接引出线、应变计防护、粘贴质量的检查。
工程力学实验报告(全)解析
工程力学实验报告学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验 2 实验二金属材料的压缩试验 6 实验三复合材料拉伸实验9 实验四金属扭转破坏实验、剪切弹性模量测定12 实验五电阻应变片的粘贴技术及测试桥路变换实验16 实验六弯曲正应力电测实验19 实验七叠(组)合梁弯曲的应力分析实验23 实验八弯扭组合变形的主应力测定32实验九偏心拉伸实验37 实验十偏心压缩实验41 实验十二金属轴件的高低周拉、扭疲劳演示实验45 实验十三冲击实验47 实验十四压杆稳定实验49 实验十五组合压杆的稳定性分析实验53 实验十六光弹性实验59 实验十七单转子动力学实验62 实验十八单自由度系统固有频率和阻尼比实验65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l = mm实验前低碳钢弹性模量测定()F lE l Aδ∆⋅=∆⋅ =实验后屈服载荷和强度极限载荷载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。
金属材料的拉伸及弹性模量测定原始试验数据记录实验二金属材料的压缩试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)观察铸铁试样的破坏断口,分析破坏原因;(2)分析比较两种材料拉伸和压缩性质的异同。
金属材料的压缩试验原始试验数据记录实验三复合材料拉伸实验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理试件尺寸电阻应变片数据载荷和应变四、问题讨论复合材料拉伸实验原始试验数据记录实验四金属扭转破坏实验、剪切弹性模量测定实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理弹性模量E= 泊松比 =实验前低碳钢剪切弹性模量测定PI l T G ⋅⋅=ϕ∆∆0=理论值)1(2μ+=EG = ;相对误差(%)==⨯-%100理实理G G G 载荷―变形曲线(F ―Δl 曲线)及结果四、问题讨论(1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成45o 螺旋断裂面?(2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。
工程力学实验报告
实验一拉伸时材料弹性模量的测定一、实验目的1、在比例极限内,验证虎克定律。
2、测定低碳钢的弹性模量Eo二、实验设备1、游标卡尺2、球铰式引伸仪用来测量微小线变形的仪器称为引伸仪,它可以将微小变形放大许多倍,提高测量精度。
引伸仪种类很多,现介绍常用的球铰式引伸仪,此仪器的原理示意图如图1所示。
试件夹持于上、下标距叉内,当试件标距L伸长△L时,下标距叉绕球铰B转动,试件伸长△L=AA’,由于AB=AC,所以CC’=2AA=2△L,千分表(或百分表)测出的距离则为2△L,又因千分表(或百分表)的放大倍数为1000(或100)倍,故球铰式引伸仪总的放大倍数为K=2000倍(或K=200倍)。
仪器标距有L=100mm和L=50mm两种。
3、油压式万能材料试验机油压式万能材料试验机可以作拉伸、压缩、弯曲等多种试验,其构造可分为加载、测力和绘图三个部分。
试验机的类型很多,下面以实验室使用的WE—10B型液压式万能试验机为例说明,图2是其构造原理示意图。
(1)加载部分拉伸试件夹紧于上、下横梁1和2的夹头之间,上横梁1通过前后两光杆3与试验台4固结在一起,下横梁2则通过传动螺母支持在前后两丝杆5上。
开动油泵电动机带动油泵6工作,将油箱中的油经油管(1)和控制阀7送入工作油缸8,推动工作活塞9使试验台4、光杆3及上横梁l上升,下横梁2不动,从而使试件受拉伸。
如将试件放在下横梁2和试验台4之间,则试验台上升时,试件将承受压力。
为便于装夹不同长度的试件,可开启升降电机,通过减速器10传动链子,使丝杆5旋转,从而使下横梁2快速移动到适当位置。
必须注意:当试件已经夹紧或受力后,严禁再开启升降电机,以免损坏机器。
(2)测力部分加载时,工作油缸8中的油压与试件所受的力成正比,如用油管(2)将工作油缸与测力油缸11联通,此油压推动测力活塞2向下移动,带动拉杆13,使摆锤14绕支点转动,同时摆上的推板15便推动线轮架16沿导轨移动,使指针17旋转,指针转动的角度与试件受力大小成正比,于是在测力度盘18上便可读出试件受力的大小。
工程力学实验报告
实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的1、观察低碳钢和铸铁在拉伸过程中的力与变形的关系。
2、测定低碳钢的弹性模量E。
3、测定低碳钢拉伸时的屈服极限;强度极限,伸长率和截面收缩率4、测定铸铁的强度极限。
5、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。
6、了解CMT微机控制电子万能实验机的构造原理和使用方法。
二、实验设备和仪器1.CMT微机控制电子万能实验机2.电子式引伸计仪3.游标卡尺4.钢尺三.实验原理试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。
试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。
试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如图1—2,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。
低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、颈缩四个阶段。
铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。
抗拉强度σb 较低,无明显塑性变形。
与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs 、最大载荷Fb 和铸铁试件的最大载荷Fb 。
取下试件测量试件断后最小直径d1和断后标距 l1,由下述公式0A Fss =σ 0A F b b =σ %100001⨯-=l l l δ %100010⨯-=A A A ψ可计算低碳钢的拉伸屈服点σs 。
、抗拉强度σb 、伸长率δ,和断面收缩率ψ;铸铁的抗拉强度σb 。
低碳钢的弹性模量E 由以下公式计算:l A Fl E ∆∆=00式中ΔF 为相等的加载等级,Δl 为与ΔF 相对应的变形增量。
四、实验步骤(1)低碳钢拉伸试验步骤按照式样、设备的准备及测试工作,大致可以将低碳钢拉伸试验步骤归纳如下:首先,将式样标记标距点,测量式样直径do及标距lo。
工程力学压缩实验报告
一、实验目的1. 理解和掌握工程力学中压缩实验的基本原理和方法。
2. 学习使用万能材料试验机进行压缩实验,并掌握实验操作步骤。
3. 观察和记录不同材料在压缩过程中的变形和破坏现象。
4. 分析和比较不同材料的压缩性能,为工程实际应用提供理论依据。
二、实验原理压缩实验是研究材料在轴向压力作用下的力学性能的一种实验方法。
实验过程中,通过对材料施加轴向压力,使其产生变形,直至破坏,从而测定材料的压缩强度、弹性模量、屈服极限等参数。
压缩实验的原理基于胡克定律和材料的应力-应变关系。
在弹性范围内,材料的应力与应变呈线性关系,即应力-应变曲线呈直线。
当材料超过弹性范围后,应力与应变的关系不再呈线性关系,此时材料发生塑性变形。
三、实验设备与材料1. 万能材料试验机:用于施加轴向压力,测量材料的变形和破坏现象。
2. 游标卡尺:用于测量试样的尺寸。
3. 压缩试样:低碳钢、铸铁等不同材料制成的圆柱形试样。
4. 记录纸、笔:用于记录实验数据。
四、实验步骤1. 准备试样:用游标卡尺测量试样的直径d和高度h,记录数据。
2. 安装试样:将试样放置在万能材料试验机的压板之间,确保试样中心与压板中心对齐。
3. 调整试验机:设置试验机的加载速度,调整试验机至待测状态。
4. 施加载荷:启动试验机,使试样受到轴向压力,观察试样的变形和破坏现象。
5. 记录数据:记录试样的屈服载荷、最大载荷、压缩变形等数据。
6. 实验结束后,整理试样,清洗试验设备。
五、实验结果与分析1. 低碳钢压缩实验实验结果显示,低碳钢在压缩过程中,当载荷达到屈服载荷时,试样出现塑性变形。
随着载荷的增加,试样变形逐渐增大,直至试样断裂。
根据实验数据,可计算出低碳钢的屈服极限、抗压强度等参数。
2. 铸铁压缩实验实验结果显示,铸铁在压缩过程中,当载荷达到一定值后,试样在轴线大约成45°方向上发生断裂。
根据实验数据,可计算出铸铁的抗压强度等参数。
六、实验结论1. 压缩实验是研究材料力学性能的重要方法,可用于测定材料的压缩强度、弹性模量、屈服极限等参数。
工程力学教学实验剪切实验
剪切实验一、试验目的⒈观察剪切破坏现象。
⒉测定低碳钢的剪切强度极限τb。
二、试验设备和仪器⒈万能材料试验机⒉金属剪切器⒊游标卡尺三、实验原理在工程中,构件之间的连接多用铆钉、销钉、螺栓、键等联接构件。
这些联接构件主要承受剪切和挤压变形,还伴随着短跨度弯曲变形,受力情况比较复杂。
因此,在工程设计中,常用由剪切实验直接测得的金属材料的实际剪切强度极限来作为强度计算的依据。
将低碳钢材料制成直径为8~10㎜的等圆截面柱形试件,其长度视剪切器的规格而定。
试件在剪切器中的受力图如图3-8。
试件由两个截面同时承受剪切作用,其强度极限式中,为试件剪断时的最大载荷,Α为试件横截面面积。
图3-8四、实验方法和步骤⒈试件准备在试件中部和两端三处,沿互相垂直方向各测量一次直径,取其平均值作为计算直径。
⒉实验机准备根据材料性质和试件直径,估算剪断试件所需的最大载荷P b,选取合适的实验机测力度盘、挂上相应的摆锤。
⒊试件安装并检查将试件装入剪切器,然后将装置试件的剪切器置于实验机的压缩区间,且注意放在正中,使作用力通过实验机压力中心。
⒋进行实验缓慢均匀加载直至试件被剪断。
记下剪断试件时的最大载荷。
取下试件,观察试件断口。
⒌结束实验清理现场,将剪切器及实验机复原。
五、试验结果处理根据实验测得的剪断试件的最大载荷,计算剪切强度极限六、思考题⒈将剪切实验测定的剪切强度极限与低碳钢拉伸实验测得的拉伸强度极限比较,确定其比值。
⒉试从低碳钢剪切试件的断口形状,分析其破坏原因。
工程力学实验指导书(全)
工程力学实验指导书班级:学号:姓名:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验 2 实验二金属材料的压缩试验 6 实验三复合材料拉伸实验8 实验四金属扭转破坏实验、剪切弹性模量测定14 实验五电阻应变片的粘贴技术及测试桥路变换实验18 实验六弯曲正应力电测实验21 实验七叠(组)合梁弯曲的应力分析实验24 实验八弯扭组合变形的主应力测定27实验九偏心拉伸实验31 实验十偏心压缩实验34 实验十二金属轴件的高低周拉、扭疲劳演示实验37 实验十三冲击实验40 实验十四压杆稳定实验44 实验十五组合压杆的稳定性分析实验47 实验十六光弹性实验50 实验十七单转子动力学实验56 实验十八单自由度系统固有频率和阻尼比实验61实验一金属材料的拉伸及弹性模量测定试验一、实验目的与要求1.观察低碳钢和铸铁在拉伸试验中的各种现象。
2.测绘低碳钢和铸铁试件的载荷―变形曲线(F―Δl曲线)。
3.测定低碳钢的拉伸屈服点σs、抗拉强度σb、伸长率ψ、断面收缩率δ和铸铁的抗拉强度σb。
4.测定低碳钢的弹性模量E。
5.观察低碳钢在拉伸强化阶段的卸载规律及冷作硬化现象。
6.比较低碳钢(塑性材料)和铸铁(脆性材料)的拉伸力学性能。
二、实验设备和仪器1.微机控制电子万能试验机。
2.电子式引伸计。
3.游标卡尺。
4.钢尺。
三、实验原理与方法金属材料的屈服点σs、抗拉强度σb、伸长率ψ和断面收缩率δ是由拉伸试验测定的。
试验采用的圆截面短比例试样按国家标准(GB/T 228-2002)制成,如图1-1所示。
这样可以避免因试样尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。
图中:d0为试样直径,l0为试样的标距,并且短比例试样要求l0=5d0。
国家标准中还规定了其他形状截面的试样,可适用于从不同的型材和构件上制备试样。
图1-1金属拉伸试验应遵照国家标准(GB/T 228-2002)在微机控制电子万能试验机上进行,在实验过程中,与微机控制电子万能试验机联机的微型电子计算机的显示屏上实时绘出试样的拉伸曲线(也称为F ―Δl 曲线),如图1-2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3-1 拉伸实验
一、目的
1、测定低碳钢的屈服极限σs 、强度极限σb 、延伸率δ和断面收缩率ψ;
2、测定铸铁的强度极限σb ;
3、观察拉伸过程中的各种现象(屈服、强化、颈缩、断裂特征等),并绘制拉伸图(F -ΔL 曲线);
4、比较塑性材料和脆性材料力学性质特点。
§3-2 压缩实验
一、目的
1、测定压缩时低碳钢的屈服极限σs 和铸铁的强度极限σb 。
2、观察低碳钢和铸铁压缩时的变形和破坏情况。
§3-5 拉伸时材料弹性模量E 和泊松比μ的测定
一、目的
1、在比例极限内验证虎克定律,并测定材料的弹性模量E 和泊松比μ。
§3-6 梁的弯曲正应力试验
一、目的
1.测定矩形截面梁在纯弯曲时横截面上正应力的大小及其分布规律,并与理论计算结果进行比较,以验证纯弯曲正应力公式z
I My =σ的正确性。
2.学习电测法,并熟悉静态电阻应变仪的使用和1/4桥路接线方法。