第四讲不等式

合集下载

第4讲基本不等式与柯西不等式

第4讲基本不等式与柯西不等式

)
x+2y 2 解析:∵2xy=8-(x+2y),故 8-(x+2y)≤( ), 2 ∴(x+2y)2+4(x+2y)-32≥0 解得 x+2y≥4 或 x+2y≤-8(舍去) ∴x+2y 的最小值为 4(当且仅当 x=2y=2 时取等号).
答案:B
变式训练2
(2012· 山西四校第一次联考)设 x、y∈R,a>1,b>1,若 a =b 2 1 =2,a+ b=4,则x+y的最大值为( A.4 B.3 C.2 ) D.1
x
y
解析:依题意得 4=a+ b≥2 a· b(当且仅当 a= b时,等 2 号成立),则 a b≤4,a b≤16,又 x=loga2,y=logb2,所以 x+
2
1 2 1 2 =2log2a+log2b=log2(a b)≤log216=4,即 + 的最大值是 4, y x y 故选 A.
答案:A
探究三:应用基本不等式证明不等式
1 1 [例 3] 已知 a>0,b>0,a+b=1,求证:(1+ )(1+ )≥9. a b
证明:因为 a>0,b>0,a+b=1, a+b 1 b 所以 1+ =1+ =2+ . a a a 1 a 同理 1+ =2+ . b b 1 1 所以(1+a)(1+b) b a =(2+a)· b) (2+ b a =5+2(a+b)≥5+4=9. 1 1 1 所以(1+ )(1+ )≥9(当且仅当 a=b= 时等号成立). a b 2
变式训练1
1 1 设 a、b 均为正实数,求证:a2+b2+ab≥2 2.
证明:由于 a、b 均为正实数, 1 1 所以a2+b2≥2 1 1 2 a2·2=ab, b
1 1 当且仅当a2=b2时等号成立, 2 又因为 +ab≥2 ab 2 · ab=2 2, ab

第四讲 不等式与简单的线性规划

第四讲 不等式与简单的线性规划

第4讲│ 要点热点探究
[思考流程] (1)(分析)欲求z的取值范围需得(x,y)所在区域 和z的几何意义 ⇨ (推理)画出不等式组表示的区域,确立目标 函数z的几何意义 ⇨ (结论)数形结合寻找其最大值和最小值. (2)(分析)欲得求解目标需要变量满足的条件和目标解析式 ⇨ (推理)设黄瓜和韭菜的种植面积分别为x,y,列出x,y满足 的不等式组,用x,y表示种植总利润z ⇨ (结论)按照一般线性 规划的解法求解其最大值.
第4讲│ 要点热点探究
(2)函数g(x)=2x,g(a)g(b)=2a·b=2a b=16,所以a+b= 2 4.
4 1 4 1 1 1 4b a 1 方法1: a + b = (a+b) a+b = 5+ a +b ≥ 4 4 4 4b a 8 4b a 9 = ,等号当且仅当 a = b ,即a=2b,即a= , 5+2 3 a · 4 b 4 b= 时取得. 3
第4讲│ 要点热点探究
[思考流程] (1)(分析)欲判断各个选项是否成立需考虑不 等式能够成立的条件 ⇨ (推理)如果条件是充分的则不等式成 立,否则不成立 ⇨ (结论)根据各选项作出判断. 4 1 (2)(分析)欲求 a + b 的最小值需要a,b的关系 ⇨ (推理)根 据g(a)g(b)=16确定a,b关系,进行常数代换 ⇨ (结论)应用 基本不等式得最值.
专题一 集合与常用逻辑用语、 函数与导数、不等式
第1讲 集合与常用逻辑用语 第2讲 函数、基本初等函数 Ⅰ的图象与性质 第3讲 函数与方程、函数模 型及其应用 第4讲 不等式与简单的线性 规划 第5讲 导数在研究函数性质 中的应用
第4讲
不等式与简单的线 性规划
第4讲 │ 云览高考
[云览高考]

第四讲不等式

第四讲不等式

第四讲不等式不等式性质及解法授课提示:对应学生用书第9页[悟通——方法结论]1.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c 同号,则其解集在两根之外;如果a与ax2+bx+c异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[全练——快速解答]1.(2018·深圳一模)已知a >b >0,c <0,下列不等关系中正确的是( ) A .ac >bc B .a c >b c C .log a (a -c )>log b (b -c )D.a a -c >bb -c解析:法一:(性质推理法)A 项,因为a >b ,c <0,由不等式的性质可知ac <bc ,故A 不正确;B 项,因为c <0,所以-c >0,又a >b >0,由不等式的性质可得a -c >b -c >0,即1a c >1b c >0,再由反比例函数的性质可得a c <b c ,故B 不正确; C 项,若a =12,b =14,c =-12,则log a (a -c )=1=0,log b (b -c )=34>1=0,即log a (a -c )<log b (b -c ),故C 不正确;D 项,aa -c -bb -c =a (b -c )-b (a -c )(a -c )(b -c )=c (b -a )(a -c )(b -c ),因为a >b >0,c <0,所以a -c >b -c >0,b -a <0, 所以c (b -a )(a -c )(b -c )>0,即a a -c -bb -c >0,所以a a -c >b b -c ,故D 正确.综上,选D.法二:(特值验证法)由题意,不妨取a =4,b =2,c =-2. 则A 项,ac =-8,bc =-4,所以ac <bc ,排除A ; B 项,a c =4-2=116,b c =2-2=14,所以a c <b c ,排除B ;C 项,log a (a -c )=log 4(4+2)=log 4 6,log b (b -c )=log 2(2+2)=2,显然log 4 6<2,即log a (a -c )<log b (b -c ),排除C.综上,选D. 答案:D2.(2018·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >2,则m -n =( )A.12 B .-52C.52D .-1解析:由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-nm 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52. 答案:B3.不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)解析:①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,所以x ≥4;②当x -2<0,即x <2时,不等式可化为(x -2)2≤4,所以0≤x <2.综上,不等式的解集是[0,2)∪[4,+∞).答案:B4.已知x ∈(-∞,1],不等式1+2x +(a -a 2)·4x >0恒成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-2,14 B.⎝⎛⎦⎤-∞,14 C.⎝⎛⎭⎫-12,32 D.(]-∞,6解析:根据题意,由于1+2x +(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x =t(0<t ≤2),则可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+t t 2,故只要求解h (t)=-1+tt2(0<t ≤2)的最大值即可,h (t)=-1t 2-1t =-⎝⎛⎭⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a 的取值范围为⎝⎛⎭⎫-12,32. 答案:C5.设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎪⎨⎪⎧ x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎪⎨⎪⎧x <0,-x 3≤1得-1≤x <0,故使得f (x )≤1成立的x 的取值范围是[-1,9].答案:[-1,9]1.明确解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 2.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.基本不等式授课提示:对应学生用书第10页[悟通——方法结论]求最值时要注意三点:“一正”“二定”“三相等”.所谓“一正”指正数,“二定”是指应用定理求最值时,和或积为定值,“三相等”是指等号成立.[全练——快速解答]1.(2018·长春模拟)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12 D .16解析:由4x +y =xy 得4y +1x =1,则x +y =(x +y )·⎝⎛⎭⎫4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.答案:B2.(2017·高考天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号, 故a 4+4b 4+1ab 的最小值是4.答案:43.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240, 当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:30掌握基本不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.简单的线性规划问题授课提示:对应学生用书第10页[悟通——方法结论] 平面区域的确定方法解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.[全练——快速解答]1.(2017·高考全国卷Ⅲ)设x ,y 满足约束条件 ⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值范围是[-3,2].答案:B2.已知平面上的单位向量e 1与e 2 的起点均为坐标原点O ,它们的夹角为π3.平面区域D由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12 B.3 C.32D.34解析:建立如图所示的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝⎛⎭⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎨⎧x =λ+μ2,y =3μ2,即⎩⎨⎧λ=x -3y 3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为34,故选D.答案:D3.(2018·福州模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.已知生产一把椅子需要木工4个工作时,漆工2个工作时;生产一张桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一张桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.解析:设该厂每个月生产x 把椅子,y 张桌子,利润为z 元,则得约束条件 ⎩⎪⎨⎪⎧4x +8y ≤8 000,2x +y ≤1 300,z =1 500x +2 000y .x ,y ∈N ,画出不等式组⎩⎪⎨⎪⎧x +2y ≤2 000,2x +y ≤1 300,x ≥0,y ≥0表示的可行域如图中阴影部分所示,画出直线3x+4y =0,平移该直线,可知当该直线经过点P 时,z 取得最大值.由⎩⎪⎨⎪⎧x +2y =2 000,2x +y =1 300,得⎩⎪⎨⎪⎧x =200,y =900,即P (200,900),所以z max =1 500×200+2 000×900=2 100 000.故每个月所获得的最大利润为2 100 000元.答案:2 100 000解决线性规划问题的3步骤[练通——即学即用]1.(2018·湘东五校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,则(x +5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:作出不等式组⎩⎨⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y =6.由⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点与D(-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝ ⎛⎭⎪⎪⎫|-5+2×0|12+222=5.故选A. 答案:A2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,则a =________.解析:如图所示,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z取得最大值,由⎩⎪⎨⎪⎧ 2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:33.(2018·高考全国卷Ⅰ)若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max =3×2+2×0=6.答案:6授课提示:对应学生用书第118页一、选择题1.已知互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,则下列等式中可能成立的是( ) A .a >b >c B .b >a >c C .b >c >aD .c >a >b解析:若a >b >0,则a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A ,D ; 又由a 2-c 2=2c (b -c )得a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立,例如:取a =3,b =5,c =1.故选B. 答案:B2.已知b >a >0,a +b =1,则下列不等式中正确的是( ) A .log 3a >0B .3a -b <13C .log 2a +log 2b <-2D .3⎝⎛⎭⎫b a +a b ≥6解析:对于A ,由log 3a >0可得log 3a >log 31,所以a >1,这与b >a >0,a +b =1矛盾,所以A 不正确;对于B ,由3a -b <13可得3a -b <3-1,所以a -b <-1,可得a +1<b ,这与b >a >0,a +b =1矛盾,所以B 不正确;对于C ,由log 2a +log 2b <-2可得log 2(ab )<-2=log 214,所以ab <14,又b >a >0,a +b =1>2ab ,所以ab <14,两者一致,所以C 正确;对于D ,因为b >a >0,a +b =1,所以3⎝⎛⎭⎫b a +a b >3×2b a ×ab=6, 所以D 不正确,故选C. 答案:C3.在R 上定义运算:x y =x (1-y ).若不等式(x -a )(x -b )>0的解集是(2,3),则a +b =( )A .1B .2C .4D .8解析:由题知(x -a )(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.答案:C4.已知a ∈R ,不等式x -3x +a ≥1的解集为P ,且-2∉P ,则a 的取值范围为( )A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:∵-2∉P ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案:D5.已知x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,则z =8-x ·⎝⎛⎭⎫12y的最小值为( )A .1 B.324C.116D.132解析:不等式组表示的平面区域如图中阴影部分所示,而z =8-x ·⎝⎛⎭⎫12y=2-3x -y ,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y 最小,最小值为132.故选D.答案:D6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:由题意得,f (1)=3,所以f (x )>f (1),即f (x )>3.当x <0时,x +6>3,解得-3<x <0;当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).答案:A7.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =3x -2y 的最小值为0,则实数m等于( )A .4B .3C .6D .5解析:作出不等式组所表示的可行域如图中阴影部分所示,由图可知,当目标函数z =3x -2y 所对应的直线经过点A 时,z 取得最小值0.由⎩⎪⎨⎪⎧y =2x -1,x +y =m , 求得A ⎝⎛⎭⎪⎫1+m 3,2m -13.故z 的最小值为3×1+m 3-2×2m -13=-m 3+53,由题意可知-m 3+53=0,解得m =5.答案:D8.若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1B. 2C.12D.22解析:因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12. 答案:C9.(2018·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4] C.⎣⎡⎦⎤45,13D.⎣⎡⎦⎤45,4解析:画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝⎛⎭⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,故选C.答案:C10.(2018·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( ) A.63B.233C.433D.263解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0, 又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a≥24a ·13a =433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433.答案:C11.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:C12.(2018·淄博模拟)已知点P (x ,y )∈{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2},x ≥-2M (2,-1),则OM →·OP →(O为坐标原点)的最小值为( )A .-2B .-4C .-6D .-8解析:由题意知OM →=(2,-1),OP →=(x ,y ),设z =OM →·OP →=2x -y ,显然集合{(x ,y )|⎩⎨⎧y ≥xx +2y ≤2}x ≥-2对应不等式组⎩⎨⎧y ≥xx +2y ≤2x ≥-2所表示的平面区域.作出该不等式组表示的平面区域如图中阴影部分所示,由图可知,当目标函数z =2x -y 对应的直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x =-2x +2y -2=0得A (-2,2),所以目标函数的最小值z min=2×(-2)-2=-6,即OM →·OP →的最小值为-6,故选C.答案:C 二、填空题13.(2018·青岛模拟)若a >0,b >0,则(a +b )·⎝⎛⎭⎫2a +1b 的最小值是________. 解析:(a +b )⎝⎛⎭⎫2a +1b =2+2b a +a b +1=3+2b a +ab ,因为a >0,b >0,所以(a +b )⎝⎛⎭⎫2a +1b ≥3+22b a ×a b =3+22,当且仅当2b a =ab ,即a =2b 时等号成立.所以所求最小值为3+2 2. 答案:3+2 214.(2018·高考全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.解析:由不等式组画出可行域,如图(阴影部分),x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4), ∴z max =5+4=9. 答案:915.(2018·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12516.已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t<1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3.答案:3。

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)

解:(1)f′(x)=r-rxr 1=r(1-xr 1),令 f′(x)=0,解得 x =1. 当 0<x<1 时,f′(x)<0,所以 f(x)在(0,1)内是减函数; 当 x>1 时,f′(x)>0,所以 f(x)在(1,+∞)内是增函数. 故函数 f(x)在 x=1 处取得最小值 f(1)=0. (2)由(1)知,当 x∈(0,+∞)时,有 f(x)≥f(1)=0,即 xr≤rx +(1-r),
a1b1+a2b2+…+akbk bk ak· = , 1-bk+1 1-bk+1
从而 a 1
b1
a
b2 2
…… a k
bk
a1b1+a2b2+…+akbk 1-b bk 1 a k 1 ≤( ) k+1a k 1 . 1-bk+1
bk 1
又因(1-bk+1)+bk+1=1,由②得 a1b1+a2b2+…+akbk 1-b a1b1+a2b2+…+akbk bk 1 ( ) k+1a k 1 ≤ · 1-bk+1 1-bk+1 (1-bk+1)+ak+1bk+1=a1b1+a2b2+…+akbk+ak+1·k+1, b 从而 a 1
是否为真有待证明,因而数学中我们常用归纳——猜想—— 证明的方法来解决与正整数有关的归纳型和存在型问题. [例1] n∈N+), 已知数列{an}的第一项a1=5且Sn-1=an(n≥2,
(1)求a2,a3,a4,并由此猜想an的表达式;
(2)用数学归纳法证明{an}的通项公式.
[解] (1)a2=S1=a1=5,a3=S2=a1+a2=10,
1 下面用数学归纳法证明当 0<c≤ 时,xn< c对任意 n≥1 成 4 立. 1 (1)当 n=1 时,x1=0< c≤ ,结论成立. 2 (2)假设当 n=k(k∈N*)时结论成立,即:xk< c.因为函数 f(x) 1 =-x2+x+c 在区间(-∞, ]内单调递增,所以 xk+1=f(xk) 2 <f( c)= c,这就是说当 n=k+1 时,结论也成立. 故 xn< c对任意 n≥1 成立. 因此,xn+1=xn-x2 +c>xn,即{xn}是递增数列. n 1 由(i)(ii)知,使得数列{xn}单调递增的 c 的范围是(0, ]. 4

第四讲 一元一次不等式组的应用及一次函数的关系

第四讲  一元一次不等式组的应用及一次函数的关系

第四讲一元一次不等式组的应用及一次函数的关系一、知识梳理(一)一元一次不等式组的实际应用:1、列不等式(组)解应用题的一般步骤(1)认真审题,理解题意,分清已知量与未知量(2)找出其中的不等量关系(3)恰当设元(4)列不等式(组)(5)求解不等式(组)(6)检验作答2、列不等式(组)解应用题与列方程(组)解应用题不同的是方程寻找的是等量关系,而不等式(组)寻找的是不等量关系,并且解不等式(组)的结果一般是一个解集,需从解集中找出符合题意的答案3、不等式(组)的实际应用题主要考查学生的应用能力,通常通过不等式(组)解集,来确定最好工作途径、最佳设计方案、获得最大效益等,常以综合题出现。

(二)一元一次方程、一元一次不等式(组)、一次函数之间的关系:一次函数 y=ax+b(a≠0),当y=0时,即ax+b=0就是一元一次方程;当y≠0时,即ax+b>0或ax+b<0就是一元一次不等式。

因此,一元一次方程、一元一次不等式是一次函数的一部分,一次函数统帅了一元一次方程和一元一次不等式。

二、典例剖析例1:某种商品的进价800元,出售时标价1200元,后来该商品积压,商家准备打折出售,但要保持利润不低于5%,你认为该商品可以打几折?即学即练:小明上午8:00,步行出发郊游,10:00小亮在同一地点出发,已知小明的速度是4千米/小时,小亮要在10:40追上小明,小亮的速度至少是多少千米/小时?例2:(2009河南)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?即学即练:(2009牡丹江)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号 A 型 B 型 成本(元/台) 2200 2600 售价(元/台)28003000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.例3:某高中一新生中,有若干住宿生,分住若干间宿舍,若每间住4人,则有21人无住处;若每间住7人,则有一间不空也不满,求住宿生人数。

2019版高考数学一轮复习第6章不等式第4讲基本不等式课件【优质ppt版本】

2019版高考数学一轮复习第6章不等式第4讲基本不等式课件【优质ppt版本】
解 ∵log2ab=1,∴ab=2, ∴2a+b≥2 2ab=4,当 a=1,b=2 时,2a+b 的最 小值为 4.
触类旁通 利用基本不等式求最值问题的解题策略
(1)利用基本(均值)不等式解题一定要注意应用的前提: “一正”“二定”“三相等”.
(2)在利用基本(均值)不等式求最值时,要根据式子的特 征灵活变形,配凑出积、和为常数的形式,然后再利用基本 (均值)不等式.
【变式训练 1】 (1)已知 0<x<1,则 x(3-3x)取得最大
值时 x 的值为( )
1132 A.3 B.2 C.4 D.3
解析

0<x<1


x·(3

3x)

1 3
·3x·(3

3x)≤
1 3
3x+23-3x2=34,当 3x=3-3x,即 x=12时,x(3-3x)取得 最大值34.选 C.
3.其中a+2 b叫做正数 a,b 的 做正数 a,b 的 几何平均数 .
算术平均数
, ab叫
考点 3 利用基本不等式求最大、最小值问题 1.如果 x,y∈(0,+∞),且 xy=P(定值), 那么当 x=y 时,x+y 有最小值 2 P.(简记:“积定 和最小”) 2.如果 x,y∈(0,+∞),且 x+y=S(定值), 那么当 x=y 时,xy 有最大值S42.(简记:“和定积最大”)
触类旁通 求条件最值注意的问题
(1)要敏锐的洞察到已知条件与要求式子的联系,并能 灵活进行转化;
(2)常用的技巧有:“1”的代换,配凑法,放缩法,换元 法.
【变式训练 2】 (1)[2018·珠海模拟]已知 x>0,y>0,x +3y+xy=9,则 x+3y 的最小值为( )

第四讲 数学归纳法证明不等式 章末复习方案 课件(人教A选修4-5)

第四讲 数学归纳法证明不等式 章末复习方案 课件(人教A选修4-5)

由 a2=3,得 a3=a2-2a2+1=4; 2 由 a3=4,得 a4=a2-3a3+1=5. 3 由此猜想:an=n+1(n∈N*).
(2)①用数学归纳法证明: 当 n=1 时,a1≥3=1+2,不等式成立; 假设当 n=k 时,不等式成立,即 ak≥k+2, 那么当 n=k+1 时, ak+1=a2-kak+1=ak(ak-k)+1 k ≥(k+2)(k+2-k)+1=2(k+2)+1 ≥k+3=(k+1)+2, 也就是说,当 n=k+1 时,ak+1≥(k+1)+2. 综上可得,对于所有 n≥1,有 an≥n+2. ②由 an+1=an(an-n)+1 及①,对 k≥2,有
xk 2 1 则 < + 2 2 2k 1 xk> 1 1 2+k


因为①、②不是同向不等式,所以由递推式无法完成 由 k 到(k+1)的证明, 到此好像“山重水复疑无路”, 证题 思路受到阻碍.
受阻原因分析: xk 1 1 要利用递推式 xk+1= +x ,只要找出关系式x <A,才有 2 k k 可能推导下去. 1 因此,只有寻觅出 xk> A 这样一个条件,才可以接通思 路.当注意到前面已证明 xn> 2以后,问题就可以解决了.思 路受阻的原因就在于不会借用前面已经证明的结论.事实上,
1 5 n0=2 时,1+ > ,再用数学归纳法证明. 3 2 答案:2
6.若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推 关系式是f(k+1)=________. 解析:∵f(k)=12+22+…+(2k)2, ∴f(k+1)=12+22+…+(2k)2+(2k+1)2+(2k+2)2, ∴f(k+1)=f(k)+(2k+1)2+(2k+2)2. 答案:f(k)+(2k+1)2+(2k+2)2

第4讲------不等式的解法

第4讲------不等式的解法

第4讲 不等式的解法一、简单一元高次不等式解法(解一元高次不等式,一般采取数轴标根法) 其步骤如下:(1)将f(x)的最高次项的系数化为正数;(2)将f(x)分解为若干个一次因式的积;(3)将每一个根顺次表在数轴上,再从右到左依次标出区间;(4)f(x)>0时取奇数区间;f(x)<0时取偶数区间.例1、解不等式(1)2 >0; (2)(x+4) <0.解析:(1)原式=x (2 -x-15)>0⟹x (x-3)(2x+5)>0,得不等式的解集为奇数区间,即{x ∣- <x <0或x >3}.(2)学生自行解决.答案:{x ∣x <-5或-5<x <-4或x >2}.二、分式不等式的解法例2、解不等式: > . 解析:原式变为 >0,通分 ( ) ( )>0, ⟹ ( )( )>0⟹ >0⟹ 或0<x<1. 练习:1、解下列不等式(1)2 ; (2)-4 ;(3)(x-2)( ;(4)(x-3)(x+2) (x-4)>0.2、解不等式:<0. 三、无理不等式解法 (1) g(x)⇔ 或 ;-5/203(2)g(x)⇔ ;(3)f(x)>g(x)0.例3、若不等式+的解集为(4,b),求a、b的值.解析:设=u,则原不等式为u>a+,即a-u+<0,∵不等式的解集为(4,b),∴方程a-u+=0的两个根分别为2,,由韦达定理得解得.练习:解不等式(1)<x-1;(2)>x+3.解析:(1)<x-1,⟹x∈(2,3];①等价转化法:⟹或②换元法:设t=(t0)x=3-,即t<3--1, ⟹(t-1)(t+2)<0,-2<t<1,故0t<1,0<1⟹2<x3.③求补集法:x-1⟹ 或⟹x2或x>3,故原不等式解集为(2,3].<即x∈(2,3].(2)>x+3,解析:用①②③④种方法由学生完成.答案:(-∞,-).四、指数、对数不等式的解法例4、解关于x的不等式lg(2ax)-lg(a+x)<1.解析:⟹a>0,x>0⟹ lg(2ax)<lg(10a+10x)⟹2ax<10a+10x,即(a-5)x<5a.当0<a<5时,a-5<0,x>0当a=5时,不等式0x<25,得x>0;当a>5时,a-5>0,解得0<x<.五、含绝对值不等式的解法例5、解不等式:∣∣x+1∣+∣x-1∣∣<+1.解析:+1>0恒成立,x>-2.①当x1时,原不等式可以变形为2x<+1,,无解;②当-1x<1时,∣∣x+1∣+∣x-1∣∣=2,则原不等式可变形为无解;③当-2<x<-1时,原不等式可以变形为,无解.综合①②③可知,原不等式无解.六、含参不等式的解法例4、试求不等式>-1对一切实数x恒成立的θ取值范围.解析:∵>0,故原不等式变为(θθ)θθθθ>0,令θθ=t,则t∈[-,],不等式变为(t+1)-(t-4)x+t+4>0对x∈R恒成立,由二次函数可知,∴t>0或t<(舍),故0<θθ ,即2k-<θ2k+(k∈Z).练习:1、解不等式(1)2ax>5-x(a∈R);(2)mx>k-nx (m、n、k∈R)解析:(1)(2a+1)x>5,(2)(m+n)x>ka>-时,x>;m+n>0,x>;a<- 时,x<;m+n<0,x<;a=- 时,x∈∅. m+n=0,,∈,∈∅.2、解不等式>1.解析:原不等式变为>0⟹[(a-1)x-(a-2)](x-2)>0,⟹(a-1)[x-](x-2)>0,当a>1时,[x-](x-2)>0⟹(-∞,)∪(2,+∞);当a<1时,[x-](x-2)<0,∵2-=,①当0<a<1时,解是(2,)②当a=0时,解为空集,即x∈∅;③a<0时,解为(,2).课外练习:一、选择题1、若0<a<1,则不等式(a-x)(x- )>0的解集为()A 、{x∣a<x<};B、{x∣<x<a};C、{x∣x>或x<a};D、{x∣x<或x>a}.2、不等式∣x+1∣(2x-1)0的解集为()A、{x∣x=-1或x};B、{x∣x-1或x};C、{x∣x};D、{x∣-1x}.3、若a>1且0<b<1,则不等式的解集为()A、x>3;B、x<4;C、3<x<4;D、x>4.4、不等式2的解集是()A、[-3,];B、[- ,3];C、[,1)∪(1,3];D、[- ,1)∪(1,3].5、已知∣a-c∣<∣b∣,则()A、a<b+c;B、a>c-b;C、∣a∣>∣b∣-∣c∣;D、∣a∣<∣b∣+∣c∣.6、设f(x),,则不等式f(x)>2的解集为()A、(1,2)∪(3,+∞);B、(,+∞);C、(1,2)∪(,+∞);D、(1,2).二、填空题7、不等式-∣x∣<0的解集是 .8、不等式的解集是.9、定义符号函数sgn x=,当x∈R时,则不等式x+2>的解集为.三、解答题10、解不等式(∣3x-1∣-1)(.11、已知函数f(x)=,当a>0时,解关于x的不等式f(x)<0.12、设有关于x的不等式lg(∣x+3∣+∣x-7∣)>a.(1)当a=1时,解此不等式;(2)求当a为何值时,此不等式的解集为R.。

2023届高考数学一轮复习讲义:第4讲 一元二次不等式及其解法

2023届高考数学一轮复习讲义:第4讲 一元二次不等式及其解法

第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0) 的解集 {x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aRax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0, b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的一元二次不等式;②判断一元二次不等式所对应的方程实根的个数,即讨论判别式Δ与0的关系; ③确定方程无实根或有两个相同实根时,可直接写出解集;确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集. [典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2}B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).[举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,52.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ f β>0,f α>0. (2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,fα<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( ) A .15a << B .51a -<<- C .51a -<≤-D .31a -<≤-2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)[举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞D .(),0∞-2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<<B .10a -<≤C .10a -≤<D .10a -≤≤3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫ ⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x ->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________.8.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3B .[]0,3C .()3,0-D .(,1)(3,)-∞+∞2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18 C .21 D .26[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,)-∞-⋃+∞B .(6,--C .(6,2))--⋃+∞D .(,2)-∞-2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞-B .(],2-∞-C .(6,)-+∞D .(,6)-∞-5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根 有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b 2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0){x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aR的解集 ax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤[典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2} B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭【答案】D【解析】∵2210x x --<,∴112x -<<,∴不等式2210x x --<解集为112x x ⎧⎫-<<⎨⎬⎩⎭.故选:D.2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).【解】(1)由231x ≤-,得2301x -≤-,即5301x x -≤- 则(53)(1)0x x --≤且1x ≠,解得:5(,1)[,)3-∞+∞(2)当12a =-时,原不等式1(1)(2)02x x ⇔--+<,解的{|2}x x ≠-;当12a <-时,原不等式(1)(2)0ax x ⇔-+<,又12a >-所以解集为1(,2)(,)a -∞-+∞;当102a -<<时,因为12a <-所以解集为1(,)(2,)a-∞-+∞.综上有,12a =-时,解集为{|2}x x ≠-;12a <-时,解集为1(,2)(,)a -∞-+∞;102a -<<时,解集为1(,)(2,)a-∞-+∞. [举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5【答案】B【解析】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B2.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥【答案】B 【解析】由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R{|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤. 故选:B.3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.【解】当a +1=0即 a =-1时,原不等式变为-x +2<0,即x >2. 当a>-1时,原不等式可转化为()1201x x a ⎛⎫--< ⎪+⎝⎭, ∴方程()1201x x a ⎛⎫--= ⎪+⎝⎭的根为1,21a +. 若-1<a<12-,则11a +>2,解得2<x <11a +;若a =12-,则11a +=2,解得x ∈∅;若a >12-,则11a +<2, 解得11a +<x <2.综上,当a >12-时,原不等式的解集为{x |11a +<x <2}; 当a =12-时,原不等式的解集为∅;当-1<a <12-时,原不等式的解集为{x |2<x <11a +}. 当a =-1时,原不等式的解集为{x |x >2}.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0. 【解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根, 所以132(1)3b aa a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0, 即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-; 当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ fβ>0,f α>0.(2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,f α<0. f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( )A .15a <<B .51a -<<-C .51a -<≤-D .31a -<≤-【答案】C【解析】当10a +=,即1a =-时,()()21110a x a x +-+-<可化为10-<,即不等式10-<恒成立;当10a +≠,即1a ≠-时,因为()()21110a x a x +-+-<对一切实数x 恒成立,所以()()2101410a a a +<⎧⎪⎨+++<⎪⎩,解得51a -<<-; 综上所述,51a -<≤-. 故选:C.2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+【答案】B【解析】解:当0x =时,不等式10恒成立; 当0x >时,由题意可得12a x x-+恒成立, 由11()22f x x x x x=+⋅=,当且仅当1x =时,取得等号. 所以22a -,解得1a -.综上可得,a 的取值范围是[)1,-+∞. 故选:B .3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)【答案】C【解析】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x ∴的取值范围为()(),13,-∞⋃+∞.故选:C . [举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞ D .(),0∞-【答案】A【解析】由题意,当x ∈R 时,不等式2210x x a ---≥恒成立,故2(2)4(1)0a ∆=-++≤ 解得2a ≤-,故实数a 的取值范围是(],2-∞- 故选:A2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<< B .10a -<≤C .10a -≤<D .10a -≤≤【答案】B【解析】当0a =时,221=10ax ax +--<,对x R ∀∈恒成立; 当0a ≠时,若2210ax ax +-<,对x R ∀∈恒成立,则必须有2(2)4(1)0a a a <⎧⎨-⨯-<⎩,解之得10a -<<, 综上,a 的取值范围为10a -<≤.故“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是10a -<≤, 故选:B3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 【答案】B【解析】∵不等式224(2)30a x a x -+-+()>的解集为R , 当a -2=0,即a =2时,不等式为3>0恒成立,故a =2符合题意; 当a ﹣2≠0,即a ≠2时,不等式224(2)30a x a x -+-+()>的解集为R , 则()()220Δ424230a a a ->⎧⎪⎨⎡⎤=---⨯<⎪⎣⎦⎩,解得1124a <<, 综合①②可得,实数a 的取值范围是1124⎡⎫⎪⎢⎣⎭,.故选:B .4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或x >12≤xx =综上,实数x 的取值范围是4x ≤-,或12x ≥. 故选:A.5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞ B .[2,)+∞ C .(,4]-∞ D .(,2]-∞【答案】A【解析】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立, 所以对任意的2[1,0],242x m x x ≥-∈--恒成立, 因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞ 故选:A6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________. 【答案】[1,4]【解析】2|()|5515f x x ax ⇔-≤--≤, ①当0x =时,a R ∈;②当0x ≠时,2|()|5515f x x ax ⇔-≤--≤64x a x x x⇔-≤≤+, min 44242x x ⎛⎫∴+=+= ⎪⎝⎭,max 6321x x ⎛⎫-=-= ⎪⎝⎭,∴14a ≤≤, 综上所述:14a ≤≤. 故答案为:[]1,4.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________. 【答案】[]0,1【解析】由题意知:2302kx x x +->,即22>-k x x 对任意的()0,2x ∈恒成立,0k ∴≥ 当()0,2x ∈,3231012x kx x x->+-得: 233210kx x x x <+--,即200+21x kx <-对任意的()0,2x ∈恒成立,即210210=2x k x x x-<-对任意的()0,2x ∈恒成立, 令()102f x x x=-,()f x 在()0,2x ∈上单减,所以()()21f x f >=,所以1k ≤ 01k ∴≤≤.故答案为:[]0,18.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围. 【解】(1)解:由已知,210mx mx --<对于一切实数x 恒成立, 当0m =时,10-<恒成立,符合题意,当0m ≠时,只需20Δ40m m m <⎧⎨=+<⎩,解得40m -<<, 综上所述,m 的取值范围是(4-,0];(2)解:由已知,215mx mx m --<-+对[1x ∈,3]恒成立, 即2(1)6m x x -+<对[1x ∈,3]恒成立,22131()024x x x -+=-+>,∴261m x x <-+对[1x ∈,3]恒成立,令2()1g x x x =-+,则只需min6()m g x ⎡⎤<⎢⎥⎣⎦即可, 而()g x 在[1x ∈,3]上是单调递增函数,()[1g x ∴∈,7],∴66[,6]()7g x ∈,67m ∴<, 所以m 的取值范围是6(,)7-∞.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.(2)一元二次不等式ax 2+bx +c <0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,Δ=b 2—4ac >0或⎩⎪⎨⎪⎧a <0,b ,c ∈R .3.在区间内有解,可以参变分离为a >f (x )或a <f (x )的形式,转化为a >f (x )min 或a <f (x )max ;也可以通过对立命题转化为在区间内无解,从而转化为恒成立问题.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3 B .[]0,3 C .()3,0-D .(,1)(3,)-∞+∞【答案】A【解析】因为方程24=0x ax -++有两根,一个大于2,另一个小于1-,所以函数 ()24f x x ax =-++有两零点,一个大于2,另一个小于1-,由二次函数的图像可知,()()2010f f ⎧>⎪⎨->⎪⎩ ,即:()()2222401140a a ⎧-+⋅+>⎪⎨--+⋅-+>⎪⎩ 解得:0<<3a 故选:A.2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+【答案】B【解析】因为不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,所以不等式22m x x >-在1,22x ⎡∈⎤⎢⎥⎣⎦上有解, 令()22211t x x x =-=--,则min 1t =-,所以1m >-,所以实数m 的取值范围是()1,-+∞ 故选:B3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线, 根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈ 所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21. 故选: C[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,25)(25,)-∞-⋃+∞B .(6,25]--C .(6,2)(25,)--⋃+∞D .(,2)-∞-【答案】B【解析】解:∵关于x 的方程2(2)60x m x m +-+-=的两根都大于2,令2()(2)6f x x m x m =+-+-,可得2(2)4(6)0222(2)42(2)60m m m f m m ⎧∆=---≥⎪-⎪->⎨⎪=+-+->⎪⎩,即252526m m m m ⎧≥≤-⎪<-⎨⎪>-⎩或, 求得625m -<≤- 故选:B.2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞【答案】A【解析】2(]0,x ∈时,不等式可化为22244x a x x x<=++;令2()4f x x x =+,则max 1()2a f x <==,当且仅当2x =时,等号成立,综上所述,实数a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.故选:A .3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤【答案】D【解析】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x=+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤, 所以实数a 的取值范围为52a ≤, 故选:D.4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞- B .(],2-∞-C .(6,)-+∞D .(,6)-∞-【答案】A【解析】不等式等价于存在()1,4x ∈,使242a x x <--成立,即()2max42a x x <--设()224226y x x x =--=-- 当()1,4x ∈时,[)6,2y ∈--所以2a <- . 故选:A5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______【答案】52⎛⎤-∞ ⎥⎝⎦,【解析】解:由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解, 设1()f x x x =+,则函数1()f x x x=+在[]1,2上单调递增,所以5(1)()(2)2f f x f ≤≤=,所以实数a 的取值范围为52⎛⎤-∞ ⎥⎝⎦,.6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下,所以不等式2210ax x ++<有实数解,符合题意;当0a >时,要使不等式2210ax x ++<有实数解,则需满足440∆=->a ,可得1a <, 所以01a <<,综上所述:a 的取值范围是(),1-∞, 故答案为:(),1-∞.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+【解析】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.【答案】57m <【解析】若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立, 即可知:250mx mx m -+-<在13{|}x x x ∈≤≤上恒成立,令()25g x mx mx m =-+-,当0m =时,50-<恒成立, 当0m ≠时,对称轴为12x =. 当0m <时,有()g x 开口向下且在[]1,3上单调递减,∴在[]1,3上()()max 150g x g m ==-<,得5m <,故有0m <. 当0m >时,有()g x 开口向上且在[]1,3上单调递增,∴在[]1,3上()()max 3750g x g m ==-<, ∴507m <<, 综上,实数m 的取值范围为57m <, 故答案为:57m <9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围. 【解】解:(1)当1a =时,2()56(2)(3)f x x x x x =-+=--, 所以函数()y f x =的零点为2,3.(2)由2()(23)60f x ax a x =-++<可得(3)(2)0ax x --<, 当302a <<时,解得32x a <<;当32a =时,x 不存在,不等式的解集为∅; 当32a >时,解得32x a <<.综上,当302a <<时,不等式的解集3{|2}x x a <<,当32a =时,不等式的解集∅, 当32a >时,不等式的解集3{2}x x a<<. (3)1a =时,()(5)3f x m x m -+++在[2,2]-有解,即230x mx m ++-在[2,2]-有解,因为23y x mx m =++-的开口向上,对称轴2m x =-, ①22m --即4m ,2x =-时,函数取得最小值4230m m -+-即73m, 4m ∴. ②222m -<-<即44m -<<时,当2m x =-取得最小值,此时2304m m -+-,解得24m <. ③当22m-即4m -时,当2x =时取得最小值,此时4230m m ++-, 解得7m -,综上,2m 或7m -。

2021年江苏高考数学二轮讲义:专题一第4讲 不等式

2021年江苏高考数学二轮讲义:专题一第4讲 不等式

第4讲不等式[2019考向导航]考点扫描三年考情考向预测2019201820171.不等式的解法第4题不等式在江苏高考中主要考查一元二次不等式的解法、基本不等式及线性规划问题.基本不等式是考查重点.试题多与集合、函数等知识交汇命题,以填空题的形式呈现,属中高档题.不等式成立问题会在压轴题中出现,难度较大,不等式的实际应用有时也会在实际应用题中出现,主要利用基本不等式求最值.2.基本不等式第10题第13题第10题3.不等式成立问题4.线性规划5.不等式的实际应用1.必记的概念与定理已知x>0,y>0,则:(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.(简记:积定和最小)(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p24.(简记:和定积最大) 确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.①直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线;②特殊点定域,即在直线Ax+By+C=0的某一侧取一个特殊点(x0,y0)作为测试点代入不等式检验,若满足不等式,则表示的就是包括该点的这一侧,否则就表示直线的另一侧.特别地,当C≠0时,常把原点作为测试点;当C=0时,常选点(1,0)或者(0,1)作为测试点.2.记住几个常用的公式与结论(1)几个重要的不等式a2+b2≥2ab(a,b∈R);ba+ab≥2(a,b同号).ab≤⎝⎛⎭⎫a+b22(a,b∈R);⎝⎛⎭⎫a+b22≤a2+b22(a,b∈R).(2)一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.(3)简单分式不等式的解法①变形⇒f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0)且g (x )≠0;②变形⇒f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.(4)两个常用结论①ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0.②ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.3.需要关注的易错易混点(1)利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.(2)在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.不等式的解法 [典型例题](1)(2019·江苏省高考名校联考(八))已知函数f (x )=-4x 2+2ax -b (a ,b ∈R )的值域为(-∞,0],若关于x 的不等式f (x )≥m 的解集为[c ,c +8],则实数m 的值为________.(2)(2019·苏州第一次质量预测)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,ln (x -1),1<x ≤2,若不等式f (x )≤5-mx 恒成立,则实数m 的取值范围是________.【解析】 (1)因为函数f (x )=-4x 2+2ax -b (a ,b ∈R )的值域为(-∞,0],所以函数的最大值为0.令f (x )=0,可得Δ=4a 2-4×(-4)×(-b )=4a 2-16b =0,即b =a 24.关于x 的不等式f (x )≥m 可化简为4x 2-2ax +b +m ≤0,即4x 2-2ax +a 24+m ≤0.又关于x 的不等式f (x )≥m 的解集为[c ,c +8],所以方程4x 2-2ax +a 24+m =0的两个根为x 1=c ,x 2=c +8,则⎩⎨⎧x 1+x 2=a 2x 1x 2=a 216+m4,又|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=64,即(a 2)2-4(a 216+m4)=64,解得m =-64. (2)作出函数f (x )的大致图象如图所示,令g (x )=5-mx ,则g (x )恒过点(0,5),由f (x )≤g (x )恒成立,并数形结合得-52≤-m ≤0,解得0≤m ≤52.【答案】 (1)-64 (2)⎣⎡⎦⎤0,52二次函数、二次不等式是高中数学的重要基础知识,也是高考的热点.本题(1)考查了二次函数的性质及一元二次不等式的解法.突出考查将二次函数、二次方程、二次不等式三者进行相互转化的能力和转化与化归的数学思想方法.[对点训练]1.(2019·江苏省高考命题研究专家原创卷(六))已知函数f (x )=⎩⎨⎧⎝⎛⎭⎫12x-3,x ≤0,x 12,x >0,若f (a )>f (f (-2)),则实数a 的取值范围为________.[解析] 由题意知,f (-2)=(12)-2-3=1,f (1)=1,所以不等式化为f (a )>1.当a ≤0时,f (a )=(12)a -3>1,解得a <-2;当a >0时,f (a )=a >1,解得a >1.因而a 的取值范围为(-∞,-2)∪(1,+∞).[答案] (-∞,-2)∪(1,+∞)2.已知函数f (x )=x 2-2ax +a 2-1的定义域为A ,2∉A ,则a 的取值范围是________. [解析] 因为2∉A ,所以4-4a +a 2-1<0,即a 2-4a +3<0,解得1<a <3. [答案] 1<a <3基本不等式 [典型例题](1)(2019·南通市高三调研)若正实数x ,y 满足x +y =1,则y x +4y 的最小值是________.(2)(2019·高考江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.【解析】 (1)因为正实数x ,y 满足x +y =1,所以y x +4y =y x +4(x +y )y =y x +4xy +4≥2y x ·4x y +4=8,当且仅当y x =4x y ,即x =13,y =23时,取“=”,所以y x +4y的最小值是8. (2)设P ⎝⎛⎭⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2≥22x ·4x2=4,当且仅当2x =4x,即x =2时取等号,故点P 到直线x +y =0的距离的最小值是4.【答案】 (1)8 (2)4用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件.[对点训练]3.(2019·苏锡常镇四市高三调研)若正数x ,y 满足15x -y =22,则x 3+y 3-x 2-y 2的最小值为________.[解析] x 3+y 3-x 2-y 2=x 3+94x +y 3+14y -x 2-y 2-94x -14y ≥3x 2+y 2-x 2-y 2-94x -14y =2x 2-94x -14y =2x 2+92-94x -14y -92≥6x -94x -14y -92=15x -y 4-92=224-92=1,当且仅当x =32,y =12时取等号,故x 3+y 3-x 2-y 2的最小值为1.[答案] 14.(2018·高考江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.[解析] 因为∠ABC =120°,∠ABC 的平分线交AC 于点D ,所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a sin 60°+12c sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c =1,则4a +c =(4a +c )·⎝⎛⎭⎫1a +1c =5+c a +4a c ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.[答案] 9线性规划 [典型例题](1)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.(2)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.【解析】 (1)不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示.因为原点到直线2x +y -2=0的距离为25,所以(x 2+y 2)min =45,又当(x ,y )取点(2,3)时,x 2+y 2取得最大值13,故x 2+y 2的取值范围是⎣⎡⎦⎤45,13.(2)作出可行域,如图中阴影部分所示,由图可知当0≤-k <12时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2(舍去);当-k ≥12时,直线y =-kx +z 经过点(0,2)时z 最大,此时z 的最大值为2,不合题意;当-k <0时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k=2,符合题意.综上可知k =2.【答案】 (1)⎣⎡⎦⎤45,13 (2)2确定二元一次不等式(组)表示的平面区域的方法(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式组.若满足不等式组,则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.(2)当不等式中带等号时,边界画为实线,不带等号时,边界应画为虚线,特殊点常取原点.[对点训练]5.(2019·江苏名校高三入学摸底)若变量x ,y 满足不等式组⎩⎪⎨⎪⎧2x -y ≤0x -2y +6≥0y ≥0,则⎝⎛⎭⎫12x +y的最小值为________.[解析] 作出不等式组所表示的平面区域,如图中△OAB (含边界)所示,作直线l :x +y =0,若向上平移直线l ,则x +y 的值增大,当平移至过点B (2,4)时,x +y 取得最大值6,此时⎝⎛⎭⎫12x +y取得最小值18.[答案] 186.(2019·江苏省名校高三入学摸底卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0y ≥02x +y ≤2,若目标函数z =ax+by (a >0,b >0)的最大值为M ,且M 的取值范围是[1,2],则点P (a ,b )所组成的平面区域的面积是________.[解析] 作出约束条件⎩⎨⎧x ≥0y ≥02x +y ≤2表示的平面区域如图1中阴影部分所示(三角形OAB 及其内部). 将目标函数z =ax +by (a >0,b >0)化为直线方程的形式为y =-a b x +zb,若-a b ≤-2,当直线y =-a b x +zb 经过点A (1,0)时,z =ax +by (a >0,b >0)取得最大值M =a ∈[1,2],由⎩⎨⎧a >0b >0-a b≤-2a ∈[1,2]得点P (a ,b )所组成的平面区域如图2中阴影部分所示,此时点P (a ,b )所组成的平面区域的面积为34.若-a b >-2,当直线y =-a b x +zb 经过点B (0,2)时,z =ax +by (a >0,b >0)取得最大值M =2b ∈[1,2],由⎩⎨⎧a >0b >0-a b>-22b ∈[1,2]得点P (a ,b )所组成的平面区域如图3中阴影部分所示,此时点P (a ,b )所组成的平面区域的面积为34.综上,点P (a ,b )所组成的平面区域的面积为32.[答案] 32不等式的实际应用[典型例题]“第五届上海智能家居展览会”于2017年7月5日-7月7日在上海新国际博览中心举行,全面展示当前最新的智能家居.某智能家居企业可以向社会提供智能家居套餐的生产和销售一条龙服务,由于2016年没有进行促销活动,该企业的某品牌套餐全年的销量只有1.25万套,如果延续2016年的经营策略,预计2017年的销量只有2016年的80%.为了不断拓展市场,提高经营效益,拟在2017年借“第五届上海智能家居展览会”的东风对该品牌套餐进行促销活动.经过市场调研,该品牌套餐的年销量x 万套与年促销费用t 万元之间满足关系:x =4t +mt +1(t ≥0).预计2017年生产设备的固定成本为4万元,每生产1万套该品牌套餐需再投入27万元的可变成本,若将每套该品牌套餐的售价定为其生产成本的160%与平均每套促销费用的40%的和,则当年生产的该品牌套餐正好能销售完.(1)将该企业2017年的利润y 万元表示为关于年促销费用t 万元的函数; (2)该企业2017年的促销费用为多少万元时,企业的年利润最大?(注:利润=销售收入-生产成本-促销费用,生产成本=固定成本+可变成本) 【解】 (1)由题意可知在x =4t +mt +1(t ≥0)中,当t =0时,x =1.25×0.8=1,代入上式得m =1, 所以x =4t +1t +1(t ≥0).当年生产x 万套时,年生产成本为 27x +4=27×4t +1t +1+4.当年销售x 万套时,年销售收入为160%×⎝ ⎛⎭⎪⎫27×4t +1t +1+4+40%×t . 由题意,生产x 万套该品牌套餐正好销售完,由利润=销售收入-生产成本-促销费用,得y =160%×⎝ ⎛⎭⎪⎫27×4t +1t +1+4+40%×t -⎝ ⎛⎭⎪⎫27×4t +1t +1+4-t .所以y =-3t 2+333t +935(t +1)(t ≥0).(2)y =-3t 2+333t +935(t +1)=35⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫t +1+81t +1≤35×(113-18)=57, 当且仅当t +1=81t +1,即t =8时等号成立,即当该企业2017年的促销费用为8万元时,企业的年利润最大,且最大值为57万元.利用基本不等式求解实际应用题的方法(1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.[对点训练]7.(2019·苏州调研)如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设AB =y km ,并在公路同侧建造边长为x km 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知AB =AC +1,且∠ABC =60°.(1)求y 关于x 的函数解析式;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:x 取何值时,该公司建中转站围墙和两条道路总造价M 最低?[解] (1)因为AB =y ,AB =AC +1,所以AC =y -1. 在直角三角形BCF 中,因为CF =x ,∠ABC =60°, 所以∠CBF =30°,BC =2x . 由于2x +y -1 >y ,得x >12.在△ABC 中,因为AC 2=AB 2+BC 2-2AB ·BC cos 60°,所以(y -1)2=y 2+4x 2-2xy .则y =4x 2-12(x -1).由y > 0,及x >12,得x > 1.即y 关于x 的函数解析式为y =4x 2-12(x -1)(x > 1). (2)M =3(2y -1)+4x =12x 2-3x -1-3+4x .令x -1=t ,则M =12(t +1)2-3t -3+4(t +1)=16t +9t+25≥49,在t =34,即x =74,y =152时,总造价M 最低.所以x =74时,该公司建中转站围墙和两条道路总造价M 最低.1.函数f (x )=1xlg(2+x -x 2)的定义域为__________.[解析] ⎩⎨⎧x ≠0,2+x -x 2>0,⇒-1<x <0或0<x <2,所以函数f (x )的定义域为(-1,0)∪(0,2) [答案] (-1,0)∪(0,2)2.已知t >0,则函数y =t 2-4t +1t的最小值为________.[解析] 因为t >0,所以y =t 2-4t +1t =t +1t -4≥2-4=-2,且在t =1时取等号.[答案] -23.(2019·高三第一次调研测试)若实数x ,y 满足x ≤y ≤2x +3,则x +y 的最小值为______. [解析] 作出可行域如图中阴影部分所示,令z =x +y ,数形结合易知当直线z =x +y 过点A (-3,-3)时,z 取得最小值,z min =-6.4.(2019·苏北四市高三质量检测)设f (x )是定义在R 上的奇函数,当x >0时,f (x )=2x -3,则不等式f (x )≤-5 的解集为________.[解析] 因为当x >0时,f (x )=2x -3,所以当x <0,即-x >0时,f (-x )=2-x -3,因为函数f (x ) 是定义在R 上的奇函数, 所以f (-x )=2-x -3=-f (x ), 所以f (x )=-2-x +3.当x >0时,不等式f (x )≤-5等价为2x -3≤-5, 即2x ≤-2,无解,故x >0时,不等式不成立; 当x <0时,不等式f (x )≤-5等价为-2-x +3≤-5, 即2-x ≥8, 得x ≤-3;当x =0时,f (0)=0,不等式f (x )≤-5不成立. 综上,不等式f (x )≤-5的解集为(-∞,-3]. [答案] (-∞,-3]5.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.[解析] 一年购买600x 次,则总运费与总存储费用之和为600x×6+4x =4⎝⎛⎭⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. [答案] 306.(2019·苏北三市高三模拟)已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x+a >0,则实数a 的取值范围是________.[解析] 记f (x )=x 2-2(a -2)x +a ,令f (x )=0,由题意得,Δ=4(a -2)2-4a <0或⎩⎪⎨⎪⎧f (1)≥0,f (5)≥0,Δ≥0,1≤a -2≤5,所以1<a <4或4≤a ≤5, 即实数a 的取值范围是(1,5].7.(2019·扬州市第一学期期末检测)已知正实数x ,y 满足x +4y -xy =0,若x +y ≥m 恒成立,则实数m 的取值范围为______.[解析] x +4y -xy =0,即x +4y =xy ,等式两边同时除以xy ,得4x +1y=1,由基本不等式可得x +y =(x +y )·⎝⎛⎭⎫4x +1y =4y x +x y +5≥24y x ·x y +5=9,当且仅当4y x =xy,即x =2y =6时,等号成立,所以x +y 的最小值为9,因为m ≤9.[答案] m ≤98.在R 上定义运算:x *y =x (1-y ),若不等式(x -a )*(x +a )≤1对任意的x 恒成立,则实数a 的取值范围是________.[解析] 由于(x -a )*(x +a )=(x -a )(1-x -a ),则不等式(x -a )*(x +a )≤1对任意的x 恒成立,即x 2-x -a 2+a +1≥0恒成立,所以a 2-a -1≤x 2-x 恒成立,又x 2-x =⎝⎛⎭⎫x -122-14≥-14,则a 2-a -1≤-14,解得-12≤a ≤32. [答案] ⎣⎡⎦⎤-12,32 9.记min{a ,b }为a ,b 两数的最小值.当正数x ,y 变化时,令t =min ⎩⎨⎧⎭⎬⎫2x +y ,2y x 2+2y 2,则t 的最大值为______.[解析] 因为x >0,y >0,所以问题转化为t 2≤(2x +y )·2yx 2+2y 2=4xy +2y 2x 2+2y 2≤4·x 2+y 22+2y 2x 2+2y 2=2(x 2+2y 2)x 2+2y 2=2,当且仅当x =y 时等号成立,所以0<t ≤2,所以t 的最大值为2.[答案] 210.(2019·宁波统考)已知函数f (x )=log a (x 2-a |x |+3)(a >0,a ≠1).若对于-1≤x 1<x 2≤-12的任意实数x 1,x 2都有f (x 1)-f (x 2)<0成立,则实数a 的范围是________.[解析] 易知已知函数为偶函数,则当x ∈⎣⎡⎦⎤12,1时为减函数. 对于x ∈⎣⎡⎦⎤12,1时, f (x )=log a (x 2-ax +3)(a >0,a ≠1) 设g (x )=x 2-ax +3,由题意得:⎩⎪⎨⎪⎧a >1,1≤a 2,g (1)>0或⎩⎪⎨⎪⎧0<a <1,a 2≤12,g ⎝⎛⎭⎫12>0,则2≤a <4或0<a <1. [答案] (0,1)∪[2,4)11.已知x >0,a 为大于2x 的常数, (1)求函数y =x (a -2x )的最大值; (2)求y =1a -2x-x 的最小值. [解] (1)因为x >0,a >2x , 所以y =x (a -2x )=12×2x (a -2x )≤12⎣⎢⎡⎦⎥⎤2x +(a -2x )22=a 28, 当且仅当x =a 4时取等号,故函数的最大值为a 28.(2)y =1a -2x+a -2x 2-a 2≥212-a 2=2-a2. 当且仅当x =a -22时取等号.故y =1a -2x-x 的最小值为2-a 2.12.已知关于x 的不等式x +2x 2-(1+a )x +a >0.(1)当a =2时,求此不等式的解集; (2)当a >-2时,求此不等式的解集.[解] (1)当a =2时,不等式可化为x +2(x -1)(x -2)>0,所以不等式的解集为{x |-2<x <1或x >2}.(2)当a >-2时,不等式可化为x +2(x -1)(x -a )>0,当-2<a <1时,解集为{x |-2<x <a 或x >1};当a =1时,解集为{x |x >-2且x ≠1}; 当a >1时,解集为{x |-2<x <1或x >a }.13.(2019·盐城市高三第三次模拟考试)如图,某人承包了一块矩形土地ABCD 用来种植草莓,其中AB =99 m ,AD =49.5 m .现计划建造如图所示的半圆柱型塑料薄膜大棚n (n ∈N *)个,每个半圆柱型大棚的两半圆形底面与侧面都需蒙上塑料薄膜(接头处忽略不计),塑料薄膜的价格为每平方米10元;另外,还需在每两个大棚之间留下1 m 宽的空地用于建造排水沟与行走小路(如图中EF =1 m),这部分的建设造价为每平方米31.4元.(1)当n =20时,求蒙一个大棚所需塑料薄膜的面积;(结果保留π) (2)试确定大棚的个数,使得上述两项费用的和最低.(计算中π取3.14) [解] (1)设每个半圆柱型大棚的底面半径为r .当n =20时,共有19块空地,所以r =99-19×12×20=2(m),所以每个大棚的表面积(不含与地面接触的面的面积)为 πr 2+πr ×AD =π×22+2π×49.5=103π(m 2), 即蒙一个大棚所需塑料薄膜的面积为103π m 2. (2)设两项费用的和为f (n ).因为r =99-(n -1)×12n =100-n2n,所以每个大棚的表面积(不含与地面接触的面的面积)为 S =πr 2+πr ×AD =π×⎝ ⎛⎭⎪⎫100-n 2n 2+π×49.5×100-n 2n , 则f (n )=10nS +31.4×1×49.5(n -1)=10n [π×⎝ ⎛⎭⎪⎫100-n 2n 2+π×49.5×⎝ ⎛⎭⎪⎫100-n 2n ]+31.4×1×49.5(n -1)=31.4×[(100-n )24n +49.5×100-n2+49.5(n -1)]=31.44×[(100-n )2n+99(100-n )+198(n -1)]=31.44×(1002n +100n +9 502)=31.44×[100×⎝⎛⎭⎫100n +n +9 502], 因为100n+n ≥2100n·n =20,当且仅当n =10时等号成立, 所以,当且仅当n =10时,f (n )取得最小值, 即当大棚的个数为10个时,上述两项费用的和最低.14.设m 是常数,集合M ={m |m >1},f (x )=log 3(x 2-4mx +4m 2+m +1m -1).(1)证明:当m ∈M 时,f (x )对所有的实数x 都有意义; (2)当m ∈M 时,求函数f (x )的最小值;(3)求证:对每个m ∈M ,函数f (x )的最小值都不小于1. [解] (1)证明:f (x )=log 3⎣⎢⎡⎦⎥⎤(x -2m )2+m +1m -1,当m ∈M ,即m >1时,(x -2m )2+m +1m -1>0恒成立,故f (x )的定义域为R .(2)令g (x )=x 2-4mx +4m 2+m +1m -1,因为y =log 3g (x )是增函数,所以当g (x )最小时f (x )最小,而g (x )=(x -2m )2+m +1m -1, 显然当x =2m 时,g (x )的最小值为m +1m -1.此时f (x )min =log 3⎝ ⎛⎭⎪⎫m +1m -1. (3)证明:m ∈M 时,m +1m -1=m -1+1m -1+1 ≥2+1=3,所以log 3⎝ ⎛⎭⎪⎫m +1m -1≥log 33=1,结论成立.。

不等式--华师大版

不等式--华师大版

例3:根据如图所示,对a,b,c三种物体的重量判断正确的是( ) A、a<c B、a<b C、a>c D、b<c
aa
bbb
bb
ccc
例4:生物兴趣小组在温箱里培育A、B两种菌,A种菌种 的生长温度x℃的范围是35≤x≤38,B种菌种的生长温度 y℃的范围是34≤y≤36,那么温箱里的温度T℃应该设定在 ()
例8:甲、乙两家商店以同样价格出售同样的商品, 并且又各自推出不同的优惠方案:在甲店累计购买 100元商品后,再购买的商品按90%收费;在乙店累 计购买50元商品后,再购买的商品按原价的95%收费。 若一位顾客打算要买100元以上的物品,问她应怎样 选择商店购物获得的优惠更大?
例9:为了保护环境,某企业决定购买10台污水处理 设备,现有H、G两种型号设备,其中每台的价格、 月处理污水量如下表:
H
G
价格(万元/台)
15 12
处理污水量(吨/月) 250 220
经预算,该企业购买设备的资金不高于130万元。
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2260吨,为了节约资 金,应选择那种购买方案。
体验成功:
1、用不等式表示:
(1)x的
1 2
与3的差大于2
(2)2x与1的和小于零
第四讲 不等式与不等式组
知识梳理:
1、能够根据具体问题中的大小关系了解不等式的意义,并 探索不等式的基本性质;
2、会解简单的一元一次不等式,并能在数轴上表示出解集, 会解由两个一元一次不等式组成的不等式组,并会用数轴确 定解集;
3、能够根据具体问题中的数量关系,列出一元一次不等式 和一元一次不等式组,解决简单的问题;

4 第4讲 基本不等式

4 第4讲 基本不等式

第4讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)函数f (x )=cos x +4cos x,x ∈⎝⎛⎭⎫0,π2的最小值等于4. ( ) (3)“x >0且y >0”是“x y +yx≥2”的充要条件.( )(4)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( )答案:(1)× (2)× (3)× (4)×(教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C.xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1822=81,当且仅当x =y =9时等号成立,故选C.若x <0,则x +1x( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2解析:选D.因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5(教材习题改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝ ⎛⎭⎪⎫x +y 22=25,当且仅当x =y =5时取等号.答案:25 m 2利用基本不等式求最值(典例迁移)(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)(2018·高考天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为____________.(3)已知a >0,b >0,a +b =1,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. 【解析】 (1)x (4-3x )=13·(3x )(4-3x )≤13·⎣⎢⎡⎦⎥⎤3x +(4-3x )22=43, 当且仅当3x =4-3x , 即x =23时,取等号.(2)由题知a -3b =-6,因为2a >0,8b >0,所以2a +18b ≥2×2a ×18b =2×2a -3b =14,当且仅当2a =18b ,即a =-3b ,a =-3,b =1时取等号.(3)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b = ⎝⎛⎭⎫2+b a ·⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号. 【答案】 (1)23 (2)14(3)9[迁移探究1] (变问法)若本例(3)中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1, 所以1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立. 答案:4[迁移探究2] (变条件)若本例条件变为:已知a >0,b >0,4a +b =4,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.解析:由4a +b =4得a +b4=1,⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎫1+a +b 4b=⎝⎛⎭⎫2+b 4a ⎝⎛⎭⎫54+ab =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号. 答案:114+102利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.1.(2019·南昌市摸底调研)已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.解析:因为x >2,m >0,所以y =x -2+mx -2+2≥2(x -2)·mx -2+2=2m +2,当x =2+m 时取等号,又函数y =x +mx -2(x >2)的最小值为6,所以2m +2=6,解得m =4.答案:42.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________. 解析:由x +3y =5xy 可得15y +35x =1,所以3x +4y =(3x +4y )⎝⎛⎭⎫15y +35x=95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立), 所以3x +4y 的最小值是5. 答案:53.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.解析:(x +y )⎝⎛⎭⎫1x +a y =1+a +y x +axy ≥1+a +2a =(a +1)2(x ,y ,a >0), 当且仅当y =ax 时取等号,所以(x +y )⎝⎛⎭⎫1x +a y 的最小值为(a +1)2, 于是(a +1)2≥9恒成立. 所以a ≥4. 答案:4利用基本不等式解决实际问题(师生共研)某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x -200≥212x ·80 000x-200=200,当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000]. 故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.利用基本不等式求解实际问题的注意事项(1)解应用题时,一定要注意变量的实际意义及其取值范围.(2)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.某游泳馆拟建一座平面图形为矩形且面积为200平方米的泳池,池的深度为1米,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计),则泳池的长设计为多少米时,可使总造价最低.解:设泳池的长为x 米,则宽为200x 米,总造价f (x )=400×⎝⎛⎭⎫2x +2×200x +100×200x +60×200=800×⎝⎛⎭⎫x +225x +12 000≥1 600x ·225x +12 000=36 000(元),当且仅当x =225x(x >0),即x =15时等号成立.即泳池的长设计为15米时,可使总造价最低.[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误.对于D ,因为ab >0, 所以b a +a b≥2b a ·a b=2. 2.(2019·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4解析:选A.因为正实数x ,y 满足x +y =2,所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立, 所以M ≤1,即M 的最大值为1.3.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32解析:选A.y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A. 4.(2019·长春市质量检测(一))已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B.由4x +y =xy 得4y +1x =1,则x +y =(x +y )⎝⎛⎭⎫4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.5.已知x >0,y >0,2x +y =3,则xy 的最大值为________.解析:xy =2xy 2=12×2xy ≤12×⎝ ⎛⎭⎪⎫2x +y 22=98,当且仅当2x =y =32时取等号. 答案:986.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:307.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2,x >-1,所以y ≥21-2=0, 当且仅当x =0时,等号成立. 答案:08.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( )A .6B .9C .18D .24解析:选C.因为a >0,b >0,a +b =1a +1b ,所以ab (a +b )=a +b >0,所以ab =1.则3a +81b ≥23a ·34b =23a +4b ≥232a ·4b=18,当且仅当a =4b =2时取等号.所以3a +81b 的最小值为18.故选C.2.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)解析:选C.根据题意,由于不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝⎛⎭⎫a b +b a min ,因为a b +b a≥2 a b ·ba=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.解析:令t =x +2y ,则2x +4y +xy =1可化为1=2x +4y +xy ≤2(x +2y )+12⎝ ⎛⎭⎪⎫x +2y 22=2t+t 28.因为x >0,y >0,所以x +2y >0,即t >0,t 2+16t -8≥0,解得t ≥62-8.即x +2y 的最小值是62-8.答案:62-84.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________. 解析:因为a +b =4,所以a +1+b +3=8,所以1a +1+1b +3=18[(a +1)+(b +3)]⎝ ⎛⎭⎪⎫1a +1+1b +3=18⎝ ⎛⎭⎪⎫2+b +3a +1+a +1b +3≥18(2+2)=12,当且仅当a +1=b +3,即a =3,b =1时取等号,所以1a +1+1b +3的最小值为12.答案:12。

2023中考九年级数学分类讲解 - 第四讲 不等式(组)(含答案)(全国通用版)

2023中考九年级数学分类讲解 - 第四讲  不等式(组)(含答案)(全国通用版)

第四讲 不等式(组)专项一 不等式的性质知识清单1. 不等式:一般地,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子,叫做 ;能使不等式成立的未知数的值叫做不等式的 ;一个含有未知数的不等式的所有的解,组成这个不等式的 ;求不等式的解集的过程叫做 .2. 不等式的性质:(1)性质1:不等式两边都加(或减)同一个 ,不等号的方向不变,即如果a>b ,那么a±c>b±c.(2)性质2:不等式两边都乘(或除以)同一个 ,不等号的方向不变,即如果a>b ,c>0,那么ac>bc a b c c ⎛⎫> ⎪⎝⎭或. (3)性质3:不等式两边都乘(或除以)同一个 ,不等号的方向改变,即如果a>b ,c<0,那么ac<bc a b c c ⎛⎫< ⎪⎝⎭或. 考点例析例 已知a>b ,下列结论:①a 2>ab ;②a 2>b 2;③若b<0,则a+b<2b ;④若b>0,则ba 11<.其中一定正确的个数是( )A. 1B. 2C. 3D. 4 分析:先判断各个结论中不等式的两边是对原不等式的两边作了怎样的变形,再根据不等式的性质作出判断即可.归纳:不等式的性质是解不等式的依据.运用不等式的性质对不等式变形时,一定要注意在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变.跟踪训练1.若-3a>1,两边都除以-3,得( ) A. a<13- B. a>13- C. a<-3 D. a>-32.若a>b ,则下列不等式不一定成立的是( )A. a-5>b-5B. -5a<-5bC. a c >b cD. a+c>b+c3.已知a>b ,则一定有-4a -4b ,“ ”中应填的符号是( )A. >B. <C. ≥D. =专项二 一元一次不等式的解法及解集表示知识清单 1. 只含有 未知数,并且未知数的次数是 的不等式叫做一元一次不等式.2. 解一元一次不等式的一般步骤:去分母、 、 、 、系数化为1.3. 不等式的解集在数轴上的表示:大于向 画,小于向 画,有等号画 ,无等号画 .考点例析例 解不等式:7132184x x --->. 分析:按去分母、去括号、移项、合并同类项、系数化为1的步骤解不等式即可.解:归纳:解一元一次不等式与解一元一次方程的步骤相同,区别在于将不等式两边同乘(或除以)一个负数时,不等号的方向要改变.跟踪训练1.不等式3x-1>5的解集是( )A. x>2B. x<2C. x>43D. x<43 2.不等式113x x -<+的解集在数轴上表示正确的是( )A B C D3.一个不等式的解在数轴上表示如图所示,则这个不等式可以是( )A. x+2>0B. x-2<0C. 2x ≥4D. 2-x<0第3题图 4.关于x 的不等式13x-1>12的解集是 . 5.不等式2(y+1)<y+3的解集是 .6.解不等式:4233-1+-<-x x x . 7.下面是小明同学解不等式的过程,请认真阅读并完成相应任务.1223312-->-x x 解:2(2x-1)>3(3x-2)-6………………第一步4x-2>9x-6-6…………………………………第二步4x-9x>-6-6+2……………………………… 第三步-5x>-10………………………………………第四步x>2………………………………………… 第五步 任务一:填空:①以上解题过程中,第二步是依据 (运算律)进行变形的; ②第 步开始出现错误.这一步错误的原因是 ;任务二:请直接写出该不等式的正确解集.解:________________专项三 一元一次不等式组的解法及解集表示知识清单1. 一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.2. 一元一次不等式组中各个不等式解集的 ,叫做这个不等式组的解集.3. 一元一次不等式组解集的确定:不等式组(a<b ) 数轴表示 解 集 口 诀x a x b ≥⎧⎨≥⎩, ________ 同大取大⎩⎨⎧≤≤bx a x , ________ 同小取小 ⎩⎨⎧≤≥b x a x , ________大小小大中间找 ⎩⎨⎧≥≤b x a x ,________ 大大小小无处找 注:①口诀中“大”“小”各自的含义不同;②可以将图形和口诀结合起来记忆.考点例析例解不等式组21 410 1.x x x x ≥-⎧⎨+>+⎩,①②请按下列步骤完成解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .分析:先求出每个不等式的解集,再利用数轴确定解集的公共部分,进而写出不等式组的解集.解:归纳:解一元一次不等式是解一元一次不等式组的基础,利用数轴的直观性确定各不等式解集的公共部分,进而写出不等式组的解集.跟踪训练1.不等式组1<2x-3<x+1的解集是( )A. 1<x<2B. 2<x<3C. 2<x<4D. 4<x<52.不等式组⎪⎩⎪⎨⎧-≥->-12102x x ,的解集在数轴上表示正确的是( )A B C D3.不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩,的解集为 .4.解不等式组:581223x x x x ≥+⎧⎪⎨+>-⎪⎩, ①,②并把解集在数轴上表示出来. 5.以下是圆圆解不等式组()()2111 2 x x +>-⎧⎪⎨-->-⎪⎩,①②的解答过程:解:由①,得2+x>-1,所以x>-3.由②,得1-x>2,所以-x>1.所以x>-1. 所以原不等式组的解集是x>-1.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.专项四 不等式(组)的特殊解知识清单求不等式(组)的特殊解(整数解、非负数解等)的一般步骤:先求出不等式(组)的解集,再在解集内确定其特殊解.利用数轴的直观性可快速、准确地找出其特殊解.考点例析例下列数值不是不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩,的整数解的是( ) A. -2 B. -1 C. 0 D. 1分析:先分别求出不等式组中两个不等式的解集,然后再确定解集的公共部分,即为不等式组的解集,对各选项逐一判断,找出不等式组的解集范围内的即可.归纳:求不等式(组)的特殊解时,要注意解集的界点,如求整数解时,实心圆点所表示的实数如果是整数,则该点也为解之一,如果不是整数,则要从解集中离该点最近的整数点开始算起;空心圆圈所表示的点如果是整数,则整数解取不到该点,如果不是整数,则要从解集中离该点最近的整数点开始算起.若求最大整数解,则找数轴上解集中最右边的整数解,若求最小整数解,则找数轴上解集中最左边的整数解.跟踪训练1.在一元一次不等式组21050xx+>⎧⎨-≤⎩,的解集中,整数解的个数是()A. 4B. 5C. 6D. 72.不等式组2217xx>⎧⎨+≤⎩,的整数解为.3.当x取何正整数时,代数式32x+与213x-之差大于1?4.解不等式组105212xxx-<⎧⎪⎨+≥-⎪⎩,,并写出满足不等式组的所有整数解.专项五一元一次不等式的应用知识清单列一元一次不等式解应用题,可分为审题、设未知数、找不等关系、列不等式、解不等式、写答案等步骤,需要注意求得的解要符合实际.考点例析例1小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A. 5×2+2x≥30B. 5×2+2x≤30C. 2×2+2x≥30D. 2×2+5x≤30分析:设小明还能买x支签字笔,利用总价=单价×数量,结合总价不超过30元,即可得出关于x的一元一次不等式.例2某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车.已知购买1辆A型公交车和2辆B型公交车需要165万元;2辆A型公交车和3辆B型公交车需要270万元.(1)求A型公交车和B型公交车每辆各多少万元?(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?分析:(1)设A型公交车每辆x万元,B型公交车每辆y万元,根据题目中给的等量关系,列出关于x,y的二元一次方程组并解答;(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车,根据购买A型公交车的总费用不高于B型公交车的总费用列出关于m的一元一次不等式并解答.解:归纳:列不等式解应用题的关键是找出不等关系,并根据题目中的一些关键词语选择恰当的不等号,如“至少”“最多”“超过”“不低于”“不高于”等.跟踪训练1.某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A种奖品和4个B种奖品共需100元;购买5个A种奖品和2个B种奖品共需130元.学校准备购买A,B两种奖品共20个,且A种奖品的数量不小于B种奖品数量的25,则在购买方案中最少费用是元.2.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?3.为了改善湘西北地区的交通,我省正在修建长(沙)—益(阳)—常(德)高铁,其中长益段将于2021年底建成. 开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的13 30.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7∶9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?4.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15 500元,学校最多可以购买多少个篮球?专项六利用数形结合确定不等式(组)中字母的取值知识清单已知一个不等式(组)的解集求其中字母的取值,是中考常涉及的问题,这类问题综合性强、灵活性高,可以借助数轴,利用数形结合思想直观求解.考点例析例若关于x的不等式组2312xx a+>⎧⎨-≤⎩,恰有3个整数解,则实数a的取值范围是()A. 7<a<8B. 7<a≤8C. 7≤a<8D. 7≤a≤8分析:解2x+3>12,得x>4.5;解x-a≤0,得x≤a.因为原不等式组有且只有3个整数解,所以其整数解为5,6,7,画出图形如图所示:由图可知,若a等于7,则有x≤7,原不等式组的解集为4.5<x≤7,正好有3个整数解5,6,7,符合题意;若a等于8,则有x≤8,原不等式组的解集为4.5<x≤8,就有4个整数解5,6,7,8,不符合题意.所以7≤a<8. 归纳:解此类问题的方法是根据不等式(组)的解集情况重新确定一个关于字母的不等式,从而求出字母的取值范围.易错之处是两个临界点能不能重合(即能不能取“=”号),如例题中应先确认a介于何值之间,再对是否能取到临界值进行分析.跟踪训练1.如果不等式组541x xx m+<-⎧⎨>⎩,的解集为x>2,那么m的取值范围是()A. m≤2B. m≥2C. m>2D. m<22.若关于x的不等式x+m<1只有3个正整数解,则m的取值范围是.3.关于x的不等式组23023xx a->⎧⎨-<⎩,恰好有2个整数解,则实数a的取值范围是.4.若关于x的不等式组12420x ax⎧->⎪⎨⎪-≥⎩,无解,则a的取值范围为.参考答案专项一不等式的性质例 A1. A2. C3. B专项二一元一次不等式的解法及解集表示例去分母,得8-(7x-1)>2(3x-2).去括号,得8-7x+1>6x-4.移项,得-7x-6x>-4-8-1.合并同类项,得-13x>-13.系数化为1,得x<1.1. A2. B3. B4. x>925. y<16. 解:去分母,得4(1-x)-12<3×12-3(x+2).去括号,得4-4x-12<36-3x-6.移项,得-4x+3x<36-6-4+12.合并同类项,得-x<38.系数化为1,得x>-38.7. 任务一:①乘法分配律(或分配率)五不等式两边都除以-5,不等号的方向没有改变任务二:x<2专项三一元一次不等式组的解法及解集表示例(1)x≥-1 (2)x>-3 (3)(4)x≥-1 1. C 2. C3. -1≤x<24. 解:解不等式①,得x≥2.解不等式②,得x<7.所以不等式组的解集在数轴上表示如图所示:所以原不等式组的解集为2≤x<7.5. 解:圆圆的解答过程有错误.正确的解答过程:由①,得2+2x>-1,所以x>3 2 -.由②,得-1+x>-2,所以x>-1.所以原不等式组的解集是x>-1.专项四不等式(组)的特殊解例 A1. C2. 33. 解:根据题意,得32x+-213x->1.去分母,得3(x+3)-2(2x-1)>6.去括号,得3x+9-4x+2>6.移项、合并同类项,得-x>-5.系数化为1,得x<5.因为x为正整数,所以x可取1,2,3,4.4. 解:解不等式x-1<0,得x<1.解不等式522x+≥x-1,得x≥43-.所以原不等式组的解集为43-≤x<1.所以不等式组的整数解为-1,0.专项五一元一次不等式的应用例1 D例2(1)设A型公交车每辆x万元,B型公交车每辆y万元.根据题意,得216523270x yx y+=⎧⎨+=⎩,.解得4560xy=⎧⎨=⎩,.答:A型公交车每辆45万元,B型公交车每辆60万元.(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车.根据题意,得45m≤60(140-m),解得m≤80.答:该公司最多购买80辆A型公交车.1. 3302. 解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次. 根据题意,得31+2x+x=100,解得x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,根据题意,得9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.3. 解:(1)设长益段高铁全长为x 千米,长益城际铁路全长为y千米.根据题意,得4013.601630y xy x=+⎧⎪⎨=⨯⎪⎩,解得64104.xy=⎧⎨=⎩,答:长益段高铁全长为64千米,长益城际铁路全长为104千米. (2)设甲队后期每天施工a千米.甲原来每天的施工长度为64÷40×716=0.7(千米),乙每天的施工长度为64÷40×916=0.9(千米).根据题意,得0.7×5+0.9×(40-3)+(40-3-5)a≥64,解得a≥0.85.答:甲工程队后期每天至少施工0.85千米,可确保工程提早3天以上(含3天)完成.4. 解:(1)设每个足球x元,则每个篮球(2x-30)元.根据题意,得12009002230x x=⨯-,解得x=60.经检验,x=60是分式方程的根,且符合题意. 2x-30=90.答:每个足球60元,每个篮球90元.(2)设买篮球m个,则买足球(200-m)个.根据题意,得90m+60(200-m)≤15 500,解得m≤2 1163.因为m为正整数,所以最多购进篮球116个.专项六利用数形结合确定不等式(组)中字母的取值例C1. A2. -3≤m<-23. 0<a≤0.54. a≥1第11页。

第四讲数学归纳法证明不等式

第四讲数学归纳法证明不等式

第四讲数学归纳法证明不等式数学归纳法是一种证明数学命题的方法,尤其适用于证明关于自然数的性质的命题。

在数学归纳法中,我们首先证明当n取一些初始值时命题成立,接着假设当n=k时命题成立,最后通过这个假设证明当n=k+1时命题也成立。

本文将介绍如何使用数学归纳法证明不等式。

首先,不等式是数学中常见的命题形式。

它常用来描述两个数之间的大小关系,比如大于、小于、大于等于、小于等于等。

我们可以使用数学归纳法来证明一些给定的不等式对于所有自然数n都成立。

证明不等式的数学归纳法一般包括以下三个步骤:第一步:证明基础情况。

也就是证明当n取一些初始值时不等式成立。

一般选择n=1或者n=0作为初始值,这样可以直接验证不等式的成立性。

第二步:归纳假设。

假设当n=k时不等式成立,这就是我们的归纳假设。

我们可以利用这个假设来证明当n=k+1时不等式也成立。

第三步:证明递推关系。

利用归纳假设,通过数学推导证明当n=k+1时不等式成立。

下面我们通过一个具体的例子详细说明如何使用数学归纳法证明不等式。

例1:证明对于所有自然数n,都有以下不等式成立:1+2+3+...+n≤n^2首先,我们验证基础情况。

当n=1时,左边的和式等于1,右边的平方等于1,显然1≤1成立,所以基础情况成立。

接下来,我们假设当n=k时不等式成立,即1+2+3+...+k≤k^2然后,我们通过归纳假设证明当n=k+1时不等式也成立。

需要注意的是,在证明不等式时,我们需要根据不等号的方向进行推导。

我们将左边的和式展开,得到1+2+3+...+k+(k+1)。

由于归纳假设,1+2+3+...+k≤k^2,所以左边的和式可以写成k^2+(k+1)。

接下来,我们要证明这个式子小于等于(k+1)^2,即k^2+(k+1)≤(k+1)^2我们展开右边的平方,得到(k+1)^2=k^2+2k+1、显然,右边的(k+1)^2大于等于k^2+(k+1),所以我们得到了不等式的证明。

第四讲不等式(组)1

第四讲不等式(组)1

明士教育格式化备课课题:第四讲不等式(组)课型:备课人:备课时间: 科目:本备课适合学生:教学目标:教学内容:考点一、不等式的概念考点二、不等式基本性质考点三、一元一次不等式考点四、一元一次不等式组重点难点:教学策略与方法:教学过程设计:本备课改进:第四章不等式(组)考点一、不等式的概念(3分)1、不等式用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

求不等式的解集的过程,叫做解不等式。

3、用数轴表示不等式的方法考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

考试题型:考点三、一元一次不等式(6~8分)1、一元一次不等式的概念本备课改进:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、一元一次不等式的解法解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

求不等式组的解集的过程,叫做解不等式组。

当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

2、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

检查时间:检查人:。

高考备考指南文科数学第13章第4讲不等式的证明

高考备考指南文科数学第13章第4讲不等式的证明

件.
栏目索引
第十三章 选考部分
高考备考指南
文科数学
【跟踪训练】
3.(2018 年银川模拟)已知 x,y,z 是正实数,且 x+2y+3z=1.
(1)求1x+1y+1z的最小值;
(2)求证:x2+y2+z2≥114.
栏目索引
第十三章 选考部分
高考备考指南
文科数学




(1)


西





1 x
栏目索引
第十三章 选考部分
高考备考指南
文科数学
【解析】(1)证明:因为( 3x+1+ 3y+2+ 3z+3)2≤(12+12+12)(3x+1+3y+
2+3z+3)=27,所以 3x+1+ 3y+2+ 3z+3≤3 3.
当且仅当 x=23,y=13,z=0 时取等号.
(2)因为 6=x+2y+3z≤ x2+y2+z2· 1+4+9,所以 x2+y2+z2≥178,当且仅当 x
栏目索引
又 a,b 均为正数,所以 a(a-1)x2+b(b-1)y2+2abxy=-ab(x2+y2-2xy)=-ab(x -y)2≤0,当且仅当 x=y 时等号成立.所以(ax+by)2≤ax2+by2.
第十三章 选考部分
高考备考指南
文科数学
(2)a+1a2+b+1b2=4+a2+b2+a12+b12=4+a2+b2+a+a2b2+a+b2b2=4+a2 +b2+1+2ab+ba22+ab22+2ba+1=4+(a2+b2)+2+2ba+ab+ba22+ab22≥4+a+2 b2+2+ 4+2=225,当且仅当 a=b 时等号成立.
栏目索引

第四讲 数学归纳法证明不等式

第四讲  数学归纳法证明不等式

二、用数学归纳法证明不等式
探究:利用例6的结论,考虑n个正数 a1 a2 an , , , n a a a n a a a n a a a 1 2 n 1 2 n 1 2 n (a1 , a 2 , , a n为正数),你能得出n个正数 的均值不等式吗?
二、用数学归纳法证明不等式
1 1 1 n 例7.证明: 1+ + + + n > . 2 3 2 1 2
二、用数学归纳法证明不等式

例3.观察下面两个数列,从第几项起an始终小 于bn?证明你的结论. 4 4 9 8 16 25 16 32 36 64 49 64 81 …
an=n2 1 an=2n 2
128 256 512 …
二、用数学归纳法证明不等式
例4.证明不等式|sinnθ|≤n|sinθ|(
第四讲
数学归纳法证明不等式
+
例2.平面上有n(n N , n 3)点,其中任何 三点都不在同一条线上.过这些点中任意两 点做直线,这样的直线共有多少条?证明 你的结论.
思考:结合上述证明过程,你认为数学归纳法 有什么特殊作用?
练习



用数学归纳法证明下列各题 (1)1+3+5+…+(2n-1)=n2; (2) 32n+2-8n-9对一切正整数n能被64整 除; (3)凸n边形多少条对角线?证明你的结论.
2.3数学归纳法
证题步骤: (1)当n取缔一个值n0时结论正确; (2)假设当n=k(k∈N*,且k≥ n0时结 论正确,证明当n=k+1时结论也正确. 那么,命题对于从 n0时开始的所有正整数 n都成立.
第四讲

专题一 第四讲 不等式

专题一 第四讲 不等式

(2011· 全国高考)下面四个条件中,使a>b成立 的充分而不必要的条件是 A.a>b+1 C.a2>b2 B.a>b-1 D.a3>b3 ( )
[解析] 由a>b+1得a>b+1>b,即a>b,而由a>b不能 得出a>b+1,因此,使a>b成立的充分不必要条件是 a>b+1. [答案] A
1.若 a、b、c 为实数,则下列命题正确的是 A.若 a>b,则 ac2>bc2 B.若 a<b<0,则 a2>ab>b2 1 1 C.若 a<b<0,则a<b b a D.若 a<b<0,则a>b
解析:画出y1=|x+1|,y2=kx的图像,
由图可看出0≤k≤1. 答案:[0,1]
a 3 3 2 10.(2011· 江西五校联考)已知函数 f(x)=3x -2x +(a+1)x+1, 其中 a 为实数. (1)已知函数 f(x)在 x=1 处取得极值,求 a 的值; (2)已知不等式 f′(x)>x2-x-a+1 对任意 a∈(0,+∞)都成 立,求实数 x 的取值范围.
(
)
解析:A选项中,当c=0时,不成立;B中,由a<b<0, 得a2>ab>b2成立;C、D通过取a=-2,b=-1验证均 不正确. 答案:B
2.设 x,y∈R,判定下列各题中,命题 A 与命题 B 的充分必 要关系. (1)命题
a>0, A: b>0; x>2, A: y>2;
1 答案: 2
m n 8.(2011· 湖北八校联考)已知 m、n、s、t∈R+,m+n=2, s + t =9, 4 其中 m、n 是常数,且 s+t 的最小值是9,满足条件的点(m,n) 是圆(x-2)2+(y-2)2=4 中一弦的中点,则此弦所在的直线方程 为________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲 不等式、线性规划(选择、填空题型)命题全解密MINGTIQUANJIEMI1.命题点 两个数(代数式)的大小比较、一元二次不等式的求解、基本不等式的应用、简单的线性规划.2.交汇点 两个实数(代数式)的大小比较与函数的单调性,一元二次不等式与二次函数、一元二次方程,基本不等式与函数的应用,线性规划与直线的方程、斜率、截距、距离、图形的面积等知识交汇考查.3.常用方法 一元二次不等式的解法,分离参数法解决不等式恒成立问题,利用“穿根法”求解高次不等式.对应学生用书P013[必记公式]1.a 2+b 2≥2ab (取等号的条件是当且仅当a =b ) 2.ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0). 4.2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立)[重要结论]1.不等式的四个性质注意不等式的乘法、乘方与开方对符号的要求,如 (1)a >b ,c >0⇒ac >bc ,a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd . (3)a >b >0⇒a n >b n (n ∈N ,n ≥1). (4)a >b >0⇒n a >nb (n ∈N ,n ≥2). 2.四类不等式的解法 (1)一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.(2)简单分式不等式的解法 f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 当a >1时,a f (x )>a g (x )⇔f (x )>g (x ); 当0<a <1时,a f (x )>a g (x )⇔f (x )<g (x ). (4)简单对数不等式的解法当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )且f (x )>0,g (x )>0; 当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )且f (x )>0,g (x )>0. 3.判断二元一次不等式表示的平面区域的方法在直线Ax +By +C =0的某一侧任取一点(x 0,y 0),通过Ax 0+By 0+C 的符号来判断Ax +By +C >0(或Ax +By +C <0)所表示的区域.[易错提醒]1.忽略限制条件致误:应用不等式的性质时,要注意限制条件. 2.注意符号成立的条件:用基本不等式求最值时,若连续进行放缩,只有各等号成立的条件保持一致时,结论的等号才成立.3.忽略基本不等式求最值的条件致误:利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.4.解分式不等式时,直接把分母乘到一边,不注意分母的取值范围,致误.对应学生用书P013热点一 不等式的解法例1(1)已知f (x )=⎩⎪⎨⎪⎧1+xx ,x <0log12x ,x >0,则f (x )≥-2的解集是( )A.⎝ ⎛⎦⎥⎤-∞,-13∪[4,+∞)B.⎝ ⎛⎦⎥⎤-∞,-13∪(0,4] C.⎣⎢⎡⎭⎪⎫-13,0∪[4,+∞) D.⎣⎢⎡⎭⎪⎫-13,0∪(0,4] [解析] 当x <0时,f (x )≥-2,即1+xx ≥-2,可转化为1+x ≤-2x ,得x ≤-13;当x >0时,f (x )≥-2,即log12 x ≥-2,可转化为log12 x ≥log12 4,解得0<x ≤4.综上可知不等式的解集为⎝ ⎛⎦⎥⎤-∞,-13∪(0,4].[答案] B(2)[2015·西安八校联考]设集合A ={x |lg (10-x 2)>0},集合B =⎩⎨⎧⎭⎬⎫x | 2x <12,则A ∩B =( )A .(-3,1)B .(-1,3)C .(-3,-1)D .(1,3)[解析] A ={x |lg (10-x 2)>0}={x |-3<x <3},B =⎩⎨⎧⎭⎬⎫x | 2x <12={x |x <-1},A ∩B ={x |-3<x <-1}.故选C.[答案] C求解不等式的方法(1)对于一元二次不等式,应先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.(2)解简单的分式、指数、对数不等式的基本思想是把它们等价转化为整式不等式(一般为一元二次不等式)求解.(3)解决含参数不等式的难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因,确定好分类标准,有理有据、层次清楚地求解.1.[2015·长春质监]已知集合P ={x |x ≥0},Q =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +1x -2≥0,则P ∩(∁R Q )=( )A .(-∞,2)B .(-∞,-1]C .(-1,0)D .[0,2]答案 D解析 由题意可知Q ={x |x ≤-1或x >2},则∁R Q ={x |-1<x ≤2},所以P ∩(∁R Q )={x |0≤x ≤2}.故选D.2.[2015·石家庄质检(二)]函数f (x )=⎩⎨⎧2x ,x ∈[0,1)4-2x ,x ∈[1,2],若f (x 0)≤32,则x 0的取值范围是( )A.⎝ ⎛⎭⎪⎫log 232,54 B.⎝ ⎛⎦⎥⎤0,log 232∪⎣⎢⎡⎭⎪⎫54,+∞ C.⎣⎢⎡⎦⎥⎤0,log 232∪⎣⎢⎡⎦⎥⎤54,2 D.⎝ ⎛⎭⎪⎫log 232,1∪⎣⎢⎡⎦⎥⎤54,2 答案 C解析 ①当0≤x 0<1时,2x 0≤32,x 0≤log 232, ∴0≤x 0≤log 232.②当1≤x 0≤2时,4-2x 0≤32,x 0≥54, ∴54≤x 0≤2,故选C.热点二 简单的线性规划问题例2 (1)[2015·云南统测]某校今年计划招聘女教师a 名,男教师b 名,若a 、b 满足不等式组⎩⎨⎧2a -b ≥5a -b ≤2a <7,设这所学校今年计划招聘教师最多x 名,则x =( )A .10B .12C .13D .16[解析] 如图所示,画出约束条件所表示的区域,即可行域,作直线l :b +a =0,平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x =a +b =13.故选C.[答案] C(2)x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1[解析] 作出可行域(如右图),为△ABC 内部(含边界).由题设z =y -ax 取得最大值的最优解不唯一可知:线性目标函数对应直线与可行域某一边界重合.由k AB =-1,k AC =2,k BC =12可得a =-1或a =2或a =12,验证:a =-1或a =2时,成立;a =12时,不成立.故选D.[答案] D(3)已知双曲线x 28-y 22=1的两条渐近线与函数y =x 3+x 2+x +1在点M (1,4)处的切线围成的封闭区域为P (包括边界),设点A 为区域P 内的任一点,已知B (4,5),O 为坐标原点,则OA →·OB→的最大值为( )A.2312 B .3 C .2D.2611[解析] 双曲线x 28-y 22=1的渐近线方程为y =±12x ,对函数y =x 3+x 2+x +1进行求导,得y ′=3x 2+2x +1,则其在点M (1,4)处的切线方程为y -4=6(x -1),设A (x ,y ),则OA →·OB →=(x ,y )·(4,5)=4x +5y ,设z =4x +5y ,变形为y =-45x +z 5,作出线性区域可知,当y =-45x +z 5经过y -4=6(x -1)与y =12x 的交点时OA →·OB→取得最大值,则⎩⎨⎧y -4=6(x -1)y =12x⇒⎩⎪⎨⎪⎧x =411,y =211,所以求得的最大值为z max =411×4+211×5=2611.[答案] D本例(2)条件不变,把目标函数改为z =y +2x -1,求z 的取值范围? 解 可知z 的几何意义为可行域内的点(x ,y )与(1,-2)的斜率.可知z 的范围为(-∞,0]∪[2,+∞).解决线性规划问题应关注三方面(1)首先要找到可行域,再注意目标函数所表示的几何意义,找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.(2)画可行域时应注意区域是否包含边界.(3)对目标函数z =Ax +By 中B 的符号,一定要注意B 的正负与z 的最值的对应,要结合图形分析.1.定义在[-2,4]上的函数f (x )的部分值如下表:f (x )的导函数f ′(x )的图象如图,两正数a ,b 满足f (2a +b )<1,则b +3a +3的取值范围是( )A.⎝ ⎛⎭⎪⎫67,34B.⎝ ⎛⎭⎪⎫35,73C.⎝ ⎛⎭⎪⎫23,65D.⎝ ⎛⎭⎪⎫-13,3 答案 B解析 由导函数f ′(x )的图象知,f (x )在区间(-2,0)上递减,在区间(0,4)上递增,从表中可以看出,在区间(-2,0)∪(0,4)上,-1<f (x )<1,所以-2<2a +b <4,且2a +b ≠0.又因为两正数a ,b ,所以0<2a +b <4,而b +3a +3=b -(-3)a -(-3)表示点(a ,b )与点(-3,-3)连线的斜率,在直角坐标系中作出0<2a +b <4的区域和点(-3,-3),易知0-(-3)2-(-3)<b +3a +3<4-(-3)0-(-3),即b +3a +3∈⎝⎛⎭⎪⎫35,73,故选B.2.[2015·陕西高考]某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 C .17万元D .18万元答案 D解析 根据题意,设每天生产甲x 吨,乙y 吨,则⎩⎪⎨⎪⎧x ≥0y ≥03x +2y ≤12x +2y ≤8,目标函数为z =3x +4y ,作出不等式组所表示的平面区域如图中阴影部分所示,作出直线3x +4y =0并平移,易知当直线经过点A (2,3)时,z 取得最大值且z max =3×2+4×3=18,故该企业每天可获得最大利润为18万元,选D.热点三 基本不等式的应用例3 (1)[2015·兰州双基过关]已知AC 、BD 为圆O :x 2+y 2=4的两条互相垂直的弦,且垂足为M (1,2),则四边形ABCD 面积的最大值为( )A .5B .10C .15D .20[解析] 如图,作OP ⊥AC 于P ,OQ ⊥BD 于Q ,则OP 2+OQ 2=OM 2=3,∴AC 2+BD 2=4(4-OP 2)+4(4-OQ 2)=20.又AC 2+BD 2≥2AC ·BD ,则AC ·BD ≤10,∴S 四边形ABCD =12AC ·BD ≤12×10=5,当且仅当AC =BD =10时等号成立,∴四边形ABCD 面积的最大值为5.[答案]A(2)[2015·沈阳质监]若直线l:xa+yb=1(a>0,b>0)经过点(1,2),则直线l在x 轴和y轴上的截距之和的最小值是________.[解析]由直线l:xa +yb=1(a>0,b>0)可知直线在x轴上的截距为a,直线在y轴上的截距为b.求直线在x轴和y轴上的截距之和的最小值,即求a+b的最小值.由直线经过点(1,2)得1a +2b=1.于是a+b=(a+b)×1=(a+b)×⎝⎛⎭⎪⎫1a+2b=3+b a +2ab,因为ba+2ab≥2ba×2ab=22(当且仅当ba=2ab时取等号,即b=2a时取得),所以a+b≥3+2 2.[答案]3+2 2(3)设二次函数f(x)=ax2-4x+c(x∈R)的值域为[0,+∞),则1c+1+9a+9的最大值为________.[解析]由Δ=0知ac=4,且a>0,c>0,1c+1+9a+9=a+9+9c+9ac+a+9c+9=a+9c+18 a+9c+13=1+5a+9c+13≤1+529ac+13=65,当⎩⎪⎨⎪⎧ac=4,a=9c,即a=6,c=23时等号成立.[答案]6 5利用基本不等式解题应关注三方面(1)利用基本不等式求最值的注意点①在运用基本不等式求最值时,必须保证“一正,二定,三相等”,凑出定值是关键.②若两次连用基本不等式,要注意等号的取得条件的一致性,否则就会出错.(2)求条件最值问题的两种方法一是借助条件转化为所学过的函数(如一次函数、二次函数、指数函数、对数函数),借助于函数单调性求最值;二是可考虑通过变形直接利用基本不等式解决.(3)结构调整与应用基本不等式基本不等式在解题时一般不能直接应用,而是需要根据已知条件和基本不等式的“需求”寻找“结合点”,即把研究对象化成适用基本不等式的形式,常见的转化方法有①x +b x -a =x -a +bx -a+a (x >a ). ②若a x +b y =1,则mx +ny =(mx +ny )×1=(mx +ny )·⎝ ⎛⎭⎪⎫a x +b y ≥ma +nb +2abmn (字母均为正数).1.[2015·湖南高考]若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2 B .2 C .2 2 D .4答案 C解析 通解:由已知得1a +2b =b +2aab =ab ,且a >0,b >0,∴ab ab =b +2a ≥22ab ,∴ab ≥2 2.优解:由题设易知a >0,b >0,∴ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎨⎧1a +2b =abb =2a时,取等号,选C.2.[2015·陕西高考]设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案 B解析 ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B.3.[2015·重庆高考]设a ,b >0,a +b =5,则a +1+b +3的最大值为________.答案 3 2 解析 (a +1+b +3)2=a +b +4+2a +1·b +3≤9+(a +1)2+(b +3)2=9+a +b +4=18,所以a +1+b +3≤32,当且仅当a +1=b +3且a +b =5,即a =72,b =32时等号成立.所以a +1+b +3的最大值为3 2.对应学生用书P015课题4 不等式中参数取值范围的求解已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x-2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A. ⎣⎢⎡⎦⎥⎤-16,16 B. ⎣⎢⎡⎦⎥⎤-66,66C. ⎣⎢⎡⎦⎥⎤-13,13D. ⎣⎢⎡⎦⎥⎤-33,33审题过程切入点 借助奇函数,分析解析式,作函数图象. 关注点 数形结合,分析恒成立问题.[规范解答]当x ≥0时,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2-a 2,a 2<x ≤2a 2x -3a 2,x >2a 2,①又f (x )为奇函数,可得f (x )的图象如图所示.②由图象可得,当x ≤2a 2时,f (x )max =a 2,当x >2a 2时,令x -3a 2=a 2,得x =4a 2,又∀x ∈R ,f (x -1)≤f (x ),可知4a 2-(-2a 2)≤1,③∴a ∈⎣⎢⎡⎦⎥⎤-66,66,故选B.④利用数形结合解决此类问题的模型示意图如下:1.已知函数f (x )=⎩⎨⎧2-x +1,x ≤0log 3x +ax ,x >0,若f (f (-1))>4a ,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,0) C.⎝ ⎛⎭⎪⎫-∞,15 D .(1,+∞)答案 A解析 ∵f (-1)=3,∴f (f (-1))=1+3a >4a ,∴a <1,故选A.2.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-235,+∞解析 设f (x )=x 2+ax -2,若x 2+ax -2>0在[1,5]上无解,则只需⎩⎪⎨⎪⎧f (1)≤0,f (5)≤0,即⎩⎪⎨⎪⎧1+a -2≤0,25+5a -2≤0,解得a ≤-235,所以x 2+ax -2>0在[1,5]上有解时,a >-235.对应学生用书P146一、选择题1.已知集合A ={x |x 2-x <0},集合B ={x |2x <4},则“x ∈A ”是“x ∈B ”的( )A .充分且不必要条件B .必要且不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 ∵A ={x |0<x <1},B ={x |x <2},∴“x ∈A ”可以推出“x ∈B ”;在集合B 中取元素-1,则-1∉A ,∴“x ∈B ”不能推出“x ∈A ”.故选A.2.设非零实数a ,b 满足a <b ,则下列不等式中一定成立的是( ) A.1a >1b B .ab <b 2 C .a +b >0 D .a -b <0答案 D解析 令a =-1,b =1,经检验A 、C 都不成立,排除A 、C ;令a =-3,b =-2,经检验B 不成立,排除B ,故选D.3.[2015·烟台一模]若条件p :|x |≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .a ≥2B .a ≤2C .a ≥-2D .a ≤-2答案 A解析 因为|x |≤2,则p :-2≤x ≤2,q :x ≤a ,由于p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,所以a ≥2,选A.4.[2015·江西八校联考]已知O 为坐标原点,点M 的坐标为(-2,1),在平面区域⎩⎨⎧x ≥0x +y ≤2y ≥0上取一点N ,则使|MN |取得最小值时,点N 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(2,0)答案 B解析 作出不等式组表示的区域,如图阴影部分所示,当MN ⊥y 轴时,|MN |取到最小值,即N (0,1).5.[2015·南昌一模]已知实数x ,y 满足⎩⎨⎧x +1-y ≥0x +y -4≤0y ≥m,若目标函数z =2x+y 的最大值与最小值的差为2,则实数m 的值为( )A.4 B .3 C .2 D .-12答案 C解析⎩⎪⎨⎪⎧x +1-y ≥0x +y -4≤0y ≥m表示的可行域如图中阴影部分所示.将直线l 0:2x +y =0向上平移至过点A ,B 时,z =2x +y 分别取得最小值与最大值.由⎩⎪⎨⎪⎧ x +1-y =0y =m 得A (m -1,m ),由⎩⎪⎨⎪⎧x +y -4=0y =m 得B (4-m ,m ),所以z min =2(m -1)+m =3m -2,z max =2(4-m )+m =8-m ,所以z max -z min =8-m -(3m -2)=2,解得m =2.6.[2015·福建高考]若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5答案 C解析 解法一:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以1=1a +1b ≥21a ·1b =2ab(当且仅当a =b =2时取等号),所以ab ≥2.又a +b ≥2ab (当且仅当a =b =2时取等号),所以a +b ≥4(当且仅当a =b =2时取等号),故选C.解法二:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·ba =4(当且仅当a =b =2时取等号),故选C.7.[2015·兰州诊断]已知不等式组⎩⎨⎧x +y ≤1x -y ≥-1y ≥0所表示的平面区域为D ,若直线y =kx -3与平面区域D 有公共点,则k 的取值范围为( )A .[-3,3]B.⎝ ⎛⎦⎥⎤-∞,-13∪⎣⎢⎡⎭⎪⎫13,+∞ C .(-∞,-3]∪[3,+∞) D.⎣⎢⎡⎦⎥⎤-13,13 答案 C解析 满足约束条件的平面区域如图中阴影部分所示.因为直线y =kx -3过定点(0,-3),所以当y =kx -3过点C (1,0)时,k =3;当y =kx -3过点B (-1,0)时,k =-3,所以k ≤-3或k ≥3时,直线y =kx -3与平面区域D 有公共点,故选C.8.[2015·河北省名校联盟监测(二)]函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n 的最小值为( )A.2 2 B .4 C.52 D.92答案 D解析 由函数y =log a (x +3)-1(a >0,且a ≠1)的解析式知:当x =-2时,y =-1,所以A 点的坐标为(-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,所以2m +1n =2m +n m +2m +n 2n =2+n m +m n +12≥52+2=92,当且仅当m =n =23时等号成立.所以2m +1n 的最小值为92,故选D.9.[2015·九江一模]若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y的最小值为( ) A.53B .2 C.35 D.12答案 A解析依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0x -y -3≤00≤y ≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+y x1+y x =1+11+y x∈⎣⎢⎡⎦⎥⎤53,2,故选A. 10.若不等式tt 2+9≤a ≤t +2t 2在t ∈(0,2]上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤16,1B.⎣⎢⎡⎦⎥⎤16,22 C.⎣⎢⎡⎦⎥⎤16,413 D.⎣⎢⎡⎦⎥⎤213,1 答案 D解析 t t 2+9=1t +9t ,而y =t +9t 在(0,2]上单调递减,故t +9t ≥2+92=132,t t 2+9=1t +9t≤213(当且仅当t =2时等号成立),t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18,因为1t ≥12,所以t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18≥1(当且仅当t =2时等号成立),故a 的取值范围为⎣⎢⎡⎦⎥⎤213,1. 二、填空题11.[2014·福建高考]要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).答案 160解析 设底面边长x m ,宽y m ,则x ×y ×1=4,∴xy =4,设造价为z ,∴z =20xy +10×2(x +y )=80+20(x +y )≥80+20×2xy =80+20×24=160(元),当且仅当x =y =2时,等号成立.12.[2015·陕西质检(二)]若方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,则b -2a -1的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫14,1解析 令f (x )=x 2+ax +2b ,∵方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,∴⎩⎨⎧f (0)>0f (1)<0f (2)>0,∴⎩⎪⎨⎪⎧b >0a +2b <-1.a +b >-2根据约束条件作出可行域,可知14<b -2a -1<1.13.[2015·辽宁五校联考]设实数x ,y 满足约束条件⎩⎨⎧3x -y -6≤0x -y +2≥0x ≥0y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________.答案 2513解析 因为a >0,b >0,所以由可行域得,当目标函数z =ax +by 过点(4,6)时取最大值,则4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么最小值是点(0,0)到直线4a +6b =10距离的平方,即a 2+b 2的最小值是2513.14.[2015·江西八校联考]已知点P (x ,y )到A (0,4)和B (-2,0)的距离相等,则2x +4y 的最小值为________.答案 4 2解析 由题意得,点P 在线段AB 的中垂线上,则易得x +2y =3, ∴2x +4y ≥22x ·4y =22x +2y =42,当且仅当x =2y =32时,即x =32,y =34时等号成立,故2x +4y 的最小值为4 2.。

相关文档
最新文档