常用7种软件滤波
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机误差是有随机干搅引起的,其特点是在相同条件下测量同一个量时,其大小和符号做无规则变化而无法预测,但多次测量结果符合统计规律。为克服随机干搅引入的误差,硬件上可采用滤波技术,软件上可以采用软件算法实现数字滤波,其算法往往是系统测控算法的一个重要组成部分,实时性很强,采用汇编语言来编写。
采用数字滤波算法克服随机干搅引入的误差具有以下几个优点:
(1)数字滤波无须硬件,只用一个计算过程,可靠性高,不存在阻抗匹配问题,尤其是数字滤波可以对
频率很高或很低的信号进行滤波,这是模拟滤波器做不到的。
(2)数字滤波是用软件算法实现的,多输入通道可用一个软件“滤波器”从而降低系统开支。
(3)只要适当改变软件滤波器的滤波程序或运行参数,就能方便地改变其滤波特性,这个对于低频、脉冲
干搅、随机噪声等特别有效。
常用的数字滤波器算法有程序判断法、中值判断法、算术平均值法、加权滤波法、滑动滤波法、低通滤波法和复合滤波法。
1.程序判断法:
程序判断法又称限副滤波法,其方法是把两次相邻的采样值相减,求出其增量(以绝对值表示)。然后与两次采样允许的最大差值△Y进行比较,△Y的大小由被测对象的具体情况而定,若小于或等于△Y,则取本次采样的值;若大于△Y,则取上次采样值作为本次采样值,即
yn - yn-1|≤△Y,则yn有效,
yn -yn-1|>△Y,则yn-1有效。
式中yn ——第n次采样的值;
Yn-1——第(n-1)次采样的值;
△Y——相邻两次采样值允许的最大偏差。
设R1和R2为内部RAM单元,分别存放yn-1和yn,滤波值也存放在R2单元,采用MCS-51单片机指令编写的程序判断法子程序如下:付表
2.中值滤波法即对某一参数连续采样N次(一般N为奇数),然后把N次采样值按从小到大排队,再取中间值作为本次采样值。
设DATA为存放采样值的内存单元首地址,SAMP为存放滤波值的内存单元地址,N为采样值个数,用MCS-51指令编写的中值滤波子程序如下:副表
3.算术平均值滤波算法
算术平均滤波法就是连续取N次采样值进行算术平均,其数学表达式是:
Y=∑yi
~y=1/N ∑ yi
i=1……N
式中~y——N个采样值的算术平均值;
Yi ——第i个采样值;
设8次采样值依次存放在地址DATA开始的连续单元中,滤波结果保留在累加器A中,程序如下:副表
4.加权平均滤波法
算术平均滤波法存在前面所说的平滑和灵敏度之间的矛盾。采样次数太少,平滑效果差,次数太多,灵敏度下降,对参数的变化趋势不敏感。协调两者关系,可采用加权平均滤波,对连续N次采样值,分别乘上不同的加权系数之后再求累加和,加权系数一般先小后大,以突出后面若干采样的效果,加强系统对参数的变化趋势的辩识,各个加权系数均为小于1的小数,且满足总和等于1的约束条件,这样,加权运算之后的累加和即为有效采样值。为方便计算,可取各个加权系数均为整数,且总和为256,加权运算后的累加和除以256(即舍去低字节)后便是有效采样值。
设每批采样8个数据,依次存放在地址DATA开始的单元中,各加权系数是用一个表格存放在ROM中,MCS-51指令编写的算术平均滤波程序如下:副表
5.滑动平均滤波法:
以上介绍的各种平均滤波算法有一个共同点,即每取得一个有效采样值必须连续进行若干次采样,当采样速度较慢(如双积分型A/D转换)或目标参数变化较快时,系统的实时性不能保证,滑动平均滤波算法只采样一次,将这一次采样值和过去的若干次采样值一起求平均,得到的有效采样值即可投入使用,如果取N个采样值求平均,RAM中必须开辟N个数据的暂存区。每新采样一个数据便存入暂存区,同时去掉一个最老的数据,保持这N个数据始终是最近的数据,这种数据存放方式可以用环行队列结构方便的实现。设环行队列为40H-4FH连续16个单元,RO作为队尾指针,滤波程序如下:副表
6.低通滤波法:
将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能,经推导,低通滤波算法如下:
Yn=a* Xn+ (1-a) *Yn-1
式中Xn——本次采样值
Yn-1——上次的滤波输出值;
a——滤波系数,其值通常远小于1;
Yn——本次滤波的输出值。
由上式可以看出,本次滤波的输出值主要取决于上次滤波的输出值(注意不是上次的采样值,这和加权平均滤波是有本质区别的),本次采样值对滤波输出的贡献是比较小的,但多少有些修正作用,这种算法便模拟了具体有教大惯性的低通滤波器功能。滤波算法的截止频率可用以下式计算:
fL= a/2Pit pi为圆周率 3.14…
式中a——滤波系数;
t——采样间隔时间;
例如:当t=0.5s(即每秒2次),a=1/32时;
fL=(1/32)/(2*3.14*0.5)=0.01Hz
当目标参数为变化很慢的物理量时,这是很有效的。另外一方面,它不能滤除高于1/2采样频率的干搅信号,本例中采样频率为2Hz,故对1Hz以上的干搅信号应采用其他方式滤除,
低通滤波算法程序于加权平均滤波相似,但加权系数只有两个:a和1-a。为计算方便,a取一整数,1-a用256-a,来代替,计算结果舍去最低字节即可,因为只有两项,a和1-a,均以立即数的形式编入程序中,不另外设表格。虽然采样值为单元字节(8位A/D)。为保证运算精度,滤波输出值用双字节表示,其中一个字节整数,一字节小数,否则有可能因为每次舍去尾数而使输出不会变化。
设Yn-1存放在30H(整数)和31H(小数)两单元中,Yn存放在32H(整数)和33H(小数)中。滤波程序如下:副表
结束语: