球床高温气冷堆

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从20世纪 60年代开始,英国、美国和德国开始研发高温气冷堆。 1964年,英国与欧共体合作建造的世界第一座高温气冷堆龙(Dragon,20MWth)堆建成临界。其后,德国建成了15MWe的高温气冷试验堆 AVR和300MWe的核电原型堆 THTR-300。美国建成了40MWe的实验高温气冷堆桃花谷(Peach-Bottom)堆和330MWe的圣符伦堡(Fort. St. Vrain)核电原型堆。它们大多采用钍-铀燃料。日本于 1991年开始建造热功率为 30MWth的高温气冷工程试验堆HTTR,1998年建成临界。

上世纪80年代后期,高温气冷堆发展进入模块式阶段。有潜在市场应用前景的两种模块式高温气冷堆设计是:德国Siemens/Interatom公司的球床模块式高温气冷堆HTR-Module和美国GA公司的柱状燃料元件模块式高温气冷堆MHTGR。前者单堆热功率200MWth,电功率80MWe,其示范电厂拟采用2个模块;后者热功率为350MWth,采用蒸汽循环,示范电厂拟采用4个模块。1994年GA公司又提出更先进的热功率600MWth、采用氦气直接循环发电的GT-MHR设计。

模块式高温气冷堆是在以往高温气冷实验堆和大型示范堆的基础上, 为了适应国际社

会对反应堆安全越来越高的要求而提出和发展的。这种堆型以小型化和固有安全性为特征, 设计保证在任何事故情况下, 由于堆的负反应性温度系数和很大的温升裕度能够使反应堆

安全停堆; 停堆后的余热可以依靠热传导、对流和辐射等自然机理传输到堆外;反应堆功率密度设计较低, 从设计上保证堆芯燃料元件的最高温度限制在其允许的安全温度以下; 耐

高温的石墨堆芯结构和全陶瓷型的燃料元件避免了发生堆芯燃料元件熔化的危险。其次, 由于反应堆规模的小型化, 可以采用模块化建造方案, 从而降低成本提高经济竞争力。

模块式高温气冷堆的安全特性可以从以下3个方面得到保障。

①阻止放射性释放的多重屏障

反应堆设有三道安全屏障以阻止放射性释放,第一道屏障是全陶瓷包覆颗粒燃料元件。高温气冷堆的堆芯设计时, 在所有运行和事故工况下都应保证堆芯中心区域的燃料元件最高温

度限制在1600 ℃以内。在1600 ℃以下时, 燃料颗粒的包覆层能保持其完整性, 放射性裂变产物几乎全部被阻挡在燃料颗粒内。第二道屏障是一回路压力边界,由反应堆压力壳、蒸汽发生器压力壳(或能量转换压力壳) 和连接这两壳的热气导管压力壳组成, 这些压力容器发生贯穿破裂的可能性可以排除。第三道屏障是包容体, 由一回路舱室、氦净化系统舱室、燃料装卸系统舱室组成, 可以阻留和控制放射性气体裂变产物向大气释放。

②非能动余热载出安全特性

高温气冷堆在堆芯的热工计算时考虑了在事故工况下, 堆芯的冷却不需要专设的余热冷却

系统,堆芯的衰变热可以由热传导、对流和辐射等非能动机制传到反应堆压力容器外的堆舱表面冷却器, 再通过自然循环由空气冷却器将传出的堆芯余热散发到大气中。如果一回路冷却剂失压, 主传热系统和辅助传热系统全部失效, 堆芯余热仍可通过上述的非能动机制传

出堆外, 可以避免发生堆芯熔化事故的可能性, 具有非能动的安全特性。当然, 在事故情况下, 由于余热已不可能通过主传热系统载出,势必导致堆芯中心区域的燃料元件温度升高。为了保证堆芯燃料元件的最高温度不超过其安全限值1600 ℃, 需要对堆芯功率密度和堆芯几何尺寸的设计加以限制, 这也是高温气冷堆的单堆容量较小的原因。

④负反应性温度系数具有很大的反应性补偿能力

反应堆具有较大的燃料和慢化剂负反应性温度系数, 并且在正常情况下燃烧元件的最高温

度与其允许的温度限值之间还有相当大的裕度, 因此借助于负反应性温度系数所提供的反

应性补偿能力, 当发生正反应性引入事故时, 反应堆可以依靠自身的负反应性温度系数的

反应性补偿能力实现自动停堆。

在球床高温气冷堆的各个发展阶段,燃料元件均采用包覆颗粒燃料球。典型的元件球直径为 60mm。其中直径为 50mm的中心石墨基体内均匀地弥散包覆燃料颗粒,元件外区为 5mm 厚的不含燃料的石墨球壳。目前最新的包覆颗粒技术是全陶瓷型三重各向同性包覆(TRISO)。

TRISO包覆颗粒的燃料芯核直径为 0.5mm,其外首先包覆一层疏松的多孔低密度热解碳,用来贮存裂变气体、缓冲温度应力、吸收芯粒的辐照肿胀,及防止裂变反冲核对外层造成损伤;第2层为高密度热解碳层,用来防止金属裂变产物对SiC层的腐蚀,及承受部分内压;第3层SiC层是承受内压及阻挡裂变产物外逸的关键层;第4层高密度热解碳层,主要用来保护SiC 层免受外来机械损伤。包覆后的颗粒直径约为 1.0mm。每个球形燃料元件中包含有约 12,000个包覆燃料颗粒。高温气冷堆的燃料元件是将全陶瓷型包覆颗粒弥散在石墨球基体中制成的, 这种燃料元件的特征是将几乎所有裂变产物完全阻挡, 在完整包覆颗粒的陶瓷SiC 层内,

陶瓷SiC 层可以在1 600 ℃以下保持其完整性, 从而极大地提高了各种运行和事故工况下

核燃料裂变产物的阻挡能力。中子慢化材料, 反射层材料, 燃料元件结构材料和堆芯结构材料均采用石墨。冷却剂则是中子吸收截面小、化学隋性的氦气。由于堆芯为耐高温的全陶瓷型结构, 堆芯出口温度可达950 ℃甚至更高。

德国球床高温气冷堆的安全实践

如前文所述,德国在1967年建成其第一座高温气冷试验堆AVR(45MWth、15MWe)。该堆的氦气(He)冷却剂出口温度高达990℃,原则上适用于高温裂解水的工艺热之需。1985年,利用钍作燃料的高温气冷堆THTR300(750MWth、300MWe,出口氦气温度750℃)投入运行。但是1988-1989年间这两座反应堆相继被关闭至今。特别是THTR300机组1989年关闭时,仅折合运行了1.2个满功率年。正是安全方面的考虑促使永久关闭了AVR。该堆缺乏足够的保护措施来对付那些伴有空气进入从而引发堆芯起火的外部影响;此外当有水进入堆芯后,可能产生正的空泡反应性系数。因此两者均作为设计基准事故在现在的球床高温气冷堆设计中

相关文档
最新文档