导数的概念教学设计

合集下载

导数概念教案范文

导数概念教案范文

导数概念教案范文一、教学目标1.理解导数的概念及其代表的几何意义;2.掌握导数的定义;3.运用导数计算函数在给定点的导数值;4.通过例题练习,提高解题能力和应用能力。

二、教学重点1.确定导数的概念及其几何意义;2.理解导数的定义;3.运用导数计算函数在给定点的导数值。

三、教学难点1.理解导数的概念及其几何意义;2.运用导数求函数在给定点的导数值。

四、教学过程1.导入(5分钟)首先,通过引入一个问题来导入导数的概念。

比如,有一个人在直线运动中,求他运动过程中的瞬时速度。

引导学生思考如何解决这个问题。

2.探究导数的几何意义(15分钟)将问题扩展到一般情况:给定一个函数y=f(x),我们想要求解其在其中一点的瞬时变化率。

引导学生思考这个问题与瞬时速度的关联。

通过画出曲线y=f(x),并选取两个点A(x,f(x))和B(x+∆x,f(x+∆x)),讨论随着∆x趋近于0,AB两点间的斜率逼近于其中一固定值的情况。

引导学生认识到这个固定值就是函数f(x)在点x处的导数,表示了函数在该点的瞬时变化率。

3.导数的定义(20分钟)通过前面的探究过程,引导学生解答问题:“导数的定义是什么?”。

引导学生答出导数的定义:函数f(x)在点x处的导数,表示了函数在该点的瞬时变化率。

然后,引导学生进一步讨论如何利用导数的定义来计算函数在给定点的导数值。

通过原理解释导数的定义,例如,利用极限的思想,将∆x的取值逼近至0,从而计算出导数的值。

4.导数的基本性质(10分钟)讲解导数的基本性质。

导数可以用于判断函数的单调性和凸凹性,以及求解函数的极值点等。

通过例题进行讲解和练习,巩固学生的理解。

5.计算导数的方法(25分钟)讲解导数的计算方法,包括常见的求导法则和推导过程。

引导学生掌握常见函数的导数计算方法,如幂函数、指数函数、对数函数、三角函数等。

通过例题进行讲解和练习,提高学生计算导数的能力。

6.应用导数解决实际问题(20分钟)通过给出一道应用导数解决实际问题的例题,引导学生运用导数的知识和技巧解题。

关于导数的概念的教学设计

关于导数的概念的教学设计

关于导数的概念的教学设计导数是微积分中的重要概念,它用于描述函数在某点处的变化率。

理解导数的概念对学生深入学习微积分以及其他相关数学概念具有重要意义。

本教学设计旨在引导学生掌握导数的基本概念,理解导数的几何意义,并学习导数的基本计算方法。

一、教学目标1. 理解导数的概念,认识导数的几何意义;2. 掌握导数的计算方法,包括用定义法和基本导数公式计算导数;3. 能够应用导数计算函数的极值点和拐点。

二、教学内容1. 导数的概念介绍a. 导数的定义及几何意义的解释;b. 导数与函数的图像的关系。

2. 导数的计算方法a. 导数的定义法;b. 基本导数公式:常数函数的导数、幂函数的导数、指数函数的导数、对数函数的导数;c. 导数的四则运算法则。

3. 应用导数求函数的极值点和拐点a. 极值的概念及判定条件;b. 拐点的概念及判定条件;c. 应用导数求函数极值点和拐点的例题。

三、教学过程1. 导入与概念引入a. 通过简单的几何问题引入变化率的概念,引导学生思考什么是变化率;b. 在引入函数的概念后,让学生思考函数在不同点的变化情况;c. 引入导数的概念,解释导数所描述的是函数在某点处的变化率。

2. 导数的定义及几何意义的解释a. 详细讲解导数的定义,即导数等于函数在该点的极限;b. 将导数的定义与函数的图像联系起来,解释导数在图像上的几何意义。

3. 导数的计算方法a. 讲解导数的计算方法,包括定义法和基本导数公式;b. 通过具体的例子,引导学生运用计算方法计算导数。

4. 导数的应用a. 通过介绍极值点和拐点的概念,让学生了解导数在函数极值和拐点问题中的应用;b. 给出具体的应用问题,引导学生运用导数计算函数的极值点和拐点。

5. 练习与巩固a. 分发练习题,让学生在教师的指导下进行练习;b. 教师巡视、指导并进行解答。

四、教学评价1. 教师通过在课堂上观察学生的学习状态、提问的回答情况等进行评价;2. 根据学生的练习情况、课堂表现等进行评价;3. 可以设计一些带有多项选择题和简答题的测验,对学生的掌握情况进行客观评价。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 让学生理解导数的定义和几何意义。

2. 掌握导数的计算方法。

3. 能够应用导数解决实际问题,如速度、加速度等。

二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、几何意义和计算方法。

2. 难点:导数的计算方法和在实际问题中的应用。

四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。

2. 使用多媒体课件辅助教学。

五、教学过程1. 导入:回顾函数的斜率概念,引导学生思考函数在某一点的瞬时变化率。

2. 导数的定义:介绍导数的定义,强调极限的思想,引导学生理解导数的含义。

3. 导数的几何意义:通过图形演示,让学生直观地理解导数表示曲线在某一点的切线斜率。

4. 导数的计算方法:讲解导数的计算方法,包括基本导数公式、导数的四则运算等。

5. 应用导数解决实际问题:举例说明导数在实际问题中的应用,如速度、加速度等。

6. 练习:布置练习题,让学生巩固导数的概念和计算方法。

7. 总结:对本节课的内容进行总结,强调导数的重要性和应用价值。

8. 作业:布置作业,巩固所学内容。

六、教学反思在教学过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和难度。

针对学生的薄弱环节,加强讲解和练习。

七、教学评价通过课堂表现、作业和练习,评价学生对导数的理解和应用能力。

鼓励学生积极参与讨论,提高解决问题的能力。

八、课时安排本节课安排2课时,共计45分钟。

九、教学资源1. 多媒体课件2. 练习题3. 相关参考资料十、教学拓展1. 导数的进一步应用,如函数的单调性、极值等。

2. 导数在其他学科中的应用,如物理、化学等。

六、教学策略1. 案例分析:通过分析具体的函数实例,让学生理解导数的计算过程和应用场景。

2. 小组讨论:鼓励学生分组讨论导数问题,培养合作解决问题的能力。

3. 实际操作:让学生利用计算器求解导数,增强实践操作能力。

《导数的概念》教案

《导数的概念》教案

《导数的概念》教案教案:导数的概念1.教学目标:1.1.知识目标:学生能够了解导数的概念及其基本性质。

1.2.能力目标:学生能够应用导数的概念解决实际问题。

1.3.情感目标:通过对导数的学习,培养学生的分析和解决问题的能力,并培养学生的兴趣和热爱数学的情感。

2.教学重点:2.1.导数的定义和概念。

2.2.导数的基本性质。

3.教学难点:3.1.导数的基本性质的理解和应用。

3.2.导数的计算和应用。

4.教学过程:4.1.导入(10分钟):引入导数的概念,通过一个简单的例子说明导数的作用和意义。

4.2.导数的定义(20分钟):4.2.1.简单介绍导数的定义和符号表示。

4.2.2.讲解导数的物理意义和几何意义。

4.2.3.通过实例和图像说明导数的计算。

4.3.导数的基本性质(30分钟):4.3.1.导数的定义区间和存在性。

4.3.2.导数的唯一性和连续性。

4.3.3.导数的运算法则。

4.4.导数的应用(30分钟):4.4.1.导数在函数图像的研究中的应用。

4.4.2.导数在最值问题中的应用。

4.4.3.导数在速度和加速度中的应用。

4.5.小结(10分钟):对导数的概念及其应用进行总结,并布置相应的作业。

5.教学手段:5.1.板书与讲解相结合的教学方法。

5.2.生动形象的实例和图像辅助讲解。

5.3.教师提问和学生互动的教学方式。

6.教学资源:教材、黑板、彩色粉笔、投影仪等。

7.教学评价:7.1.反馈评价:学生在课堂上积极参与,课堂气氛活跃。

7.2.笔试评价:设计一套综合性的习题,考查学生对导数概念理解和应用的能力。

7.3.直观评价:观察学生在计算和解决实际问题时运用导数的能力和方法。

8.教学延伸:8.1.导数的计算和应用在微积分的后续学习中具有重要的作用,学生还需继续加深对导数概念和应用的理解。

8.2.练习不同类型的导数计算题目,提高运算能力和分析解决问题的能力。

8.3.进一步了解导数的发展与应用,拓宽数学知识的广度。

大学导数的概念教案

大学导数的概念教案

一、教学目标1. 知识目标:理解导数的概念,掌握导数的定义、性质和计算方法。

2. 能力目标:能够运用导数解决实际问题,提高数学思维能力。

3. 情感目标:培养学生严谨、求实的作风,激发对数学学习的兴趣。

二、教学内容1. 导数的定义2. 导数的性质3. 导数的计算方法4. 导数的应用三、教学过程(一)导入1. 引入问题:在物理学中,速度是描述物体运动快慢的物理量,那么如何描述物体在某一瞬间的运动快慢呢?2. 引出导数的概念:导数是描述函数在某一点处变化快慢的物理量。

(二)讲解导数的定义1. 定义:设函数y=f(x)在点x0的某邻域内有定义,如果极限lim[f(x) - f(x0)] / (x - x0)存在,则称函数y=f(x)在点x0可导,该极限值称为函数y=f(x)在点x0的导数,记作f'(x0)或dy/dx|x=x0。

2. 强调定义中的关键点:函数在某点的导数存在,意味着函数在该点附近的变化趋势可以由该点的导数来描述。

(三)讲解导数的性质1. 线性性质:若函数y=f(x)和y=g(x)在点x0可导,则函数y=f(x) + g(x)和y=kf(x)在点x0也可导,且(f+g)'(x0) = f'(x0) + g'(x0),(kf)'(x0) =kf'(x0)。

2. 可导性:若函数y=f(x)在点x0可导,则其反函数y=g(x)在点f(x0)也可导,且g'(f(x0)) = 1 / f'(x0)。

(四)讲解导数的计算方法1. 基本求导公式:常数的导数为0,幂函数的导数为x^n的n次方,指数函数的导数为e^x,对数函数的导数为1/x。

2. 导数的运算法则:和、差、积、商的导数法则。

(五)讲解导数的应用1. 求函数在某点的瞬时变化率。

2. 求函数在某点附近的切线方程。

3. 求函数的极值和拐点。

4. 解决实际问题。

(六)课堂小结1. 总结导数的概念、性质和计算方法。

导数的概念说课稿(精选5篇)

导数的概念说课稿(精选5篇)

导数的概念说课稿(精选5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!导数的概念说课稿(精选5篇)导数的概念说课稿(1)一、教材分析导数的概念是高中新教材人教A版选修2—2第一章1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。

导数的概念教学设计

导数的概念教学设计

《导数的概念》教学设计1. 教学目标(1)知识与技能目标:掌握导数的概念,并能够利用导数的定义计算导数.(2)过程与方法目标:通过引入导数的概念这一过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想;提高类比归纳、抽象概括的思维能力.(3)情感、态度与价值观目标:通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.2. 教学重、难点重点:导数的定义和利用定义如何计算导数.难点:对导数概念的理解.3.教学方法1. 教法:引导式教学法在提出问题的背景下,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念的形成.2. 教学手段:多媒体辅助教学4.教学过程(一)情境引入导数的概念和其它的数学概念一样是源于人类的实践。

导数的思想最初是由法国数学家费马(Fermat)为研究极值问题而引入的,但导数作为微积分的最主要的概念,却是英国数学家牛顿(Newton)和德国数学家莱布尼兹(Leibniz)在研究力学与几何学的过程中建立起来的。

17世纪数学家遇到的三类问题:一是光的反射问题。

光的反射和折射在17世纪是一个十分盛行的研究课题,早在公元1世纪,古希腊数学家海伦(Heron)就已经证明了光的反射定律:光射向平面时,入射角等于反射角。

海伦还将该定律推广到圆弧的情形,此时,入射光与反射光与圆弧的切线所成角相等。

那么,对于其他曲线,光又如何反射呢?这就需要确定曲线的切线。

A图 1 光在平面上的反射图 2 光在球面上的反射二是曲线运动的速度问题。

对于直线运动,速度方向与位移方向相同或相反,但如何确定曲线运动的速度方向呢?这就需要确定曲线的切线。

三是曲线的交角问题。

曲线的交角是一个古老的难题。

自古希腊以来,人们对圆弧和直线构成的角——牛头角(图3中AB弧与AC构成的角)和弓形角(图4中AB与ACB弧所构成的角)即有过很多争议。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。

教学内容:第一章:导数的定义1.1 引入导数的概念1.2 导数的定义及其几何意义1.3 导数的计算法则第二章:导数的计算2.1 基本导数公式2.2 导数的四则运算2.3 高阶导数第三章:导数的应用3.1 函数的单调性3.2 函数的极值3.3 曲线的切线与法线第四章:导数与实际问题4.1 运动物体的瞬时速度与加速度4.2 函数的优化问题4.3 导数在经济学中的应用第五章:导数的进一步应用5.1 曲线的凹凸性与拐点5.2 函数的单调区间与最大值、最小值5.3 函数的渐近线教学步骤:1. 引入导数的概念:通过生活中的例子,如物体运动的瞬时速度,引出导数的定义。

2. 讲解导数的定义及其几何意义:解释导数的定义,并通过图形演示导数的几何意义。

3. 导数的计算法则:讲解基本导数公式,引导学生掌握导数的计算方法。

4. 导数的应用:通过实例讲解函数的单调性、极值等概念,并引导学生运用导数解决实际问题。

5. 总结与拓展:总结本章内容,提出进一步的学习要求和思考题。

教学评价:1. 课堂讲解:评价教师的讲解是否清晰、生动,能否引导学生理解和掌握导数的概念和计算方法。

2. 课堂练习:评价学生是否能够正确计算导数,并应用导数解决实际问题。

3. 课后作业:评价学生是否能够独立完成作业,并对导数的应用有深入的理解。

教学资源:1. 教案、PPT等教学资料;2. 数学软件或计算器;3. 实际问题案例。

教学建议:1. 注重引导学生从实际问题中抽象出导数的概念,提高学生的学习兴趣和积极性;2. 通过图形演示导数的几何意义,帮助学生直观理解导数的概念;3. 鼓励学生进行课堂练习和课后作业,及时巩固所学知识;4. 结合实际问题,引导学生运用导数解决实际问题,提高学生的应用能力。

第六章:导数与函数的单调性6.1 单调增函数与单调减函数6.2 利用导数判断函数的单调性6.3 单调性在实际问题中的应用第七章:函数的极值与导数7.1 极值的概念7.2 利用导数求函数的极值7.3 极值在实际问题中的应用第八章:曲线的切线与法线8.1 切线方程的求法8.2 法线方程的求法8.3 切线与法线在实际问题中的应用第九章:导数与函数的图像9.1 凹凸性的定义与判断9.2 拐点的定义与判断9.3 利用导数分析函数的图像特点第十章:导数在经济、物理等领域的应用10.1 导数在经济学中的应用10.2 导数在物理学中的应用10.3 导数在其他领域的应用案例分析教学步骤:6.1-6.3:通过具体例子讲解单调增函数与单调减函数的概念,引导学生利用导数判断函数的单调性,并应用于实际问题。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 理解导数的定义和物理意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。

二、教学内容1. 导数的定义:引入极限的概念,讲解导数的定义及求导法则;2. 导数的计算:讲解基本函数的导数公式,四则运算法则,复合函数的链式法则;3. 导数的应用:讲解导数在实际问题中的应用,如运动物体的瞬时速度、加速度,函数的单调性、极值等。

三、教学重点与难点1. 导数的定义及求导法则;2. 导数的计算方法;3. 导数在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解导数的定义、求导法则及应用;2. 利用例题,演示导数的计算过程;3. 引导学生运用导数解决实际问题。

五、教学过程1. 引入极限的概念,讲解导数的定义:导数表示函数在某一点的瞬时变化率,通过极限的概念来理解导数;2. 讲解基本函数的导数公式,四则运算法则,复合函数的链式法则:引导学生掌握导数的计算方法;3. 利用例题,演示导数的计算过程:让学生通过例题,加深对导数计算方法的理解;4. 讲解导数在实际问题中的应用:如运动物体的瞬时速度、加速度,函数的单调性、极值等,培养学生运用导数解决实际问题的能力;5. 课堂练习:布置相关练习题,巩固所学知识。

教学评价:通过课堂讲解、例题演示、练习题等方式,评价学生对导数的概念、计算方法及应用的掌握程度。

六、教学拓展1. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何interpretation;2. 导数与函数的单调性:讲解导数与函数单调性的关系,引导学生理解如何利用导数判断函数的单调性;3. 导数与函数的极值:讲解导数与函数极值的关系,引导学生如何利用导数求函数的极值。

七、教学案例分析1. 分析实际问题,引导学生运用导数求解:如物体运动的速度、加速度问题,函数的单调性问题等;2. 分析复杂函数的导数求解过程:引导学生理解并掌握复杂函数导数的求解方法。

大学导数的概念优质教案

大学导数的概念优质教案

课时:2课时教学目标:1. 理解导数的定义,掌握导数的概念。

2. 能够运用导数的概念解决实际问题。

3. 培养学生的逻辑思维能力和抽象思维能力。

教学重点:1. 导数的定义。

2. 导数的几何意义和物理意义。

教学难点:1. 导数的定义的理解和应用。

2. 导数在解决实际问题中的应用。

教学准备:1. 多媒体课件。

2. 导数概念相关的教学视频。

3. 练习题。

教学过程:第一课时一、导入1. 回顾初中学过的函数概念,引导学生思考函数在某一点的变化率。

2. 提出问题:如何描述函数在某一点的瞬时变化率?二、新课讲授1. 引入导数的定义:设函数y=f(x)在x=x0的某个邻域内有定义,当自变量x从x0变到x0+h(h不为0)时,函数值从f(x0)变到f(x0+h),那么函数值的变化量△y=f(x0+h)-f(x0),自变量的变化量△x=h。

当h→0时,如果极限存在,则称此极限值为函数y=f(x)在点x=x0的导数,记作f'(x0)或dy/dx|x=x0。

2. 讲解导数的几何意义:导数f'(x0)表示函数y=f(x)在点x=x0处的切线斜率。

3. 讲解导数的物理意义:导数f'(x0)表示物体在x=x0处的瞬时速度。

4. 通过实例讲解导数的计算方法。

三、课堂练习1. 计算函数f(x)=x^2在x=1处的导数。

2. 计算函数f(x)=lnx在x=1处的导数。

四、小结1. 总结导数的定义、几何意义和物理意义。

2. 强调导数在解决实际问题中的应用。

第二课时一、复习导入1. 复习上一节课的内容,引导学生回顾导数的定义和几何意义。

2. 提出问题:导数在解决实际问题中有哪些应用?二、新课讲授1. 介绍导数在经济学中的应用:例如,计算成本函数、收入函数、利润函数的边际值。

2. 介绍导数在物理学中的应用:例如,计算速度、加速度、位移等物理量的瞬时值。

3. 介绍导数在工程学中的应用:例如,计算曲线的斜率、切线、法线等。

导数的概念优秀教学设计

导数的概念优秀教学设计

导数的概念优秀教学设计导数是微积分中的重要概念,是描述函数变化率的工具。

设计优秀的导数教学,需要结合具体的学生特点和教学环境,以下是一个1200字以上的教学设计。

课程名称:导数的概念课时安排:2个课时教学目标:1.理解导数的概念和意义;2.掌握导数的计算方法;3.能够应用导数计算函数在给定点的切线和法线。

教学准备:1.教师准备黑板和粉笔;2.给学生准备纸和笔;3.提前准备好导数的相关练习题。

教学过程:第一课时(40分钟):1.导入(5分钟):教师首先简要回顾一下上节课讲解的函数及其性质,引导学生回忆函数图像的特点和函数值的意义。

2.引入导数的概念(15分钟):a.教师通过画图的方式,介绍导数的定义,即函数在其中一点的导数定义为函数在该点的斜率,引导学生对导数有初步的直观理解。

b.教师提供一些具体的例子,如从平面图中点A的位置移动到点B的位置所经过的路径,引导学生思考为什么我们需要斜率来描述这一移动过程的速率。

3.导数的计算方法(20分钟):a.教师通过画图和计算的方式,教学常见函数的导数计算方法,如幂函数、指数函数、对数函数、三角函数等。

b.教师提醒学生导数是一个极限的概念,需要进行极限运算,以此引导学生理解导数的计算方法。

4.小结(5分钟):教师进行本节课的小结,回顾本节课讲解的内容,强调导数是函数的变化率,需用斜率来描述。

第二课时(40分钟):1.复习(5分钟):教师简要回顾上节课讲解的导数的概念和计算方法,提问学生导数的意义和计算方法。

2.用导数计算切线和法线(15分钟):a.教师通过具体例子,如给定一条曲线上的一点P,求曲线上其中一点的切线方程和法线方程,引导学生应用导数的概念和计算方法进行求解。

b.教师提醒学生切线和法线的斜率分别等于导数和导数的负倒数,以此理解切线和法线的几何意义。

3.应用题练习(15分钟):a.教师出示一些应用题,如给定函数的图像,要求求函数在其中一点的切线和法线方程,并计算切点坐标等。

高等数学导数的概念教案

高等数学导数的概念教案

1. 让学生理解导数的概念,掌握导数的定义和性质。

2. 培养学生运用导数解决实际问题的能力。

3. 引导学生掌握求导数的基本方法。

二、教学内容1. 导数的定义2. 导数的性质3. 求导数的方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、性质和求导数的方法。

2. 难点:导数的直观理解和求复杂函数的导数。

四、教学过程1. 导入:通过生活中的实例,如速度、加速度等,引导学生思考导数的概念。

2. 讲解:讲解导数的定义,引导学生理解导数的几何意义。

3. 练习:让学生独立完成一些简单函数的导数计算,巩固导数的求法。

4. 应用:结合实际问题,让学生运用导数解决问题,体会导数的应用价值。

5. 总结:对本节课的内容进行总结,强调导数的重要性和求导数的方法。

五、课后作业1. 完成教材上的课后练习题。

2. 找一些实际问题,运用导数解决。

3. 复习本节课的内容,准备下一节课的学习。

1. 评价学生对导数概念的理解程度。

2. 评价学生掌握导数性质和求导数方法的情况。

3. 评价学生在实际问题中运用导数的熟练程度。

七、教学策略1. 采用生动的生活实例引入导数概念,提高学生的学习兴趣。

2. 通过多媒体手段展示导数的几何意义,增强学生的直观感受。

3. 设计具有梯度的练习题,让学生在实践中掌握求导数的方法。

4. 鼓励学生参与课堂讨论,提高学生的思维能力和解决问题的能力。

八、教学资源1. 教材:高等数学导数部分。

2. 多媒体课件:用于展示导数的几何意义和实例分析。

3. 练习题库:用于巩固所学知识和提高解题能力。

4. 网络资源:用于拓展学生视野,了解导数在实际应用中的广泛性。

九、教学反思在教学过程中,要及时关注学生的学习反馈,根据学生的实际情况调整教学节奏和难度。

针对学生的薄弱环节,要加强针对性训练,提高学生的理解能力和应用能力。

注重培养学生的数学思维,激发学生学习高等数学的兴趣。

十、教学拓展1. 导数在微积分学中的应用:极限、积分等。

导数的概念教学设计精选全文完整版

导数的概念教学设计精选全文完整版

二、教学目标知识与技能:理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;会求函数在某点的导数过程与方法:在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力,体会数学知识在现实生活中的广泛应用。

情感态度与价值观:学生通过置疑与探究,培养学生独立的人格与敢于创新精神。

三、学习者特征分析(2)你认为膨胀速度与哪些量有关系?(3)试用两个变量之间的关系来表述气球的膨胀率问题?教师引导学生把空气容量的增加转化为体积的增大,从而由体积变化量和半径变化量的比值得到气球膨胀率。

思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?总结:1212)()(V V V r V r --)(62.0)0()1(dm r r ≈-气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.用几何画板直观地演示当球的体积增大(黑色部分面积变大,绿色越来越薄)时,半径增大越来越小。

学生观察、体会通过观察和计算,用数据解释上述现象,并通过几何画板演示,更逼真的感受上述现象。

实例3:在高台跳水运动中,运动员相对水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系: h (t )=-4.9t 2+6.5t +10.问题一:计算运动员在21≤≤t 这段时间里的平均速度,它的物理意义是什么?学生通过手工计算得到:在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=通过物理知识不难解释这两个平均速度的物理意义。

(完整版)导数的概念教案

(完整版)导数的概念教案

【教学课题】:§2.1 导数的概念(第一课时)【教学目的】:能使学生深刻理解在一点处导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数在一点处的导数;明确一点处的导数与单侧导数、可导与连续的关系。

【教学重点】:在一点处导数的定义。

【教学难点】:在一点处导数的几种等价定义及其应用。

【教学方法】:系统讲授,问题教学,多媒体的利用等。

【教学过程】:一) 导数的思想的历史回顾导数的概念和其它的数学概念一样是源于人类的实践。

导数的思想最初是由法国数学家费马(Fermat )为研究极值问题而引入的,但导数作为微积分的最主要的概念,却是英国数学家牛顿(Newton )和德国数学家莱布尼兹(Leibniz )在研究力学与几何学的过程中建立起来的。

二)两个来自物理学与几何学的问题的解决问题1 (以变速直线运动的瞬时速度的问题的解决为背景)已知:自由落体运动方程为:21()2s t gt =,[0,]t T ∈,求:落体在0t 时刻(0[0,]t T ∈)的瞬时速度。

问题解决:设t 为0t 的邻近时刻,则落体在时间段0[,]t t (或0[,]t t )上的平均速度为00()()s t s t v t t -=-若0t t →时平均速度的极限存在,则极限00()()limt t s t s t v t t →-=-为质点在时刻0t 的瞬时速度。

问题2 (以曲线在某一点处切线的斜率的问题的解决为背景)已知:曲线)(x f y =上点00(,)M x y ,求:M 点处切线的斜率。

下面给出切线的一般定义;设曲线C 及曲线C 上的一点M ,如图,在M 外C 上另外取一点N ,作割线MN ,当N 沿着C 趋近点M 时,如果割线MN 绕点M 旋转而趋于极限位置MT ,直线MT 就称为曲线C 在点M 处的切线。

问题解决:取在C 上M 附近一点(,)N x y ,于是割线PQ 的斜率为0000()()tan y y f x f x x x x x ϕ--==--(ϕ为割线MN 的倾角) 当0x x →时,若上式极限存在,则极限00()()tan limx x f x f x k x x α→-==-(α为割线MT 的倾角)为点M 处的切线的斜率。

导数的概念教学设计方案

导数的概念教学设计方案

1. 知识目标:理解导数的概念,掌握导数的定义、几何意义和物理意义。

2. 能力目标:培养学生运用导数解决实际问题的能力,提高学生的数学思维能力。

3. 情感目标:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。

二、教学重难点1. 教学重点:导数的概念、几何意义和物理意义。

2. 教学难点:导数的定义及运用。

三、教学过程1. 导入新课通过回顾函数、极限等知识点,引导学生思考导数的概念。

教师可以提出问题:“如何求函数在某一点的瞬时变化率?”以此激发学生的学习兴趣。

2. 导数概念的教学(1)介绍导数的定义:导数是函数在某一点处的瞬时变化率。

通过几何直观,引导学生理解导数的定义。

(2)举例说明导数的几何意义:导数表示函数在某一点处的切线斜率。

(3)举例说明导数的物理意义:导数表示物体在某一点处的速度。

3. 导数的计算方法(1)讲解导数的定义法:运用导数的定义求解函数在某一点的导数。

(2)讲解导数的四则运算法则:运用导数的四则运算法则求解复合函数的导数。

(3)讲解求导公式和求导法则:通过举例讲解求导公式和求导法则,如幂函数、指数函数、对数函数、三角函数等的导数。

4. 实例分析通过实例分析,让学生运用所学知识解决实际问题,如求曲线在某一点的切线方程、求曲线的拐点等。

5. 课堂小结教师总结本节课的主要内容,强调导数的概念、几何意义和物理意义,以及导数的计算方法。

6. 作业布置布置相关练习题,巩固学生对导数的理解,提高学生的解题能力。

四、教学反思1. 教学过程中,注重引导学生理解导数的概念,避免死记硬背。

2. 通过实例分析,让学生将所学知识运用到实际问题中,提高学生的实际应用能力。

3. 在教学中,注重培养学生的探究精神和合作意识,鼓励学生积极参与课堂讨论。

4. 关注学生的学习进度,针对学生的不同需求,进行个性化辅导。

五、教学评价1. 课堂表现:观察学生在课堂上的参与度、积极性。

2. 作业完成情况:检查学生对导数概念的理解程度和运用能力。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 理解导数的定义及物理意义;2. 掌握导数的计算方法;3. 能够运用导数解决实际问题。

二、教学内容1. 导数的定义;2. 导数的计算;3. 导数在实际问题中的应用。

三、教学重点与难点1. 导数的定义及其几何意义;2. 导数的计算方法;3. 导数在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解导数的定义、计算方法及应用;2. 利用图形展示导数的几何意义;3. 通过例题演示导数的计算过程;4. 引导学生运用导数解决实际问题。

五、教学准备1. 教学课件;2. 练习题;3. 相关实际问题。

第一章:导数的定义1.1 引入导数的概念1.2 解释导数的几何意义1.3 导数的计算方法第二章:导数的计算2.1 基本导数公式2.2 导数的计算规则2.3 高阶导数第三章:导数在实际问题中的应用3.1 运动物体的瞬时速度和加速度3.2 函数的极值问题3.3 曲线的凹凸性和拐点第四章:导数的其他应用4.1 曲线的切线和法线4.2 函数的单调性4.3 函数的凸性第五章:练习与拓展5.1 导数计算的练习题5.2 实际问题的练习题5.3 拓展练习题六、教学过程6.1 导入:通过回顾函数图像,引导学生思考如何描述函数在某一点的瞬时变化率。

6.2 新课讲解:详细讲解导数的定义,通过图形和实例直观展示导数的几何意义。

6.3 例题演示:挑选典型例题,展示导数的计算过程,引导学生理解和掌握计算方法。

6.4 课堂练习:布置练习题,让学生独立完成,巩固所学知识。

七、导数的计算7.1 基本导数公式:讲解常见函数的导数公式,如幂函数、指数函数、对数函数等。

7.2 导数的计算规则:介绍导数的四则运算法则、复合函数的导数等。

7.3 高阶导数:讲解函数的二阶导数、三阶导数等高阶导数的概念及计算方法。

八、导数在实际问题中的应用8.1 运动物体的瞬时速度和加速度:结合物理知识,讲解导数在描述物体运动中的应用。

8.2 函数的极值问题:引导学生利用导数求解函数的极值,探讨极值在实际问题中的应用。

高中数学导数的概念教案

高中数学导数的概念教案

高中数学导数的概念教案
一、教学目标:
1. 理解导数的定义及其物理意义;
2. 掌握导数计算的方法和规则;
3. 能够应用导数解决实际问题;
4. 培养学生的数学思维和解决问题的能力。

二、教学重点和难点:
1. 理解导数的定义及其物理意义;
2. 导数计算的方法和规则;
3. 实际问题应用。

三、教学内容与安排:
第一课时:导数的基本概念
1. 定义:导数是函数在某一点处的瞬时变化率;
2. 物理意义:导数表示了函数的变化速率,可以用来解释速度、加速度等物理现象;
3. 讨论导数存在的必备条件。

第二课时:导数的计算方法
1. 导数的计算法则:和、差、积、商、复合函数的导数;
2. 高阶导数的计算方法;
3. 计算导数的基本技巧。

第三课时:导数的应用
1. 利用导数求函数的极值;
2. 利用导数解决优化问题;
3. 利用导数解决曲线的切线问题。

四、教学方法:
1. 讲授相结合,引导学生主动探究;
2. 注重示范和实例讲解,提高学生的问题解决能力;
3. 课堂小组讨论,促进学生之间的合作与交流。

五、教学评价:
1. 课堂练习与作业;
2. 实际问题解决能力的考核;
3. 学生的课堂表现和参与度。

六、教学反思:
1. 根据学生的理解情况调整教学内容和节奏;
2. 激发学生的学习兴趣,增强学生的主动学习意识;
3. 关注学生的学习过程,及时给予反馈和帮助。

《导数的概念教案》

《导数的概念教案》

《导数的概念教案》word版一、教学目标:1. 理解导数的定义及物理意义;2. 掌握导数的计算方法及应用;3. 培养学生的逻辑思维能力和创新能力。

二、教学内容:1. 导数的定义:函数在某一点的导数表示函数在该点的瞬时变化率;2. 导数的计算:基本导数公式、导数的四则运算、复合函数的导数;3. 导数的应用:求函数的极值、单调性、曲线的凹凸性等。

三、教学重点与难点:1. 重点:导数的定义、计算方法及应用;2. 难点:导数的计算规则、复合函数的导数、导数在实际问题中的应用。

四、教学方法:1. 采用讲授法,系统地讲解导数的定义、计算方法和应用;2. 利用例题解析,让学生掌握导数的计算技巧;3. 开展小组讨论,引导学生将导数应用于实际问题。

五、教学过程:1. 导入:回顾函数的概念,引导学生思考函数在某一点的瞬时变化率;2. 讲解导数的定义,通过图形和实例使学生理解导数的物理意义;3. 讲解导数的计算方法,包括基本导数公式、导数的四则运算、复合函数的导数;4. 利用例题解析,让学生掌握导数的计算技巧;5. 开展小组讨论,引导学生将导数应用于实际问题;6. 总结本节课的主要内容,布置课后作业。

教案内容仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学评估:1. 课后作业:布置有关导数计算和应用的习题,巩固所学知识;2. 课堂练习:及时反馈学生的学习情况,针对性地进行讲解和辅导;3. 小组讨论:评估学生在讨论中的表现,了解学生的理解程度和团队合作能力。

七、教学拓展:1. 导数在实际应用中的例子:如优化问题、物理运动方程等;2. 导数与其他数学概念的联系:如微分方程、泰勒公式等;3. 导数在高等数学中的作用:如多元函数的导数、隐函数的导数等。

八、教学资源:1. 教材:选用合适的教材,如《高等数学》、《数学分析》等;2. 课件:制作精美的课件,辅助讲解和展示;3. 习题库:整理一份全面的习题库,便于学生课后练习。

导数的概念教学设计

导数的概念教学设计

导数的概念教学设计导数是微积分中的一个重要概念,它在解决函数的变化率以及求解极值等问题上具有重要的作用。

在教学中,如何引导学生准确理解导数的概念,并能够运用导数解决相应的问题,是一个关键的问题。

本文将从教学目标、教学内容、教学方法和教学评价四个方面,设计一节导数的概念课。

一、教学目标1. 知识目标:理解导数的概念,能够准确解释导数的定义,并能够应用导数解决函数的变化率和极值问题。

2. 能力目标:培养学生运用导数分析函数在给定区间上的变化趋势的能力,以及求解函数的极值的能力。

3. 情感目标:激发学生对微积分的兴趣和学习的积极性,培养学生的数学思维和解决问题的能力。

二、教学内容1. 导数的概念:介绍导数的定义和符号表示,引导学生理解导数的意义和其在函数图像上的几何解释。

2. 导数的计算方法:以常见函数为例,说明导数的计算方法,包括使用导数的基本性质和导数的求导法则。

3. 导数的应用:通过具体问题引入导数的应用领域,如函数的变化率、切线方程和函数的极值等。

4. 综合应用:通过一些综合性的问题,既能够检验学生对导数概念的理解,又能够培养学生解决实际问题的能力。

三、教学方法1. 示范引导法:教师通过示例演示导数的概念和计算方法,引导学生思考并建立相关的概念框架。

2. 互动讨论法:教师提出问题并组织学生进行讨论与交流,激发学生的思维,促进学生之间的互动。

3. 问题解决法:教师提供一些实际问题,引导学生将导数与实际问题相结合,培养学生解决问题的能力。

四、教学评价1. 小组讨论:组织学生进行小组讨论,让学生互相交流、探讨问题,提高学生的合作与交流能力。

2. 课堂练习:设计一些练习题,让学生运用所学知识进行计算和分析,检验学生对导数概念的掌握程度。

3. 个体评价:对学生的课堂表现进行个体评价,包括对问题的思考与回答、对概念的理解和应用等方面。

综上所述,本节课的教学设计旨在通过引导学生准确理解导数的概念,掌握导数的计算方法以及应用导数解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《导数的概念》教学设计
胡雪东
一、【教材分析】
1. 本节内容:
《导数的概念》这一小节分“曲线的切线”,“瞬时速度与瞬时加速度”,“导数的概念”,“导数的几何意义”四个部分展开,大约需要4个课时.第一、二课时学习“曲线的切线”,“瞬时速度”,今天说的是第三课时的内容导数概念的形成.
2. 导数在高中数学中的地位与作用:
“导数的概念”是全章核心.不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性,获得更为理想的结果;把运算对象作用于导数上,可使我们扩展知识面,感悟变量,极限等思想,运用更高的观点和更为一般的方法解决或简化中学数学中的不少问题;导数的方法是今后全面研究微积分的重要方法和基本工具,在在其它学科中同样具有十分重要的作用;在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用.导数的出现推动了人类事业向前发展.
二、【学情分析】
1. 有利因素:学生已较好地掌握了函数极限的知识,又刚刚学过曲线的切线、瞬时速度,并积累了大量的关于函数变化率的经验;另外,学生思维较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础.
2. 不利因素:导数概念建立在极限基础之上,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.
三、【目标分析】
1. 教学目标
(1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法.
(2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.
(3)情感、态度与价值观目标:
①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.
②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观.
2. 教学重、难点
【确定依据】依据教学大纲的要求,结合本节内容和本班学生的实际
重点:导数的定义和用定义求导数的方法.
难点:对导数概念的理解.
【难点突破】本课设计上从瞬时速度、切线的斜率两个具体模型出发,由特殊到一般、从具
体到抽象利用类比归纳的思想学习导数概念;把新知的核心“可导”和“导数”两个问题结合起来,利用转化的思想与学生已有的极限知识相联系,将问题化归为考
察一个关于自变量x∆的函数
x x
x
f
x
F
∆∆

)
(
)
(0+
=当0

x∆时极限是否存在以及极限是什么的问题.
四、【教学法分析】
1. 教法、学法:引导发现式教学法,类比探究式学习法
教学中遵循“学生为主体,教师为主导,知识为主线,发展思维为主旨”的“四主”原则.以恰当的问题为纽带,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念.引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.
2. 教学手段:多媒体辅助教学
【设计意图】通过多媒体弥补传统教学的不足,增强教学效果的直观性,帮助学生更好地理解无限逼近思想,揭示导数本质.
五、【教学过程分析】
【确定依据】为更好落实教学目标, 把数学知识的“学术形态”转化为数学课堂的“教学形态”,,为学生创设探究空间,让学生充分经历、体验数学知识再发现的过程,从中获取知识,发展思维,感受探索的乐趣.
(一)教学环节。

相关文档
最新文档