固相微萃取技术

合集下载

固相微萃取技术

固相微萃取技术
• 纤维及其涂层的研制
作为样品预处理过程,SPME是靠纤维对分析物的吸 附、吸收和解吸来完成的,所以萃取头是SPME装置 的核心,他决定了整个方法的灵敏性、结果可信度和 分析范围。 国内外学者的研究成果主要体现在: ➢ 1、纤维 ➢ 2、涂层 ➢ 3、涂层技术
• 纤维固相微萃取应用后的后续分析仪器
态分析中的应用 ➢ 固相微萃取技术在其他方面的应用
固相微萃取技术的特点与不足
• 特点
• 不足
工艺举例
结语
谢谢!
➢ 1、纤维SPME-GC ➢ 2、纤维SPME-HPLC ➢ 3、SPME-光谱 ➢ 4、SPME-CE
纤维固体微萃取的应用
➢ 固相微萃取技术在环境分析领域中的应用 ➢ 固相微萃取技术在食品检测领域中的应用 ➢ 固相微萃取技术在医药卫生领域中的应用 ➢ 固相微萃取技术在化工领域中的应用 ➢ 固相微萃取技术在金属及准金属化合物形
目录
固相微萃取技术概况 纤维固相微萃取理论 纤维固相微萃取技术的发展现状 纤维固相微萃取的应用 固相微萃取技术的特点与不足 工艺举例 结语
固相微萃取技术概况
• 发展概况
• 装置
• 操作过程
纤维固相微萃取理论
• 基本原理
• 影响维固体微萃取技术的发展现状

固相微萃取技术

固相微萃取技术

萃取时间
萃取时间即待测物在各相达到平衡的时间,是
由涂层厚度及理化性质、分配系数、扩散速率、 样品基质等多种因素决定的。涂层对待测物的 吸附初始是一段快速吸附期,随后会进人一个 平台期,吸附速度减慢。一般分析挥发性有机 物时,10min左右可达到平衡,而对于复杂的 基质或半挥发性有机物时,平衡所需时间会延 长30~60分钟。为保证分析工作有良好的重现 性,应严格控制萃取时间的一致性。
环境检测中的应用
有报道称,SPME技术对于各种农药、除草 剂、灭菌剂残留,挥发性碳化合物、苯及其 同系物、多环芳烃、芳香胺化合物和酚类化 合物等环境污染物的测定,都具有较宽的线 性范围和较高的灵敏度。对一些重金属污染 物的应用也有报道。
食品检测方面的应用
SPME法在食品检测中的作用主要是评价 食品营养价值,监测各种食品添加剂含量, 测定芳香剂和香料含量以及食品中农药、 杀虫剂、除草剂等有害物质的残留等。
无机盐效应及pH值影响
样品中加人无机盐,可增加样品体系的离子浓度, 使待测物溶解度降低,从而增加分配系数,提高萃 取效率和分析灵敏度。但过高的盐浓度会增加体系 的粘度,影响扩散速度,产生负效应。 适当调节体系pH值,可防止液体试样中待测物质离 子化,使其处于分子状态,增加亲脂性,降低溶解 度,提高萃取效率。对于弱酸、弱碱性化合物,pH 值会直接影响其存在形态,因此,体系pH值的调节 很有必要。
医药卫生领域的应用
SPME方法已逐渐成为生理、病理、毒理学 领域重要的检测手段。在临床检验中应用 SPME萃取血、尿等样本中药物及代谢产物、 醇类物质、农药残留等成分进行检测。 SPME技术还可用于分析唾液、粪便等样品 中的药物及其代谢产物。
其它领域的应用
SPME在日用品有害物质的质量监测,纺织品 中偶氮染料的测定,建材中甲醛的分析以及烟 叶中有机酸含量的分析等各个方面都被广泛应 用。

固相萃取和固相微萃取

固相萃取和固相微萃取

固相萃取和固相微萃取一、概述固相萃取(SPE)和固相微萃取(SPME)是两种常见的样品前处理技术,它们可以用于分离和富集目标化合物。

SPE通常用于大样品量的分析,而SPME则适用于小样品量的分析。

二、固相萃取1. 原理固相萃取是一种样品前处理技术,通过将目标化合物从复杂的混合物中吸附到特定的固相材料上,然后再用洗脱剂将其洗脱出来。

这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。

2. 步骤(1)选择适当的固相材料;(2)将样品加入到固相柱中;(3)用洗脱剂洗脱目标化合物;(4)将洗脱液收集并进行进一步分析。

3. 固相材料常见的固相材料包括C18、C8、Silica gel等。

不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。

4. 应用领域SPE广泛应用于环境、食品、药物等领域的样品前处理中。

例如,可以用SPE技术来富集水中的有机污染物、食品中的农药残留等。

三、固相微萃取1. 原理固相微萃取是一种无机溶剂的萃取技术,通过将特定的固相材料包裹在针头上,然后将其插入样品中进行吸附和富集目标化合物。

这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。

2. 步骤(1)选择适当的固相材料;(2)将固相材料包裹在针头上;(3)将针头插入样品中进行吸附和富集目标化合物;(4)用洗脱剂洗脱目标化合物;(5)将洗脱液收集并进行进一步分析。

3. 固相材料常见的固相材料包括PDMS、CAR等。

不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。

4. 应用领域SPME广泛应用于环境、食品、药物等领域的样品前处理中。

例如,可以用SPME技术来富集水中的有机污染物、食品中的农药残留等。

四、比较1. 样品量SPE适用于大样品量的分析,而SPME则适用于小样品量的分析。

2. 富集效率SPE和SPME都可以有效地去除其他干扰物质,并提高目标化合物的浓度。

固相微萃取技术

固相微萃取技术

一:概述固相微萃取(Solid Phase Microextraction, SPME)是九十年代兴起并迅速发展的新型的、环境友好的样品前处理技术,无需有机溶剂,操作也很简便。

该技术使用的是一支携带方便的萃取器,适于室内使用和野外的现场取样分析,也易于进行自动操作。

这对样品数量多、操作周期短的常规分析极为重要,不仅省时省力,而且对提高方法的准确度和重现性有重要意义。

该技术在一个简单过程中同时完成了取样、萃取和富集,是对液体样品中痕量有机污染物萃取方面的重要贡献。

SPME基本原理SPME方法包括吸附和解吸两步。

吸附过程中待测物在样品及石英纤维萃取头外涂渍的固定相液膜中平衡分配,遵循相似相溶原理。

这一步主要是物理吸附过程,可快速达到平衡。

如果使用液态聚合物涂层,当单组分单相体系达到平衡时,涂层上吸附的待测物的量与样品中待测物浓度线性相关。

解吸过程随SPME后续分离手段的不同而不同。

对于气相色谱(GC),萃取纤维插入进样口后进行热解吸,而对于液相色谱(LC),则是通过溶剂进行洗脱。

SPME有两种萃取方式,一种是将萃取纤维直接暴露在样品中的直接萃取法,适于分析气体样品和洁净水样中的有机化合物。

另一种是将纤维暴露于样品顶空中的顶空萃取法,广泛适用于废水、油脂、高分子量腐殖酸及固体样品中挥发、半挥发性的有机化合物的分析。

SPME技术评价和应用研究SPME萃取待测物后可与气相色谱、液相色谱联用进行分离。

使用的检测器可以是质谱(MS)、氢火焰离子化检测器(FID)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、原子发射光谱检测器(AED)等,方法的最低检测限可达 ng 甚至 pg 水平。

对水中长链的有机脂肪酸也可达到1×10-12g。

根据样品体积、待测物种类和性质以及涂层厚度的不同,一次萃取操作的提取水平,对于血样中的有机磷农药为0.03%-10. 6%, 而对于BTEX类化合物(苯、甲苯、乙基苯,二甲苯),提取水平在1%-20%之间。

14第十一章 固相微萃取技术 SPME详解

14第十一章 固相微萃取技术 SPME详解
② 在水溶液中加入NaCl,Na2SO4等可增强水溶液的离子强 度,减少被分离有机物的溶解度,使分配系数增大提高分析 灵敏度。 ③ 控制溶液的酸度也可改变被分离物在水中的溶解度。例如, 采用固相微萃取分离法分离脂肪酸时需要控制溶液较小的 pH值使溶液中脂肪酸主要是以分子形式存在,以降低溶解 度,增大分配系数,提高分离萃取效率。
气体萃取(顶空技术)
取样品基质(液体和固体)上方的气相部分进行色谱分析。 用途:痕量高挥发性物质的分析测定,气体是挥发性物质的最 理想的溶剂。
分类
静态顶空过程
静态顶空:在一个密闭的容器中,样品与样品上方气体逐渐达到平衡。
分类
动态顶空过程
捕集阱中捕集浓缩。
连续气体萃取方法,经捕集浓缩后进行测定:
原理是基于待测物质在样品及微型萃取涂层中的
平衡分配进行萃取。不要求将待测组分全部分离 出来,而是通过样品与固相涂层间的平衡来达到
分离。
通过控制萃取纤维的长度、厚度,取样时间,调 节酸碱度、温度等萃取参数,实现痕量组分的可重现性、准确测定。
以Fiber-SPME为例
固相微萃取装置由手柄和萃取头或纤维头两部分组成。萃取头
为一根1cm 长,涂上不同色谱固定相或吸附剂的熔融石英纤维, 可在不锈钢套管内伸缩。 5
SPME的优点


(1 ) 不使用有机溶剂萃取,降低了成本,避免了二次污染; (2) 操作时间短,从萃取进样到分析结束不足1h; (3) 样品用量少,几mL—几十mL; (4) 操作简便,可减少待测组分的挥发损失 ; (5) 检测限达 μg/L—ng/L水平; (6) 适于挥发性有机物、半挥发性有机物及不具挥发性的 有机物。
用流动的气体将样品中的挥发性成分“吹扫”出来,再用一个捕集器将吹出来的物 质吸附下来。关闭吹扫气,由切换阀将捕集器接入GC,然后经热解吸将样品送入GC进 行。

固相微萃取法

固相微萃取法

固相微萃取法固相微萃取法是一种新型的样品前处理技术,它将传统的液液萃取方法简化为一步操作,具有操作简便、时间短、灵敏度高、选择性好等优点。

本文将从以下几个方面详细介绍固相微萃取法。

一、固相微萃取法的基本原理固相微萃取法是利用固定在小柱或膜上的吸附剂对样品中的目标物进行富集和分离。

其基本原理是,将样品溶解于适当的溶剂中,通过注射器或自动进样器将样品进入吸附柱或吸附膜中,在适当条件下使目标物质被吸附在柱或膜上,然后用洗脱剂将目标物质洗出,并进行分析。

二、固相微萃取法的优点1. 操作简便:只需将样品加入到吸附柱或膜中即可完成富集和分离过程,省去了传统液液萃取方法复杂的步骤。

2. 时间短:整个富集和分离过程只需几分钟至几十分钟不等。

3. 灵敏度高:由于富集的目标物质被高度净化和富集,所以检测灵敏度得到大幅提高。

4. 选择性好:通过选择不同的吸附剂,可以实现对不同化合物的选择性富集和分离。

5. 可靠性高:固相微萃取法不受样品矩阵的影响,因此在复杂矩阵中也能实现目标物质的富集和分离。

三、固相微萃取法的应用1. 环境监测:固相微萃取法可用于水、土壤、空气等环境样品中有机污染物的富集和分离。

2. 食品安全:固相微萃取法可用于食品中农药、兽药、食品添加剂等有害物质的检测。

3. 药物分析:固相微萃取法可用于药物血浆、尿液等生物样品中药物代谢产物的富集和分离。

4. 化学分析:固相微萃取法可用于化学反应体系中产生的有机产物或催化剂残留等有害成分的富集和分离。

四、固相微萃取法与其他技术的比较1. 与传统液液萃取法相比,固相微萃取法操作简便、时间短、灵敏度高、选择性好。

2. 与固相萃取法相比,固相微萃取法使用的吸附剂量更少,富集时间更短,且不需要使用大量有机溶剂。

3. 与固相微萃取法相比,固相微萃取-气相色谱/质谱联用技术具有更高的灵敏度和更好的分离效果。

五、总结固相微萃取法作为一种新型的样品前处理技术,在环境监测、食品安全、药物分析、化学分析等领域得到了广泛应用。

固相微萃取(SPME)技术

固相微萃取(SPME)技术

酚类
酚类不仅是医药、染料、化工的中间体,而且还可 作杀虫剂和农药,如五氯酚是木材的防腐剂,饮用水氯 化处理产生卤代酚等。由于酚类化合物毒性较大,美国 EPA已将11种酚类化合物列入优先监测的有机污染物。 采用固相萃取(SPE)水中ng级的酚类化合物,结合 HPLC/紫外检测器分析,无需衍生化即可使苯酚等11种 酚类化合物获得良好的分离。
C8、氰基、苯基、双纯基填料、活性碳、硅胶、 氧化铝、硅酸镁、高分子聚合物、离子交换树脂、排 阻色谱吸附剂、亲和色谱吸附剂等。
★常用洗脱溶剂有:甲醇、水、乙酸、丙醇、异 丁醇、乙酸乙酯、氯仿、二氯甲烷、乙醚、苯、甲苯、 四氯化碳、环己烷、正己烷等。
4、 SPE的操作步骤及方法的建立:
SPE操作步骤包括有柱预处理、加样、洗去干扰物和 回收分析物四个步骤。
(1)柱预处理
以反相C18SPE柱的预处理为例。先使数毫升的甲醇通 过萃取柱,再用水或缓冲溶液顶替滞留在柱中的甲醇。柱 预处理有两个目的:
★除去填料中可能存在的杂质;
★使填料溶剂化,提高固相萃取的重现性。
填料未经预处理或未被溶剂润湿,能引起溶质过早穿 透,影响回收率。
(2)加样
预处理后,试样溶液被加至并通过SPE柱,在该步骤, 分析物被保留在吸附剂上。
例3. 固相萃取技术在水体有机物分析中的应用(董玉瑛
等,环境科学进展,1999,7(4):84-90)分析。
1、实验方法:用甲醇活化了的SPE(C18 ) 柱富集1L 水 样中PCOCs (控制流速在1L/h) ,提取结束时将柱用氮气 吹干后,分别以二氯甲烷、二氯甲烷:正己烷(1:1) 各 5ml 进行洗脱(控制流速2ml/min) ,洗脱液经无水硫酸钠 脱水后,进行旋转蒸发,浓缩约至0. 5ml 时,加入150μl 壬 烷,再继续旋转蒸发浓缩约至200μl ,改用N2 缓慢吹至 100μl 左右。加入含有五氯甲苯(PCT) 和十氯联苯(DCB) 两种内标物的混合液10μl (浓度为:10ng/μl) ,充分均匀后, 转入小样品瓶中,进行GC 分析。

第七节固相及微固相萃取

第七节固相及微固相萃取

第七节固相萃取和固相微萃取技术一、固相萃取技术固相萃取(solid phase extraction,SPE)是20世纪70年代初发展起来的样品富集技术,特别适用于水样处理。

当液体样品通过固相吸附层时,基体被除去,待测物被富集,然后用少量溶剂(10-20mL)洗脱回收待测物。

1.基本原理SPE法也称液-固萃取法,是根据液相色谱法原理,利用组分在溶剂与吸附剂(固定相)之间选择性吸附与选择性洗脱,达到提取分离、净化和富集的目的,即样品通过装有吸附剂的小柱后,待测物保留在吸附剂上,先用适当溶剂系统洗去杂质,然后再在一定条件下(如不同pH值)选用不同极性的溶剂,将待测成分洗脱下来,进行检测。

SPE法具有对有机物吸附力强、前处理速度快、有机溶剂用量少、对人员危害小等优点,与传统的液-液提取法相比,避免了有机溶剂萃取时乳化现象的发生,具有安全省时,对环境污染小,且易于自动化的特点。

2.固相柱类型SPE技术的核心是固相柱填料。

填料种类很多,可分为以下几种。

吸附型:硅胶、硅藻土、氧化铝、活性炭等。

化学键合型:正相的有氨基、氰基、二醇基等。

反相的有C1、C2、C6、C8、C18、环己基、苯基等。

离子交换型:有季铵、氨基、二氨基、苯磺酸基、羧基等。

此外,还有一些多孔性非极性树脂及中等极性或极性吸附树脂,其应用特点介于活性炭、氧化铝、硅胶、硅藻土与离子交换剂之间.反相SPE柱国外产品有Analytichom Int生产的Bond Elut柱; Waters公司生产的SepPak柱。

国产的有天津河北津杨滤材厂的PT系列品种o。

多孔树脂柱国外商品主要有Amberlite XAD系列和日本三菱化成公司的Diaion HP系列,其中XAD-1~XAD-5、HP-0~HP-50 为非极性树脂,XAD-6~XAD-8为中等极性树脂,XAD-9~XAD-12为极性树脂。

国产品主要有天津试剂二厂的GDX-101~GDX-203系列,上海试剂一厂的401~404系列等品种。

固相微萃取

固相微萃取

有机氯农药
管内固相微萃取(in-细管的内表面,可采用气相色谱毛细管
优点:毛细管柱方便易得,使用寿命长,内径小涂层薄,样
品扩散快,平衡时间短。
In-tube-SPME-GC联用方式
热解析:用注射器将样品溶液注入毛细管柱,萃 取平衡后将水吹出,然后用石英压接头将萃取柱与分 析柱连接,放入气相色谱仪炉箱中热解吸。这种方法
盐的作用和溶液酸度的影响
① 由于被分离物质在固相和液相之间的分配 系数受基体性质的影响,当基体变化时分配系 数也会改变。
② 在水溶液中加入NaCl,Na2SO4等可增强水 溶液的离子强度,减少被分离有机物的溶解度, 使分配系数增大提高分析灵敏度。 ③ 控制溶液的酸度也可改变被分离物在水中的 溶解度。
与气相色谱或高效液相色谱仪联用样品前处理技术。
固相微萃取装置

最初的SPME是将高分 子材料均匀涂渍在硅 纤维上 ,形成圆柱形 的涂层,根据相似相溶 原理进行萃取的。
与SPE 相比SPME具有以下优点:
(1 ) 不使用有机溶剂萃取,降低了成本,避免了二次污 染; (2) 操作时间短,从萃取进样到分析结束不足1h; (3) 样品用量少,几mL—几十mL; (4) 操作简便,可减少待测组分的挥发损失 ; (5) 检测限达 μg/L—ng/L水平;
(6) 适于挥发性有机物、半挥发性有机物及不具挥发性
的有机物。
利用特殊的固相对分析组分的吸
附作用,将组分从试样基质中萃 取出来,并逐渐富集,完成试样前
处理过程。
当萃取体系处于动态平衡状态时,待测物的富集量: n = kvfvsc0/(kvf+vs) 由于芯片上固定液的总体积 (Vf) 仅几十微升,远远地 小于水相的体积 (Vs),而多数有机待测物的 k值并不大, 容易满足Vf <<Vs的条件,因此简化为 n = kvfc0

固相萃取的概念、步骤和操作

固相萃取的概念、步骤和操作

固相萃取的概念、步骤和操作概念:利用固体吸附剂将样品中的目标分析物吸附,与样品的基质和干扰物分离,然后再用有机溶剂或加热解吸附,达到分离、纯化及浓缩目标物的目的。

固相萃取(SPE)是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱,达到分离和富集的目的。

先使液体样品通过一装有吸附剂(固相)小柱,保留其中某些组分,再选用适当的溶剂冲洗杂质,然后用少量溶剂迅速洗脱,从而达到快速分离净化与浓缩的目的。

SPE可以用于所有类型样品的处理,但是液体样品是最容易处理的与液液萃取(LLE)相比,固相萃取具有如下优点:①回收率和富集倍数高;②有机溶剂消耗量低,减少对环境的污染;③更有效的将分析物与干扰组分分离;④无相分离操作过程,容易收集分析物;⑤能处理小体积试样;⑥操作简便、快速,费用低,易于实现自动化及与其他分析仪器联用。

固相萃取的基本原理:吸附剂上的活性部分对目标物和样品基质的分子作用力存在差异固相萃取保留或洗脱的机制取决于被分析物与吸附剂表面的活性基团,以及被分析物与液相之间的分子作用力。

洗脱模式:一种是目标化合物比干扰物与吸附剂之间的亲和力更强,因而被保留,洗脱时采用对目标化合物亲和力更强的溶剂;另一种是干扰物比目标化合物与吸附剂之间的亲和力更强,则目标化合物被直接的洗脱。

通常采用前一种洗脱方式。

一、固相萃取的分离模式:反相固相萃取、正相固相萃取、离子交换萃取、免疫亲和1、反相固相萃取:吸附剂(固定相)是非极性或弱极性的,如硅胶键合C18, C8, C4,C2,-苯基等。

流动相为极性(水溶液)或中等极性样品基质。

吸附剂的极性小于洗脱液的极性。

应用:可以从强极性的溶剂中(如水样)萃取非极性或弱极性的化合物。

作用机理:非极性-非极性相互作用(疏水作用),如范德华力或色散力。

例如水中PAHs,利用C18柱,甲醇洗脱剂洗脱。

2、正相固相萃取:(1)吸附剂:极性键合相,如硅胶键合氨基-NH2、氰基-CN,-Diol(二醇基);(2)极性吸附剂,如silica、Florisil、(A-,N-,B-)alumina、硅藻土等。

固相微萃取技术的原理、应用及发展

固相微萃取技术的原理、应用及发展

固相微萃取技术的原理、应用及发展
固相微萃取技术是一种高效、灵敏且环保的样品预处理方法,可用于分离和富集液相中的目标化合物。

其原理基于固相萃取和微萃取技术的结合,通过固相材料选择性地吸附和富集目标化合物,然后用适当的溶剂洗脱,最终得到高纯度的目标化合物。

固相微萃取技术的应用非常广泛。

首先,在环境分析领域,它可以用于水、土壤和空气中有机污染物的检测与分析。

其次,在食品安全领域,它可用于检测食品中的农药残留、有机污染物和食品添加剂等物质。

此外,固相微萃取技术还可以应用于药物分析、生物体内代谢产物的分离与鉴定,以及痕量有机物的分析等领域。

固相微萃取技术的发展主要体现在以下几个方面。

首先,固相材料的不断改进和创新,如纳米材料、金属有机框架材料等的引入,使得固相微萃取技术具有更高的吸附容量和更好的选择性。

其次,新型萃取模式的出现,如固相微萃取与固相微柱结合的技术,提高了样品处理的效率和分析的灵敏度。

再次,自动化设备的发展使得固相微萃取技术更加便捷和高效。

最后,与其他分析技术的结合,如气相色谱-固相微萃取和液相色谱-固相微萃取联用技术,使得分析方法更加全面和准确。

总之,固相微萃取技术在分析领域具有广泛的应用前景,并且在不断
发展中。

随着固相材料和萃取模式的创新,以及自动化设备的进一步完善,固相微萃取技术将能够更好地满足分析的需求,并在分析领域中发挥更大的作用。

固相微萃取技术

固相微萃取技术

固相萃取的分类
• 按照操作的不同,固相萃取可分为离线萃 取和在线萃取。
• 离线萃取是指萃取过程完成后再使用一 些分析手段进行分析;在线萃取出现于 80年代,萃取和分析同步完成,可靠性、 重现性、以及操作性能和工作效率都得 到很大程度的提高。
四、固相萃取的操作步骤
• 典型的固相萃取一般分为四个基本步骤: 1、吸附剂的选择 • 目标物的最佳保留(即最佳吸附)取决于目标 物极性与吸附剂极性的相似程度,两者极性越 相似,则保留越好(即吸附越好)。 • 选择固相萃取中的固定相吸附剂时,要尽量选 择与目标物极性和样品溶剂极性相似的吸附剂。 • 当目标物极性适中时,正、反相固相萃取都可 使用。 • 吸附剂的选择还受样品溶剂洗脱强度的制约。
SPME 萃取头的选择依据
固定相的处理
• 固相微萃取中的关键部位是石英纤维固 定相, 靠它来对分析组分吸附和解吸, 如 果曾用过但上面的组分未被解吸掉则会 对以后的分析结果有干扰。每次使用前 必须将其插入气相色谱进样器, 在250℃ 左右置1h 以去除上面吸附的干扰物, 如 果曾分析过衍生化组分则需要放置更长 时间。
反相固相萃取
• 反相固相萃取所用的吸附剂和目标化合 物通常是非极性的或较弱极性的,反相 萃取过程中目标物质的碳氢键与吸附剂 表面官能团产生非极性作用(包括范德华 力或色散力),使得极性溶剂中的非极性 以及弱极性的物质在吸附剂表面吸附、 富集。
离子交换固相萃取
• 离子交换固相萃取又可分为强阳离子固 相萃取和强阴离子固相萃取两种,作用机 理都是目标物质的带电荷基团同吸附剂 表面的带电基团发生离子静电吸引,从而 实现吸附分离。
固相微萃取的装置
SPME装置略似进样器,典型的SPME装置见右图。特制 不锈钢穿透针A为中空结构,纤维固定针B和萃取纤维C 能在其中移动,熔融石英纤维C上面涂布用于萃取的固 定相,柱塞D控制固定针B的移动使纤维C伸出或退回穿 透针中。当纤维暴露在样品中时,涂层可从液态-气态 基质中吸附萃取待测物。吸附完毕后,萃取纤维C退回 到穿透针中被保护起来,己富集了待测物的纤维可直接 转移到仪器(气相色谱仪,液相色谱仪等)进样口,通过 仪器进样口的能量解吸附,然后进行分离分析。

固相微萃取技术

固相微萃取技术

四、SPME的影响因素
萃取温度
• 温度是直接影响分配系数的重要参数 • 升高温度会促进挥发性化合物到达顶空及萃取纤
维表面,然而SPME表面吸附过程一般为放热反应, 低温适合于反应进行
四、SPME的影响因素
萃取时间
• 不同的待测物达到动态平衡的时间长短,取决于物 质的传递速率和待测物本身的性质、萃取纤维的 种类等因素,
溶液pH值
• 对不同酸离解常数的有机弱酸碱选择性萃取,溶液 酸度应该使待萃物呈非聚合单分子游离态,使涂层与 本体溶液争夺待萃物的平衡过程极大的偏向吸附涂 层
四、SPME的影响因素
衍生化
• 减小酚、脂肪酸等极性化合物的极性,提高挥发性, 增强被固定相吸附的能力,
• SPME前衍生和SPME后和DDP
二乙氧基二苯硅烷
3. 纳米结构二氧化铅 附着于铂丝上
四、SPME的影响因素
Ali Mehdinia, Mir Fazllolah Mousavi, Mojtaba Shamsipur. Nano-structured lead dioxide as a novel stationary phase forsolid-phase microextraction. Journal of Chromatography A 1134 2006
SPE
SPME
例2. 固相萃取搅拌棒萃取-气相色谱分析海水中的多环芳烃
固相微萃取 SPME 是一种无溶剂萃取技术,对PAHs的富集倍数一 般在103 以内,但是定量重复性较差,固相萃取搅拌棒 SBSE 是在 SPME基础上发展的一种新技术,萃取时吸附搅拌棒自身完成搅拌,可 避免SPME中搅拌子对PAHs的竞争吸附;同时,由于SBSE中的PDMS 萃取固定相体积一般为50~250μL,比SPME所用固定相量大50~500 倍,表面积也提高100倍,因此提高萃取量50倍以上,更适合痕量有机物 的萃取富集,

固相微萃取技术及其应用

固相微萃取技术及其应用

固相微萃取技术及其应用一、引言固相微萃取技术是一种新型的样品前处理方法,其基本原理是利用微量有机溶剂在固相萃取柱中与水样中的目标分子进行反应,将目标分子从水样中萃取出来。

该技术具有操作简单、提取效率高、耗时短等优点,因此在环境监测、食品安全检测等领域得到了广泛应用。

二、固相微萃取技术原理1. 固相萃取柱固相微萃取技术的核心是固相萃取柱,其主要成分为聚合物吸附剂。

聚合物吸附剂具有较大的比表面积和良好的化学稳定性,能够有效地吸附分子。

因此,在样品前处理过程中,将待测样品通过固相萃取柱时,目标物质会被吸附在柱上。

2. 微量有机溶剂微量有机溶剂通常用于洗脱被吸附在固相萃取柱上的目标物质。

由于微量有机溶剂对目标物质具有较强的亲和力,因此可以有效地将目标物质从固相萃取柱上洗脱下来。

3. 水样处理水样处理是固相微萃取技术的关键步骤之一。

在水样处理过程中,通常需要将水样进行预处理,以便更好地提取目标物质。

例如,在环境监测中,可以通过调节水样pH值、添加盐酸等方法,使目标物质更容易被吸附在固相萃取柱上。

三、固相微萃取技术应用1. 环境监测固相微萃取技术在环境监测中得到了广泛应用。

例如,在地下水中检测有机污染物时,可以使用该技术对水样进行前处理,提高检测灵敏度和准确性。

2. 食品安全检测固相微萃取技术也可以用于食品安全检测。

例如,在葡萄酒中检测残留的农药时,可以使用该技术对葡萄酒进行前处理,提高检测灵敏度和准确性。

3. 药物分析固相微萃取技术也可以用于药物分析。

例如,在生物组织或体液中检测药物时,可以使用该技术对样品进行前处理,提高检测灵敏度和准确性。

四、固相微萃取技术优缺点1. 优点固相微萃取技术具有操作简单、提取效率高、耗时短等优点。

此外,该技术还可以对样品进行预处理,以提高检测灵敏度和准确性。

2. 缺点固相微萃取技术的缺点主要包括:样品处理量较小、柱寿命较短、柱的选择性有限等。

五、总结总之,固相微萃取技术是一种新型的样品前处理方法,具有操作简单、提取效率高等优点,在环境监测、食品安全检测等领域得到了广泛应用。

固相微萃取原理

固相微萃取原理

固相微萃取原理
固相微萃取(SPE)是一种用于样品前处理的技术,它在分析化学领域中得到
了广泛的应用。

固相微萃取的原理是利用固相萃取材料对目标化合物进行选择性吸附和脱附,从而实现对样品的富集和净化。

这种方法具有操作简便、富集效果好、消耗少量有机溶剂等优点,因此在环境监测、食品安全、药物分析等领域得到了广泛的应用。

固相微萃取的原理基于化学吸附和脱附过程。

在固相微萃取过程中,样品溶液
首先通过固相萃取柱,目标化合物会与固相材料发生化学吸附,而其他干扰物质则会被排除。

接着,通过改变溶剂的极性或pH 值等条件,使得目标化合物发生脱附,从而得到富集的目标化合物。

固相微萃取的原理主要包括亲合吸附、离子交换、疏水相互作用等。

亲合吸附
是指固相萃取材料与目标化合物之间存在化学亲和力,从而实现选择性吸附。

离子交换则是利用固相材料上的功能基团与溶液中的离子发生反应,实现目标离子的选择性吸附。

疏水相互作用则是通过固相材料的疏水性实现对目标化合物的富集。

固相微萃取的原理虽然简单,但在实际应用中需要根据样品的特性选择合适的
固相材料、溶剂和萃取条件。

固相微萃取技术的发展也在不断完善,例如固相萃取柱的材料不断更新,新型固相萃取材料的研发等,为该技术的应用提供了更多的选择。

总的来说,固相微萃取技术以其简便、高效、环保的特点,成为了样品前处理
中的重要手段。

通过对固相微萃取原理的深入理解,可以更好地应用该技术于实际分析中,为分析化学领域的发展提供更多可能性。

固相微萃取技术

固相微萃取技术

Solid phase Micro-Extraction SPME
原理和特点 装置与操作 条件的选择 定量的方法 技术的应用
基本理论
‫٭٭٭ ٭‬ ‫٭ ٭ ٭‬
Fiber SPME 液液萃取
基本理论
利用特殊的固相对分析组 分的吸附作用, 分的吸附作用,将组分从试 样基质中萃取出来, 样基质中萃取出来,并逐渐 富集,完成试样前处理过程。 富集,完成试样前处理过程。
管内固相微萃取应用实例
SPME发展方向
– 新形式 新形式SPME技术的研究 技术的研究
– 萃取相种类 – 萃取相的制作技术 – 应用领域的进一步扩展
固相微萃取膜介绍
固相微萃取膜(SPMEM)是将固相 微萃取涂层材料均匀的涂布于膜 状基材上,将针状的固相微萃取 装置发展制作成膜状的固相微萃 取膜。
Fiber-SPME
14
在一支细熔融石英纤维(1cm×100µm) 上涂敷一层高聚物固定相 纤维与形如注射器装置的柱塞相连,收 缩在不绣钢针头之中 压柱塞从针头中抵出纤维并与试样接触, 分析物分配到涂敷层内 富集在纤维上的分析物通过进样接口进 行解吸,进入到GC或HPLC系统中
Fiber-SPME的特点
Fiber-SPMEFiber-SPME-HPLC
Fiber-SPME-HPLC
Fiber-SPMEFiber-SPME-GC
自动时样器

GC 样品池 萃取瓶l
In-tube-SPME-HPLC
In-tube-SPME-HPLC
In-tube-SPME-GC联用方式 - 联用方式
用注射器将样品溶液注入毛细管柱, 热解析:用注射器将样品溶液注入毛细管柱,萃取平衡 后将水吹出,然后用石英压接头将萃取柱与分析柱连接, 后将水吹出,然后用石英压接头将萃取柱与分析柱连接,放 入气相色谱仪炉箱中热解吸。这种方法不适于日常分析。 入气相色谱仪炉箱中热解吸。这种方法不适于日常分析。

固相微萃取技术及其应用

固相微萃取技术及其应用

固相微萃取技术及其应用引言固相微萃取技术是一种基于固相萃取原理的样品准备方法,通过利用具有选择性的固定相材料将目标分析物从复杂基质中提取出来。

本文将全面、详细、完整且深入地探讨固相微萃取技术及其在不同领域的应用。

二级标题1:固相微萃取原理三级标题1.1:概述固相微萃取原理是利用固定相材料对目标分析物具有吸附/吸附特性进行样品处理的一种方法。

固体相的选择性以及其特定表面积和孔隙结构都对固相微萃取的效果和选择性产生重要影响。

三级标题1.2:固相萃取方法固相微萃取通常可以分为固相萃取柱法和固相萃取薄膜法两种方法。

四级标题1.2.1:固相萃取柱法固相萃取柱法是利用填充有固定相材料的柱子进行样品处理的方法。

样品通过进样口进入柱子,并在与固定相材料接触的过程中发生吸附或吸附。

然后,目标分析物可以通过洗脱步骤从固定相材料中脱附出来,以供进一步分析。

四级标题1.2.2:固相萃取薄膜法固相萃取薄膜法是将固相材料固定在固体基底上,形成一个薄膜,并将其直接应用于样品处理中。

样品通过固相薄膜,目标分析物会与固相材料发生吸附/吸附作用,然后通过洗脱步骤从固定相材料中脱附出来。

三级标题1.3:固相微萃取选择性因素固相微萃取选择性取决于固定相材料的性质和样品基质的组成。

一般来说,选择性因素包括固定相材料的亲水/疏水性质、酸碱性质以及化学亲合性等。

二级标题2:固相微萃取技术的应用三级标题2.1:环境分析中的应用固相微萃取技术在环境分析中发挥着重要作用,可以用于水样、土壤样品和大气样品中目标分析物的富集和预处理。

三级标题2.2:食品安全检测中的应用固相微萃取技术可以用于食品安全检测中目标分析物的提取和富集,以及食品中的残留物的分析。

三级标题2.3:生物医学分析中的应用固相微萃取技术在生物医学领域中的应用包括药物代谢研究、体液分析和生物样品的预处理等。

三级标题2.4:石油化工中的应用固相微萃取技术可以用于石油化工领域中的精细化工产品的质量控制、污染物的分析和工艺监测。

固相微萃取技术

固相微萃取技术

分析时先将试样放入带隔膜塞的 固相微萃取专用容器中,固相微萃取 分两步:第一步是萃取,将针头插入 试样容器中,推出石英纤维对试样中的分析组分 进行萃取;第二步是在进样过程中将针头插入色 谱进样器,推出石英纤维完成解吸,色谱分析等 步骤。
操作模式:
根据被分析样品的物理性质和状态,进行固 相微萃取时可采取不同的操作方式,常见的操作 方式有如下三种
当待萃取组分不适用气相色谱等
仪器分析,或是不适合直接萃取(例如
离子化合物)的时候,可以采用衍生化的方法将
水的分配系数,从而提高萃 取效率并使后续的仪器分析过程易于进行。衍生
化可以通过在样品基质中加入衍生化试剂实现;
也可以先萃取然后在气相色谱进样口进行衍生;
5、改变pH值:改变pH值同使用无 机盐一样能改变分析组分与试样 介质、固定相之间的分配系数, 对于改善试样中分析成分的吸附 是有益的。由于固定相属于非离子型聚合物, 故对于吸附中性形式的分析物更有效。调节 液体试样的pH值可防止分析组分离子化,提 高被固定相吸附的能力。 6、衍生化 : 衍生化反应可用于减小酚、脂肪酸等极 性化合物的极性,提高挥发性,增强被固定相吸附 的能力。在固相微萃取中,或向试样中直接加入衍 生剂,或将衍生剂先附着在石英纤维固定相涂层上, 使衍生化反应得以发生。
是一致的,但高速匀桨的速度远远高于
磁力转子搅拌,其效果更好,仅用磁力 转子搅拌萃取时间的1/3。使用超声头对 试样进行超声更有助于分析组分的吸附, 在三者中效果最好,同磁力转子搅拌相比
缩短时间90%。由于磁力转子搅拌同高速匀桨、
超声波相比所用设备最简单,所以基本上仍使用磁 力转子搅拌法。但搅拌法对于某些试样并不适合, 需要针对具体试样进行试验。
固 相 微 萃 取 技 术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档