量子力学选择题库

合集下载

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学导论考试题及答案

量子力学导论考试题及答案

量子力学导论考试题及答案一、选择题(每题2分,共20分)1. 量子力学中,波函数的模平方代表什么?A. 粒子的动量B. 粒子的位置C. 粒子的概率密度D. 粒子的能量2. 海森堡不确定性原理中,哪两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 电荷和质量D. 速度和加速度3. 薛定谔方程是量子力学的哪个基本方程?A. 描述粒子运动的方程B. 描述粒子能量的方程C. 描述粒子自旋的方程D. 描述粒子相互作用的方程4. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒5. 量子力学中的“量子”一词意味着什么?A. 一个基本粒子B. 一个基本的物理量C. 一个离散的量D. 一个连续的量6. 波粒二象性是量子力学中的一个基本概念,它指的是什么?A. 粒子同时具有波和粒子的特性B. 粒子只能表现为波或粒子C. 粒子在宏观尺度下表现为波,在微观尺度下表现为粒子D. 粒子在宏观尺度下表现为粒子,在微观尺度下表现为波7. 量子纠缠是什么现象?A. 两个或多个粒子之间存在一种特殊的相互作用B. 两个或多个粒子的波函数是相互独立的C. 两个或多个粒子的波函数是相互关联的D. 两个或多个粒子的动量是相互关联的8. 量子隧道效应是指什么?A. 粒子在没有足够能量的情况下也能通过势垒B. 粒子在有足够能量的情况下不能通过势垒C. 粒子在有足够能量的情况下更容易通过势垒D. 粒子在没有足够能量的情况下不能通过势垒9. 以下哪个实验验证了量子力学的波粒二象性?A. 光电效应实验B. 双缝实验C. 康普顿散射实验D. 光电效应实验和康普顿散射实验10. 量子力学中的“叠加态”指的是什么?A. 粒子同时处于多个状态B. 粒子只处于一个状态C. 粒子的状态是随机的D. 粒子的状态是确定的二、简答题(每题10分,共30分)1. 简述量子力学中的波函数坍缩概念。

2. 解释什么是量子力学的测量问题。

量子力学选择题库(含答案)

量子力学选择题库(含答案)

量子力学选择题1.能量为100ev 的自由电子的De Broglie 波长是A A. 1.2A 0. B. 1.5A 0. C.2.1A 0. D. 2.5A 0. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 A.1.3A 0. B. 0.9A 0. C. 0.5A 0. D. 1.8A 0. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是 A.1.4A 0. B.1.9⨯1012-A 0. C.1.17⨯1012-A 0. D. 2.0A 0.4.温度T=1k 时,具有动能E k T B =32(k B 为Boltzeman 常数)的氦原子的De Broglie 波长是A.8A 0. B. 5.6A 0. C. 10A 0. D. 12.6A 0.5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量m 为( ,2,1,0=n )AA.E n n = ω.B.E n n =+()12 ω. C.E n n =+()1 ω. D.E n n =2 ω.6.在0k 附近,钠的价电子的能量为3ev ,其De Broglie 波长是 A.5.2A 0. B.7.1A 0. C.8.4A 0. D.9.4A 0.7.钾的脱出功是2ev ,当波长为3500A 0的紫外线照射到钾金属表面时,光电子的最大能量为A. 0.25⨯1018-J. B. 1.25⨯1018-J. C. 0.25⨯1016-J. D. 1.25⨯1016-J.8.当氢原子放出一个具有频率ω的光子,反冲时由于它把能量传递给原子而产生的频率改变为A.2μc . B. 22μc . C. 222μc . D. 22μc .pton 效应证实了A.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性. 10.Davisson 和Germer 的实验证实了A. 电子具有波动性.B. 光具有波动性.C. 光具有粒子性.D. 电子具有粒子性.11.粒子在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动,设粒子的状态由ψπ()sinx C xa =描写,其归一化常数C 为B A.1a . B.2a . C.12a . D.4a .12. 设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为DA.δ()x .B.δ()x dx .C.δ2()x .D.δ2()x dx .13. 设粒子的波函数为 ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为CA.ψ(,,)x y z dxdydz 2.B.ψ(,,)x y z dx 2. C.dxdydz z y x )),,((2⎰⎰ψ.D.dx dy dz x yz ψ(,)⎰⎰⎰2.14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为DA.c c 112222ψψ+. B. c c 112222ψψ++2*121ψψc c . C.c c 112222ψψ++2*1212ψψc c . D.c c 112222ψψ++c c c c 12121212****ψψψψ+.15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 16.有关微观实物粒子的波粒二象性的正确表述是 A.波动性是由于大量的微粒分布于空间而形成的疏密波. B.微粒被看成在三维空间连续分布的某种波包. C.单个微观粒子具有波动性和粒子性. D. A, B, C. 17.已知波函数ψ1=-+u x i Et u x i Et ()exp()()exp(), ψ21122=-+u x i E t u x iE t ()exp()()exp(), ψ312=-+-u x i Et u x iEt ()exp()()exp(), ψ41122=-+-u x i E t u x iE t ()exp()()exp().其中定态波函数是A.ψ2.B.ψ1和ψ2.C.ψ3.D.ψ3和ψ4. 18.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数) 19.波函数ψ1、ψψ21=c (c 为任意常数), A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1: c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c. D.ψ1与ψψ21=c 描写粒子的状态相同.20.波函数ψ(,)(,)exp()x t c p t ipx dp =⎰12π 的傅里叶变换式是CA. c p t x t ipx dx (,)(,)exp()=⎰12π ψ. B. c p t x t i px dx (,)(,)exp()*=⎰12π ψ.C.c p t x t ipx dx (,)(,)exp()=-⎰12πψ.D.c p t x t i px dx (,)(,)exp()*=-⎰12π ψ.21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. (1)、(3)和(6).B. (2)、(3)、(4)和(5).C. (1)、(3)、(4)和(5).D.(2)、(3)、(4)、(5)和(6).22.两个粒子的薛定谔方程是A.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r t iμ∂∂),,(),,(2121t r r t r r Uψ+ B.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r tμ∂∂),,(),,(2121t r r t r r Uψ+ C.∑=ψ∇=ψ21212221),,(2),,(i i i t r r t r r t μ∂∂),,(),,(2121t r r t r r U ψ+ D.∑=ψ∇=ψ21212221),,(2),,(i i i t r r t r r t i μ∂∂),,(),,(2121t r r t r r U ψ+ 23.几率流密度矢量的表达式为CA. J =∇ψ-2μ()**ψψ∇ψ.B. J i =∇ψ-2μ()**ψψ∇ψ. C. J i =-∇ψ2μ()**ψ∇ψψ. D. J =-∇ψ2μ()**ψ∇ψψ.24.质量流密度矢量的表达式为CA. J =∇ψ-2()**ψψ∇ψ. B. J i =∇ψ-2()**ψψ∇ψ. C. J i =-∇ψ2()**ψ∇ψψ. D. J =-∇ψ2()**ψ∇ψψ.25. 电流密度矢量的表达式为CA. J q =∇ψ-2μ()**ψψ∇ψ. B. J iq =∇ψ-2μ()**ψψ∇ψ. C. J iq =-∇ψ2μ()**ψ∇ψψ. D. J q =-∇ψ2μ()**ψ∇ψψ.26.下列哪种论述不是定态的特点DA.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为D A.πμ22224 n a ,B.πμ22228 n a ,C.πμ222216 n a , D.πμ222232 n a .28. 在一维无限深势阱U x x a x a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子的能级为C A.πμ22222 n a , B.πμ22224 n a , C.πμ22228 n a , D.πμ222216 n a .29. 在一维无限深势阱U x x b x b (),/,/=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为AA.πμ22222 n b ,B.πμ2222 n b , C.πμ22224 n b , D.πμ22228 n b .30. 在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于基态,其位置几率分布最大处是A.x =0,B.x a =,C.x a =-,D.x a =2.31. 在一维无限深势阱U x x a x a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于第一激发态,其位置几率分布最大处是A.x a =±/2,B.x a =±,C.x =0,D.4/a x ±=. 32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 33.线性谐振子的能级为CA.(/),(,,,...)n n +=12123 ω. B.(),(,,,....)n n +=1012 ω. C.(/),(,,,...)n n +=12012ω. D.(),(,,,...)n n +=1123 ω. 34.线性谐振子的第一激发态的波函数为ψαα()exp()x N x x=-122122,其位置几率分布最大处为 A.x =0. B.x =±μω. C.x =μω. D.x =±μω.35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 36.线性谐振子的能量本征方程是AA.[]-+= 222222212μμωψψd dx x E .B.[]--= 22222212μμωψψd dx x E .C.[] 22222212μμωψψd dx x E -=-.D.[] 222222212μμωψψd dx x E +=-.37.氢原子的能级为DA.- 2222e n s μ.B.-μ22222e n s .C.242n e s μ -. D. -μe n s 4222 .38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为DA.r r R nl )(2. B.22)(r r R nl . C.rdr r R nl )(2. D.dr r r R nl22)(. 39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A.),(ϕθlmY . B. 2),(ϕθlm Y . C. Ωd Y lm ),(ϕθ. D. Ωd Y lm 2),(ϕθ. 40.波函数ψ和φ是平方可积函数,则力学量算符 F为厄密算符的定义是C A.ψφτφψτ***F d F d =⎰⎰. B.ψφτφψτ** ( )F d F d =⎰⎰.C.( ) **F d Fd ψφτψφτ=⎰⎰. D.***F d Fd ψφτψφτ=⎰⎰.41. F和 G 是厄密算符,则 A. FG必为厄密算符. B. FG GF -必为厄密算符. C.i FG GF ()+必为厄密算符. D. i FG GF ()-必为厄密算符.42.已知算符 xx =和 pi x x =- ∂∂,则AA. x和 p x 都是厄密算符. B. xp x 必是厄密算符. C. xp p x x x +必是厄密算符. D. xpp x x x -必是厄密算符. 43.自由粒子的运动用平面波描写,则其能量的简并度为 A.1. B. 2. C. 3. D. 4.44.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π45.角动量Z 分量的归一化本征函数为CA.12πϕ exp()im . B.)ex p(21r k i⋅π. C.12πϕexp()im . D.)ex p(21r k i ⋅π.46.波函数)ex p()(cos )1(),(ϕθϕθim P N Y ml lm m lm -=A. 是 L2的本征函数,不是 L z 的本征函数. B.不是 L 2的本征函数,是 L z 的本征函数.C 是 L2、 L z 的共同本征函数. D. 即不是 L 2的本征函数,也不是L z 的本征函数. 47.若不考虑电子的自旋,氢原子能级n=3的简并度为 A. 3. B. 6. C. 9. D. 12. 48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是A. 库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为W r dr R r dr 323222()=,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是 A.a 0. B. 40a . C. 90a . D. 160a . 51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为A.E E 321434,;,. B.E E 321232,;,-. C.E E 321232,;,. D.E E 323414,;,. 52.接51题,该体系的角动量的取值及相应几率分别为A.21 ,.B. ,1.C.212,. D.212,.53. 接51题,该体系的角动量Z 分量的取值及相应几率分别为A.01434,;,- . B. 01434,;,. C.01232,;, -. D. 01232,;,-- . 54. 接51题,该体系的角动量Z 分量的平均值为A.14 .B. -14 .C. 34 .D. -34 .55. 接51题,该体系的能量的平均值为A.-μe s 4218 .B.-3128842μe s .C.-2925642μe s . D.-177242μe s. 56.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C. - k .D. 12 k.57.接上题,体系的动量取值几率分别为A. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3. 58.接56题, 体系的动量平均值为A.0.B. k .C. - k .D. 12 k.59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为A.3252 ωω,.B. 1252 ωω,.C. 3272 ωω,.D. 1252 ωω,.60.接上题,该振子的能量取值E E 13,的几率分别为A.2321,c c . B.232121c c c +,232123c c c +. C.23211c c c +,23213c c c +. D.31,c c .61.接59题,该振子的能量平均值为A.ω232123215321c c c c ++. B. 5 ω. C. 92 ω. D.ω232123217321c c c c ++.62.对易关系[ ,()]pf x x 等于(f x ()为x 的任意函数) A.i f x '().B.i f x ().C.-i f x '(). D.-i f x (). 63. 对易关系[ ,exp()]piy y 等于A.)exp(iy .B. i iy exp().C.- exp()iy .D.-i iy exp().64.对易关系[, ]x px 等于 A.i . B. -i . C. . D. - .65. 对易关系[, ]L yx 等于 A.i z. B. z . C.-i z . D.- z . 66. 对易关系[, ]L zy 等于A.-i x. B. i x . C. x . D.- x . 67. 对易关系[, ]L zz 等于 A.i x. B. i y . C. i . D. 0. 68. 对易关系[, ]x py 等于A. .B. 0.C. i .D. - . 69. 对易关系[ , ]p p y z 等于A.0.B. i x. C. i p x . D. p x . 70. 对易关系[ ,]L L x z 等于 A.i L y. B.-i L y. C. L y. D.- L y.71. 对易关系[ , ]L L z y等于A.i L x. B. -i L x. C.L x . D. -L x .72. 对易关系[ , ]L L x 2等于 A. L x . B. i L x . C.i L L z y ( )+. D. 0. 73. 对易关系[ , ]L L z 2等于 A. L z . B. i L z . C.i L L x y ( )+. D. 0.74. 对易关系[, ]L px y 等于A.i L z .B. -i L z .C. i p z .D. -i p z . 75. 对易关系[,]p L z x 等于 A.-i py . B.i py . C.-i L y. D.i L y.76. 对易关系[ , ]L p zy 等于A.-i px . B. i p x . C. -i L x. D. i L x. 77.对易式[ , ]L x y 等于A.0.B. -i z. C. i z . D. 1. 78. 对易式[ , ]F F m n 等于(m,n 为任意正整数)A. Fm n+. B. Fm n-. C. 0. D. F. 79.对易式[ , ]F G 等于A. FG. B. GF . C. FG GF -. D. FG GF +. 80. .对易式[,]F c 等于(c 为任意常数)A.cF. B. 0. C. c . D. F ˆ. 81.算符 F和 G 的对易关系为[ , ]F G ik =,则 F 、 G 的测不准关系是 A.( )( )∆∆F G k 2224≥. B. ( )( )∆∆FG k 2224≥. C.( )( )∆∆F G k 2224≥. D. ( )( )∆∆F G k 2224≥. 82.已知[ , ]xp i x = ,则 x 和 p x 的测不准关系是 A.( )( )∆∆x p x 222≥ . B. ( )( )∆∆x p 2224≥ . C. ( )( )∆∆x p x 222≥ . D.( )( )∆∆xp x 2224≥ . 83. 算符L x和 L y 的对易关系为[ , ] L L i L x y z= ,则Lx、 L y 的测不准关系是A.( )( ) ∆∆L L L x y z 22224≥. B.( )( ) ∆∆L L L x y 22224≥ . C.( )( ) ∆∆FG L z 22224≥ . D.( )( ) ∆∆F G L 22224≥ . 84.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze r E s .B. []-∇+= 22222μψψze r E s.C.[]-∇-= 2222μψψze r E s .D.[]-∇-= 22222μψψze r E s .85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222 . B.-μ224222z e n s . C.-μze n s 2222 . D. -μz e n s 24222 .86. 在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动的质量μ为的粒子,其状态为 ψππ=42aa x a x sin cos ,则在此态中体系能量的可测值为 A.22222229,2a a μπμπ , B. πμπμ2222222 a a , , C.323222222πμπμ a a ,,D.524222222πμπμ aa ,. 87.接上题,能量可测值E 1、E 3出现的几率分别为 A.1/4,3/4. B. 3/4,1/4. C.1/2, 1/2. D. 0,1. 88.接86题,能量的平均值为A.52222πμ a ,B.2222πμ a ,C.72222πμ a ,D.5222πμ a .89.若一算符 F 的逆算符存在,则[ , ]F F -1等于A. 1.B. 0.C. -1.D. 2.90.如果力学量算符 F 和 G 满足对易关系[ , ]F G =0, 则A. F和 G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. F和 G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. F和 G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. F和 G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值A. 可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式[ , ()]p p f x x x 2等于A.-i p f x x '()2.B. i p f x x '()2 .C.-i p f x x ()2.D. i p f x x ()2.93.定义算符yx L i L L ˆˆˆ±=±, 则[ ,]L L +-等于A.z L ˆ .B.2 L z .C.-2 L z .D.z L ˆ-. 94.接上题, 则[,]L L z +等于A. L +.B. L z .C. -+ L .D. -L z .95. 接93题, 则[ ,]L L z -等于A. L -.B. L z .C. -- L .D. -L z .96.氢原子的能量本征函数ψθϕθϕnlm nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数. 97.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数. 98.对易关系式[ ,]FG H 等于A.[ , ] [ , ]F H G F G H +.B. [ , ] F H GC. [ , ]F G H .D. [ , ] [ , ]F H G F G H -.99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'ex p(21)('x p ix Pπψ=,它在动量表象中的表示是A.δ(')p p -.B.δ(')p p +.C.δ()p .D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是 A.δ(')x x -. B.δ(')x x +. C.δ()x . D.δ(')x . 101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是BA.⎪⎪⎪⎪⎪⎭⎫⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是B A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001. B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D.0100⎛⎝ ⎫⎭⎪⎪⎪⎪. 103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a . C. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 0b a . D. 00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪. 104.在(, L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 A. . B. - . C. 2 . D. 0.105.算符 Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符 (,)F x i x ∂∂在 Q 表象中的矩阵元的表示是B A.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂. B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂. C.F u x F x i x u x dx mnn m =⎰()(,)()* ∂∂. D.F u x F x i x u x dxmn m n =⎰()(,)()*∂∂.106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵. B 一个上三角方阵. C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p x∂∂. B.i p x ∂∂. C.-i p x 2∂∂. D.i p x 2∂∂.108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+ . B.p p 2222212μμω∂∂-. C.22222212p p ∂∂μωμ -. D.--p p 2222212μμω∂∂.109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是 A. ±1. B. 0. C. ±i . D. 1±i .110.接上题, F 的归一化本征态分别为A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.B. 1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.C. 12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,. 111.幺正矩阵的定义式为A.S S +-=. B.S S +=*. C.S S =-. D.S S *=-. 112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符()( )/axip=+μωμω212,则对易关系式[ , ]a a +等于 A. [ , ]a a +=0. B. [ , ]a a +=1. C. [ , ]a a +=-1. D.[ , ]a a i +=. 114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似)A.E H H E E nnn mn nmm()()()''0200++-∑. B.E H H E E nnn mn nmm()()()'''0200++-∑.C.E H H E E nnn mn mnm()()()'''0200++-∑. D.E H H E E nnn mn mnm()()()''0200++-∑.115. 非简并定态微扰理论中第n 个能级的一级修正项为 A.H mn '. B.H nn '. C.-H nn '. D.H nm '.116. 非简并定态微扰理论中第n 个能级的二级修正项为A.H EE mnnmm'()()200-∑. B.''()()H EE mnnmm200-∑. C.''()()H EE mnmnm200-∑. D.H EE mnmnm'()()200-∑.117. 非简并定态微扰理论中第n 个波函数一级修正项为A.H EE mnnmmm '()()()000-∑ψ. B.''()()()H E E mn nmm m000-∑ψ.C.''()()()H E E mn mnm m000-∑ψ. D.H EE mnmnm m'()()()000-∑ψ.118.沿x 方向加一均匀外电场ε,带电为q 且质量为μ的线性谐振子的哈密顿为A. H d dx x q x =-++ 22222212μμωε.B. H d dx x q x =-++ 2222212μμωε.C. H d dx x q x =-+- 2222212μμωε. D. H d dx x q x =-+- 22222212μμωε.119.非简并定态微扰理论的适用条件是A.H E E mkkm'()()001-<<. B.H E E mk km'()()001+<<. C.H mk '<<1. D.E E km()()001-<<.120.转动惯量为I ,电偶极矩为 D 的空间转子处于均匀电场ε中,则该体系的哈密顿为A.ε ⋅+=D I L H 2ˆˆ2.B. ε ⋅+-=D I L H 2ˆˆ2.C. ε⋅-=D I L H 2ˆˆ2. D. ε ⋅--=D I L H 2ˆˆ2.121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm nmmm H E E =+-∑()()()()''0000. B.ψψψn n mn nmmm H E E =+-∑()()()()''0000.C.ψψψn n mn mnmm H E E =+-∑()()()()''0000. D.ψψψn n nm mnmm H E E =+-∑()()()()''0000.122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为 A. 五个子能级. B. 四个子能级. C. 三个子能级. D. 两个子能级. 123.一体系在微扰作用下,由初态Φk 跃迁到终态Φm 的几率为A.202' )'ex p('1⎰tmk mkdt t i H ω . B.2' )'ex p('⎰tmk mkdt t i H ω.C.22')' ex p(1⎰tmk mkdt t i Hω . D.2' )'ex p(⎰tmk mkdt t i Hω.124.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿. B 选取合理的尝试波函数.C 计算体系的哈密顿的平均值.D 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋.126. S 为自旋角动量算符,则[ , ]S S y x 等于 A.2i . B.i. C. 0 .D.-i S z.127. σ为Pauli 算符,则[ , ]σσx z 等于A.-i y σ. B.i y σ. C.2i y σ. D.-2i y σ.128.单电子的自旋角动量平方算符 S2的本征值为 A.142 . B.342 . C.322 . D.122 .129.单电子的Pauli 算符平方的本征值为 A. 0. B. 1. C. 2. D. 3. 130.Pauli 算符的三个分量之积等于 A. 0. B. 1. C. i . D. 2i .131.电子自旋角动量的x 分量算符在S z 表象中矩阵表示为A. S x =⎛⎝ ⎫⎭⎪ 21001.B. S i i x =-⎛⎝ ⎫⎭⎪ 200.C. S x =⎛⎝ ⎫⎭⎪ 20110.D.S x =-⎛⎝ ⎫⎭⎪21001. 132. 电子自旋角动量的y 分量算符在S z 表象中矩阵表示为A. S y =⎛⎝ ⎫⎭⎪ 21001.B. S i y =-⎛⎝ ⎫⎭⎪ 20110.C. S i i i y =-⎛⎝ ⎫⎭⎪ 200.D.S i i y =⎛⎝ ⎫⎭⎪ 200. 133. 电子自旋角动量的z 分量算符在S z 表象中矩阵表示为A. S z =⎛⎝ ⎫⎭⎪ 21001.B. S z =-⎛⎝ ⎫⎭⎪ 20110.C. S z =-⎛⎝ ⎫⎭⎪ 21001.D.S i z=-⎛⎝ ⎫⎭⎪ 21001. 134. , J J 12是角动量算符, J J J =+12,则[ , ] J J 212等于 A. J 1. B.- J 1. C. 1 . D. 0 . 135.接上题, [ , ] J J z 12等于 A.i J J xy( )11+. B.i J z1. C.Jz1. D. 0.136.接134题, ]ˆ,ˆ[12z J J 等于 A.i J J x y ( )11+. B.i J z1. C.J z 1. D. 0.137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0, .B. 0,- .C. 22,.D.22,-.138.接上题,测得s z 为 22,-的几率分别是A.a b ,.B.a b 22,. C.a b 2222/,/. D. a a b b a b 222222/(),/()++.139.接137题, s z 的平均值为A. 0.B. )(222b a - . C. )22/()(2222b a b a +- . D. .140.在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为A. ,-.B. /,2.C. /,/22-.D. ,/-2. 141.接上题,测量s z 的值为 /,/22-的几率分别为 A.3212/,/. B.1/2,1/2. C.3/4,1/4. D.1/4, 3/4. 142.接140题,s z 的平均值为A. /2.B. /4.C.- /4.D.- /2. 143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性. 145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A. 0,1,2,3,4.B.1,2,3,4.C. 0,1,2,3.D.1,2,3.146. 下列各物体哪个是绝对黑体 (B)(A)不辐射任何光线的物体 (B)不能反射任何光线的物体 (C)不能反射可见光的物体 (D)不辐射可见光的物体147. 金属的光电效应的红限依赖于:(C )(A)入射光的频率 (B)入射光的强度 (C)金属的逸出功 (D)入射光的频率和金属的逸出功148. 关于不确定(测不准)关系有以下几种理解:(1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定(3) 粒子的动量和坐标不可能同时确定 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:( )(A) (1),(2) (B) (2),(4) (C) (3),(4) (D) (4),(1) 149. 完全描述微观粒子运动状态的是:( )(A) 薛定谔方程 (B)测不准关系 (C)波函数 (D) 能量 150. 完全描述微观粒子运动状态变化规律的是:( )(A)波函数 (B) 测不准关系 (C) 薛定谔方程 (D) 能级151,卢瑟福粒子实验证实了[ ];斯特恩-盖拉赫实验证实了[ ];康普顿效应证实了[ ];戴维逊-革末实验证实了[ ].(A)光的量子性. (B) 玻尔的能级量子化假设. (C)X 射线的存在. (D)电子的波动性(E)原子的有核模型. (F) 原子的自旋磁矩取向量子化.152. 关于光电效应有下列说法:(1)任何波长的可见光照射到任何金属表面都能产生光电效应;(2)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,释出的光电子的最大初动能也不同;(3)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,单位时间释出的光电子数一定相等;(4)若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍. 其中正确的是:( )(A) (1),(2),(3) (B) (2),(3),(4) (C) (2),(3) (D) (2),(4) 153. 已知氢原子从基态激发到某一定态所需能量为10.19eV,若氢原子从能量为-0.85eV 的状态跃迁到上述定态时,所发射的光子的能量为:( )(A)2.56eV (B)3.41eV (C) 4.25eV (D) 9.95eV 154. 若光子与电子的波长相等,则它们:( )(A)动量及总能量均相等 (B) 动量及总能量均不相等 (C)动量相等,总能量不相等 (D)动量不相等,总能量相等155.量子力学能够正确地描述______的运动规律( ) A.宏观物体 B.微观粒子 C.高速运动 D.低速运动156、下列选项中不属于波函数标准条件的是( ) A 连续性; B 有限性; C 周期性;D 单值性。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

量子力学考研试题及答案

量子力学考研试题及答案

量子力学考研试题及答案一、单项选择题(每题5分,共20分)1. 量子力学中,波函数的平方代表粒子的什么物理量?A. 动量B. 能量C. 位置D. 概率密度答案:D2. 以下哪项是海森堡不确定性原理的表述?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程描述的是:A. 经典力学B. 电磁学C. 量子力学D. 热力学答案:C4. 泡利不相容原理适用于:A. 光子B. 电子C. 质子D. 中子答案:B二、填空题(每题5分,共20分)1. 根据量子力学,一个粒子的波函数可以表示为 \(\psi(x, t)\),其中 \(x\) 代表粒子的________,\(t\) 代表时间。

答案:位置2. 量子力学中的波粒二象性表明,粒子既表现出________的性质,也表现出粒子的性质。

答案:波动3. 量子力学中,一个粒子的能量可以表示为 \(E =\frac{p^2}{2m}\),其中 \(p\) 代表粒子的________。

答案:动量4. 量子力学中的隧道效应是指粒子可以穿过________的势垒。

答案:经典物理认为不可能三、简答题(每题10分,共30分)1. 简述德布罗意波的概念及其在量子力学中的意义。

答案:德布罗意波是指物质粒子(如电子)具有波动性,其波长与粒子的动量成反比。

在量子力学中,这一概念是波函数理论的基础,它表明粒子的行为不能完全用经典力学来描述,而是需要用波动方程来描述。

2. 描述一下量子力学中的量子态叠加原理。

答案:量子态叠加原理是指一个量子系统可以同时处于多个可能状态的叠加,直到进行测量时,系统才会坍缩到其中一个特定的状态。

这一原理是量子力学的核心特征之一,它导致了量子力学的非经典行为和概率解释。

3. 解释什么是量子纠缠,并给出一个实际应用的例子。

答案:量子纠缠是指两个或多个量子粒子之间存在的一种非经典的强关联,即使它们相隔很远,一个粒子的状态改变会即时影响到另一个粒子的状态。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

量子力学(第1-4章)考试试题

量子力学(第1-4章)考试试题

第一至四章 例题一、单项选择题1、普朗克在解决黑体辐射时提出了 【 】A 、能量子假设B 、光量子假设C 、定态假设D 、自旋假设2、若nn n a A ψψ=ˆ,则常数n a 称为算符A ˆ的 【 】 A 、本征方程 B 、本征值 C 、本征函数 D 、守恒量3、证实电子具有波动性的实验是 【 】A 、 戴维孙——革末实验B 、 黑体辐射C 、 光电效应D 、 斯特恩—盖拉赫实验4、波函数应满足的标准条件是 【 】A 、 单值、正交、连续B 、 归一、正交、完全性C 、 连续、有限、完全性D 、 单值、连续、有限 5、已知波函数 )exp()()exp()(1Et ir Et i rϕϕψ+-=, )exp()()exp()(22112t E i r t E i rϕϕψ+-=,)exp()()exp()(213Et ir Et i r-+-=ϕϕψ,)exp()()exp()(22114t E ir t E i r-+-=ϕϕψ其中定态波函数是 【 】 A 、ψ2 B 、ψ1和ψ2 C 、ψ3 D 、3ψ和ψ46、在一维无限深势阱⎩⎨⎧≥∞<=a x ax x U ,,0)(中运动的质量为μ的粒子的能级为 【 】A. πμ22222 n a B. πμ22224 n a C. πμ22228 n a D. πμ222216 n a. 7、量子力学中用来表示力学量的算符是 【 】 A 、线性算符 B 、厄米算符 C 、幺正算符 D 、线性厄米算符8、]ˆ ,ˆ[x p x= 【 】 A 、0 B 、 i C 、 i - D 、29、守恒量是 【 】A 、处于定态中的力学量B 、处于本征态中的力学量C 、与体系哈密顿量对易的力学量D 、其几率分布不随时间变化的力学量10、某体系的能量只有两个值1E 和2E ,则该体系的能量算符在能量表象中的表示为【 】A 、⎥⎦⎤⎢⎣⎡1221E E E E B 、⎥⎦⎤⎢⎣⎡2100E E C 、⎥⎦⎤⎢⎣⎡0021E E D 、⎥⎦⎤⎢⎣⎡2211E E E E 11、)(r nlmψ为氢原子归一化的能量本征函数,则=''⎰τψψd m l n nlm 【 】A 、0B 、1C 、m m l l ''δδD 、m l lm ''δδ 二、填空题 1、19世纪末20世纪初,经典物理遇到的困难有(举三个例子) 。

量子力学选择题试题一

量子力学选择题试题一

1. 量子力学只适应于【 】A.微观客体B.低速微观客体C.宏观物体D.宏观物体和微观客体2.算符A 本征态是指【 】A.在该态上测量力学量A 没有确定值B.算符A 为厄米算符C.在该态上多次测量力学量A 有唯一确定值D.一个确定的状态3.定态是指【 】A.波函数形式为Et i e r -)(ψ的态B.波函数形式为r p i e t ∙-)(ψ的态C.波函数形式为)(21x p Et i x e-- π的态 D.波函数形式为)ˆ(23)2(1x p Et i e ∙-- π的态4.波函数和体系状态的关系是【 】A.波函数完全确定体系状态B.只有定态波函数才能唯一确定体系状态C.因不确定常数因子的影响,波函数不能完全确定体系状态D.因不确定相因子的影响,波函数不能完全确定体系状态5.波函数确定则【 】A.所有力学量的取值概率完全确定B.某些力学量的取值可以完全确定C.只有体系能量完全确定D.波函数与力学量取值无关6.可测量的物理量在量子力学中可以用厄密算符表示,原因是【 】A.厄米算符作用在波函数上得到复数乘以该波函数B.厄米算符是幺正算符C. 厄密算符的本征值都是实数D.厄密算符的本征值取值概率一定7. 中心力场中体系守恒量有【 】A.只有能量B.动量和角动量C.只有角动量D.能量和角动量8.两个电子体系的自旋波函数是A. )2()1(βαB. )1()2(βαC. )]2()1([21βα+D. )]1()2()2()1([21βαβα+9.下列说法错误的是【 】A.电子是费米子B.电子自旋在z 方向的分量是2±C. 电子是玻色子D. 电子满足Pauli 不相容原理10.下列说法错误的是【 】A.Pauli 矩阵是厄米矩阵B.y y σσσ、、x 的本征值都是1± C.在各种表象下y y σσσ、、x 的表示形式不变 D.在不同表象下y y σσσ、、x 的表示不同。

练习量子力学

练习量子力学

练习二十四 热辐射一、选择题1. 黑体的温度升高一倍,它的辐射出射度(总发射本领)增大 (A) 15倍. (B) 7倍. (C) 3倍. (D) 1倍.3. 在加热黑体过程中,其最大单色辐出度对应的波长由0.8μm 变到0.4μm ,则其辐射出射度增大为原来的(A) 2倍. (B) 4倍. (C) 16倍. (D) 8倍.4. 在图24.1.的四个图中,哪一个图能定性地正确反映黑体单色辐出度M λ(T )随λ和T 的变化关系,(已知T 2 >T 1)5. 普朗克量子假说是为解释(A) 光电效应实验规律而提出来的. (B) 黑体辐射的实验规律而提出来的. (C) 原子光谱的规律性而提出来的.(D) X 射线散射的实验规律而提出来的.二、填空题1. 测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm . 现测得太阳的λm1= 0.55μm ,北极星的λm2 = 0.35μm ,则太阳表面温度T 1与北极星表面温度T 2之比T 1 :T 2 = .2. 一个100W 的白炽灯泡的灯丝表面积为S = 5.3⨯10-5m 2 . 若将点燃的灯丝看作是黑体,可估算出它的工作温度为 .3. 利用普朗克公式()1ed 2d )(/52-=T k hc hc T M λλλλπλ进行积分得 ⎰∞==4d )()(T T M T M σλλ(A)(B)图24.1(C)(D)其中σ为一常量. 式中M(T)的物理意义是.三、计算题1. 地球卫星测得太阳单色辐射出射度的峰值在500nm处, 若把太阳看成黑体,求(1) 太阳表面的温度;(2) 太阳辐射的总功率;(3) 垂直射到地球表面每单位面积的日光功率.(地球与太阳的平均距离为1.5⨯108km,太阳的半径为6.67⨯105km)2. 宇宙大爆炸遗留在宇宙空间的各向同性的均匀背景辐射相当于3K的黑体辐射.求(1) 此辐射的光谱辐射出射度极大值所对应的频率;(2) 地球表面接受此辐射的功率.(地球半径R E=6.37×106m)练习二十五光电效应康普顿效应一、选择题1. 已知一单色光照射在钠表面上,测得光电子的最大动能是1.2eV,而钠的红限波长是540nm,那么入射光的波长是(A) 535nm.(B)500nm.(C)435nm.(D) 355nm.2. 光子能量为0.5MeV的X射线,入射到某种物质上而发生康普顿散射. 若反冲电子的动能为0.1MeV,则散射光波长的改变量∆λ与入射光波长λ0之比值为(A) 0.20.(B) 0.25.(C) 0.30.(D) 0.35.4. 下面这此材料的逸出功为:铍,3.9eV;钯,5.0eV;铯,1.9eV;钨,4.5eV.要制造能在可见光(频率范围为3.9⨯1014Hz-7.5⨯1014Hz)下工作的光电管,在这此材料中应选:(A) 钨. (B) 钯.(C) 铯. (D) 铍.5. 光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此过程,在以下几种理解中,正确的是:(A)光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程.(B)两种效应都相当于电子与光子的弹性碰撞过程.(C)两种效应都属于电子吸收光子的过程.(D)两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律.二、填空题1. 光子的波长为λ,则其能量E = ;动量的大小为p = ; 质量为 .2. 已知钾的逸出功为2.0eV, 如果用波长为λ=3.60⨯10-7m 的光照射在钾上,则光电效应的遏止电压的绝对值|U a | = ,从钾表面发射的电子的最大速度v m = .3. 康普顿散射中,当散射光子与入射光子方向成夹角θ = 时,光子的频率减少得最多;当θ = 时,光子的频率保持不变.三、计算题1. 波长为λ的单色光照射某金属表面发生光电效应,已知金属材料的逸出功为A ,求遏止电势差;今让发射出的光电子经狭缝S 后垂直进入磁感应强度为B 的均匀磁场, 如图25.1所示,求电子在该磁场中作圆周运动的最大半径R .(电子电量绝对值为e ,质量为m )2. 用波长λ0 =0.1nm 的光子做康普顿实验.(1)散射角ϕ= 90︒的康普顿散射波长是多少?(2)分配给反冲电子的动能有多大?练习二十六 德布罗意波 不确定关系一、选择题1. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是0.04nm ,则U 约为:(A) 150V . (B) 330V . (C) 630V . (D) 940V .2. 波长λ =500nm 的光沿x 轴正向传播,若光的波长的不确定量Δλ=10-4nm, 则利用不确定关系式∆x ∆p x ≥h 可得光子的坐标的不确定量至少为(A) 25cm . (B) 50cm . (C) 250cm .(D) 500cm .3. 如图26.1所示,一束动量为p 的电子,通过缝宽为a 的狭缝,在距离狭缝为L 处放置一荧光屏,屏上衍射图样中央最大的宽度d 等于:(A) 2a 2/L .图25.1(B) 2ha /p . (C) 2ha /(Lp ). (D) 2Lh /(ap ).4. 静止质量不为零的微观粒子作高速运动,这时粒子物质波波长λ与速度v 有如下关系: (A) 2211cv -∝λ. (B) λ ∝ 1/v .(C) λ ∝ v .(D) 22v c -∝λ.5. 关于不确定关系∆x ∆p ≥ћ有以下几种理解: (1) 粒子的动量不可能确定; (2) 粒子的坐标不可能确定;(3) 粒子的动量和坐标不可能同时确定;(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:(A) (1)、(2). (B) (3)、(4). (C) (2)、(4). (D) (4)、(1). 二、填空题1. 氢原子在温度为300K 时,其方均根速率所对应的德布罗意波长是 ;质量为m =10-3kg,速度v =1m/s 运动的小球的德布罗意波长是 .2. 电子的康普顿波长为λc =h /(m e c )(其中m e 为电子静止质量, c 为光速, h 为普朗克恒量). 当电子的动能等于它的静止能量时,它的德布罗意波长λ= λc .3. 在电子单缝衍射实验中,若缝宽为a = 0.1nm ,电子束垂直射在单缝上,则衍射的电子横向动量的最小不确定量∆p y = N·s .三、计算题1. α 粒子在磁感应强度为B =0.025T 的均匀磁场中沿半径为R =0.83cm 的圆形轨道上运动. (1)试计算其德布罗意波长(α 粒子的质量m α=6.64⨯10-27kg);(2)若使质量m =0.1g 的小球以与α粒子相同的速率运动,则其波长为多少. 2. 质量为m e 的电子被电势差U 12=106V 的电场加速. (1)如果考虑相对论效应,计算其德布罗意波的波长λ0;(2)若不考虑相对论,计算其德布罗意波的波长λ.其相对误差(λ-λ0)/λ0是多少?练习二十七氢原子理论薛定谔方程一、选择题1. 已知氢原子从基态激发到某一定态所需能量为10.19eV,若氢原子从能量为-0.85eV的状态跃迁到上述定态时,所发射的光子的能量为(A) 2.56eV.(B) 3.41eV.(C) 4.25eV.(D) 9.95eV.2. 氢原子光谱的巴耳末系中波长最长的谱线用λ1表示,其次波长用λ2表示,则它们的比值λ1/λ2为(A) 9/8.(B) 19/9.(C) 27/20.(D) 20/27.3. 根据氢原子理论,氢原子在n =5的轨道上的动量矩与在第一激发态的轨道动量矩之比为:(A) 5/2.(B) 5/3.(C) 5/4.(D) 5.4.将波函数在空间各点的振幅同时增大D倍,则粒子在空间的分布几率将(A) 增大D2.倍(B) 增大2D.倍(C) 增大D.倍(D) 不变.5.一维无限深势阱中,已知势阱宽度为a . 应用不确定关系估计势阱中质量为m的粒子的零点能量为:(A) ћ/(ma2)(B) ћ2/(2ma2)(C) ћ2/(2ma).(D) ћ/(2ma2).二、填空题2. 设描述微观粒子运动的波函数为ψ(r, t),则ψψ﹡表示,ψ(r, t)须满足的条件是,E3 E2其归一化条件是 .3. 粒子在一维无限深势阱中运动(势阱宽度为a ),其波函数为ψ(x )=axa π3sin 2 . (0 < x < a ) 粒子出现的概率最大的各个位置是x = .三、计算题1. 当氢原子从某初始状态跃迁到激发能为∆E = 10.19eV 的状态时,发射出光子的波长是λ = 486nm ,试求该初始状态的能量和主量子数.2.一粒子被限制在相距为l 的两个不可穿透的壁之间,如图27.2所示. 描写粒子状态的波函数为ψ = cx ( l -x ),其中c 为待定常量,求在0~ l /3区间发现粒子的概率.练习二十八 近代物理习题课一、选择题1. 如图28.1所示,一维势阱中的粒子可以有若干能态,如果势阱的宽度L 缓慢地减小,则(A) 每个能级的能量减小. (B) 能级数增加.(C) 每个能级的能量保持不变. (D) 相邻能级间的能量差增加.2. 根据量子力学原理,氢原子中电子绕核运动动量矩的最小值为 (A)2ћ.(B) ћ. (C) ћ /2. (D) 0.4. 设某微观粒子运动时的能量是静止能量得k 倍,则其运动速度的大小为 (A) c /(k -1).图28.1图27.2(B) c 21k -/k . (C) c 12-k /k . (D) c ()2+k k /(k+1).5. 把表面洁净的紫铜块、黑铁块和白铝块放入同一恒温炉膛中加热达到热平衡. 炉中这三块金属对某红光的单色辐出度(单色发射本领)和单色吸收比(单色吸收率)之比依次用M 1/a 1、M 2/a 2和 M 3/a 3表示,则有(A) M 1/a 1>M 2/a 2>M 3/a 3. (B) M 1/a 1=M 2/a 2=M 3/a 3. (C) M 3/a 3>M 2/a 2>M 1/a 1. (D) M 2/a 2>M 1/a 1>M 3/a 3.二、填空题1. 氢原子基态的电离能是 eV . 电离能为0.544eV 的激发态氢原子,其电子处在n = 的轨道上运动.2. 分别以频率ν1、ν2的单色光照射某一光电管,若ν1>ν2(ν1、ν2均大于红限频率ν0),则当两种频率的入射光的光强相同时,所产生的光电子的最大初动能E 1 E 2(填<、=、>),为阻止光电子到达阳极,所加的遏止电压|U a 1| |U a 1|(填<、=、>),所产生的饱和光电流I S 1 I S 2(填<、=、>).3. 夜间地面降温主要是由于地面的热辐射.如果晴天夜里地面的温度为27℃,按黑体辐射计算,1m 2地面散失热量的速率为 .三、计算题1. 氢原子光谱的巴耳末线系中,有一光谱线的波长为λ = 434nm ,试求: (1) 与这一谱线相应的光子能量为多少电子伏特.(2) 该谱线是氢原子由能级E n 跃迁到能级E k 产生的,n 和k 各为多少.(3) 最高能级为E 5的大量氢原子,最多可以发射几个线系,共几条谱线(不必计算波长值). 请在氢原子能级图中表示出来,并说明波长最短的是哪条谱线.2.铀核的线度为7.2×10-15m .试用不确定关系估算核中α粒子(m α=6.7×10-27kg)的动量值和动能值.。

量子教育测试题及答案

量子教育测试题及答案

量子教育测试题及答案一、选择题(每题2分,共20分)1. 量子力学中的“量子”一词最早是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 薛定谔D. 波尔2. 量子纠缠是量子力学中的一种现象,以下哪项描述是错误的?A. 纠缠粒子间存在超距作用B. 纠缠粒子的某些属性在测量前不确定C. 纠缠粒子的属性在测量后立即确定D. 纠缠粒子的属性与空间距离无关3. 根据量子力学,一个粒子的位置和动量不能同时被精确测量,这被称为:A. 测不准原理B. 波粒二象性C. 量子叠加D. 量子隧穿4. 量子计算机与传统计算机的主要区别在于:A. 存储容量B. 处理速度C. 信息表示方式D. 能耗更低5. 以下哪个不是量子力学的基本原理?A. 波函数坍缩B. 量子叠加C. 量子纠缠D. 经典力学的完备性6. 在量子力学中,一个系统的状态可以用哪种数学对象来描述?A. 向量B. 矩阵C. 标量D. 张量7. 量子力学中的“观察者效应”指的是:A. 观察者的存在会影响实验结果B. 观察者必须使用仪器来观察量子系统C. 观察者可以改变量子系统的波函数D. 观察者可以预测量子系统的未来发展8. 以下哪项不是量子计算的潜在应用?A. 加密通信B. 药物设计C. 天体物理模拟D. 经典计算机编程9. 量子比特(qubit)是量子计算的基础,它与经典比特的主要区别在于:A. 存储容量B. 可以同时表示0和1C. 处理速度D. 能耗更低10. 量子退相干是量子系统与环境相互作用的结果,它会导致:A. 量子纠缠B. 量子叠加C. 量子坍缩D. 量子系统的稳定性增强答案:1. B2. A3. A4. C5. D6. A7. A8. D9. B10. C二、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答:量子力学与经典力学的主要区别在于其对微观粒子行为的描述方式。

经典力学基于牛顿定律,适用于宏观物体的运动描述,而量子力学则适用于微观粒子,如原子和亚原子粒子。

量子力学试题含答案

量子力学试题含答案

量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。

这种相互转化的现象称为________。

答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。

答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。

答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。

答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。

这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。

实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。

当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。

同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。

b) 请解释量子力学中的不确定性原理及其意义。

答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。

不确定性原理的意义在于限制了我们对微观世界的认知。

它告诉我们,粒子的位置和动量无法同时被精确地确定。

这是由于测量过程中的不可避免的干扰和相互关联性导致的。

量子力学习题4

量子力学习题4
| x |> a
_______________,其宇称是_________,相应的能量是_______________,粒子的第三激发
态波函数是__________________,其宇称是_____,相应的能级是_____________,粒子出现
几率最大的位置是___________________。假定在 t=0 时刻,粒子的状态可以用波函数
(f)单值性指的是描述体系状态的波函数是确定的,唯一的 (g)单值性指的是:波函数是坐标和时间的单值函数
二、填空题
1. ___________________________________________________称为隧道效应,它是微观粒 子具有_________________的表现。 2.一维谐振子的第一激发态波函数是__________________________其宇称是__________
关系是 Ψ(rr, t) =_______________, Ψ(pr, t) =_______________。
5.处于球谐函数 Yl,m(θ,φ)=Y5,−2(θ,φ)状态的粒子,其轨道角动量平方的测量值是

轨道角动量在 z 轴方向的取值是
,轨道角动量在 x 轴方向的可能测量值

,Δlx⋅Δly=
ψ
=
C1
cos
πx 2a
+
C2
sin
2πx a
来描写(其中
C1

C2
是常数),则粒子处于基态的几率是
________ , 该 波 函 数 ______ ( 是 、 否 ) 定 态 , 为 什 么 ? 因 为
_________________________________________;该波函数的宇称是_______,粒子的能量平

量子力学考研试题及答案

量子力学考研试题及答案

量子力学考研试题及答案一、选择题(每题3分,共30分)1. 量子力学中,粒子的波函数ψ(x,t)描述了粒子的哪种物理量?A. 粒子的位置B. 粒子的动量C. 粒子在空间的分布概率D. 粒子的能量答案:C2. 海森堡不确定性原理表明了哪两个物理量的不确定性之间存在关系?A. 位置和能量B. 动量和时间C. 动量和位置D. 时间和能量答案:C3. 在量子力学中,一个粒子的波函数在某个位置的概率密度是该波函数在该位置的什么?A. 绝对值的平方B. 对数C. 导数D. 积分答案:A4. 根据泡利不相容原理,一个原子中的两个电子不能具有完全相同的一组量子数,这些量子数包括哪些?A. 主量子数和磁量子数B. 主量子数、磁量子数和自旋量子数C. 所有四个量子数D. 主量子数和自旋量子数答案:B5. 薛定谔方程是一个描述什么的波动方程?A. 粒子的波动性质B. 粒子的运动轨迹C. 粒子的能量分布D. 粒子的动量分布答案:A6. 在量子力学中,一个系统的状态可以用哪种数学对象来描述?A. 矩阵B. 向量C. 张量D. 标量答案:B7. 量子力学中的隧穿效应是指什么?A. 粒子通过一个高于其能量的势垒B. 粒子在两个势垒之间振荡C. 粒子在势垒内部反射D. 粒子在势垒外部反射答案:A8. 在量子力学中,一个二能级系统在两个能级间跃迁时,必须吸收或发射一个具有特定能量的光子,这个能量差是由什么决定的?A. 两个能级的差B. 光子的频率C. 系统的总能量D. 系统的动量答案:A9. 量子纠缠是指两个或多个粒子之间的一种什么关系?A. 经典力学关系B. 量子力学关系C. 热力学关系D. 电磁相互作用答案:B10. 下列哪个原理说明了在量子力学中测量一个物理量会改变系统的状态?A. 海森堡不确定性原理B. 哥本哈根解释C. 德布罗意假说D. 薛定谔猫佯谬答案:B二、简答题(每题10分,共40分)11. 简述德布罗意假说的内容及其对量子力学发展的意义。

高中量子力学试题及答案

高中量子力学试题及答案

高中量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是波粒二象性,以下哪个现象不是波粒二象性的体现?A. 光的干涉现象B. 光电效应C. 电子的衍射现象D. 牛顿运动定律2. 根据量子力学,一个粒子的位置和动量不能同时被准确测量,这是由以下哪个原理所描述的?A. 能量守恒原理B. 泡利不相容原理C. 测不准原理D. 相对性原理3. 量子力学中的波函数是用来描述什么?A. 粒子的电荷B. 粒子的动量C. 粒子在空间中的概率分布D. 粒子的质量4. 量子力学中,一个系统的状态可以用一个什么来描述?A. 波函数B. 动量C. 位置D. 能量5. 以下哪个是量子力学中的一个基本假设?A. 所有物体都遵循牛顿运动定律B. 粒子在没有观察时不具有确定的位置C. 所有物体都具有确定的动量和位置D. 能量守恒定律不适用于微观粒子6. 量子力学中的薛定谔方程是用来描述什么的?A. 粒子的动量B. 粒子的位置C. 粒子的波函数随时间的变化D. 粒子的总能量7. 量子力学中的量子态叠加原理指的是什么?A. 粒子的动量和位置可以同时被准确测量B. 粒子可以同时处于多个状态的叠加C. 粒子的状态只能由一个确定的波函数描述D. 粒子的状态不能被准确预测8. 量子纠缠是量子力学中的一个现象,它描述了什么?A. 两个粒子之间的相互作用B. 两个粒子之间的空间关系C. 两个或多个粒子的量子态不能独立于彼此存在D. 两个粒子之间的动量守恒9. 量子力学中的泡利不相容原理指的是什么?A. 两个相同的费米子不能处于同一个量子态B. 两个相同的玻色子不能处于同一个量子态C. 两个不同的费米子可以处于同一个量子态D. 两个不同的玻色子不能处于同一个量子态10. 以下哪个实验支持了量子力学的波粒二象性?A. 双缝实验B. 光电效应实验C. 迈克尔逊-莫雷实验D. 万有引力实验二、简答题(每题5分,共30分)1. 请简述量子力学与经典力学的主要区别。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题4分,共40分)1. 在量子力学中,一个粒子的状态用波函数表示。

波函数的物理意义是:A. 粒子的位置概率分布B. 粒子的运动速度C. 粒子的自旋状态D. 粒子的能量2. 量子力学的基本假设之一是:A. 粒子的能量是离散的B. 粒子在空间中的轨道是连续的C. 粒子的位置可以同时确定D. 粒子的自旋是固定的3. 哪个原理用于解释原子光谱的发射和吸收现象?A. 波粒二象性原理B. 测不准原理C. 泡利不相容原理D. 量子力学随机性原理4. 薛定谔方程描述了:A. 粒子的位置和动量之间的关系B. 粒子在空间中的运动轨迹C. 粒子的能量和自旋状态D. 粒子波函数随时间的演化5. 量子力学波函数的归一化条件是:A. Ψ(x, t)在全空间上的模长平方的积分等于1B. Ψ(x, t)在全空间上的模长平方的积分等于0C. Ψ(x, t)在无限远处趋于零D. Ψ(x, t)的真实部分等于虚部的共轭6. 两个可观测量的对易关系表示为:[A, B] = AB - BA = 0其中[A, B]表示两个算符的对易子。

这意味着:A. A和B的本征态可以同时存在B. A和B的本征值可以同时测量得到C. A和B的测量结果彼此独立D. A和B的测量结果存在不确定性7. 量子力学中的不确定性原理指出,以下哪一对物理量不能同时精确确定:A. 位置和动量B. 能量和时间C. 自旋在X方向和自旋在Y方向D. 角动量在X方向和角动量在Y方向8. 箱中有一自由粒子,其波函数为:Ψ(x) = A sin(kx)其中A和k为常数,该波函数代表:A. 粒子在箱中处于能量本征态B. 粒子在箱中处于动量本征态C. 粒子在箱中处于位置本征态D. 粒子在箱中处于叠加态9. 双缝干涉实验中,当缝宽减小时,干涉图案的特征是:A. 条纹的间距增大B. 条纹的间距减小C. 条纹的亮度增强D. 条纹的亮度减弱10. 量子隧穿现象解释了:A. 电子在金属中的传导现象B. 光子在光学纤维中的传播现象C. 电子在势垒中的穿透现象D. 光子在介质中的反射现象二、填空题(每题6分,共30分)1. 德布罗意波假设将粒子的运动与________联系起来。

量子期末试题及答案

量子期末试题及答案

量子期末试题及答案第一部分:选择题1.下列哪项是描述量子力学的准确说法?a) 量子力学是一种经典物理学理论;b) 量子力学描述了微观粒子的行为;c) 量子力学只适用于宏观物体;d) 量子力学只适用于电磁学领域。

答案:b) 量子力学描述了微观粒子的行为。

2.下列哪个选项是量子力学的基本假设之一?a) 波粒二象性;b) 相对论;c) 牛顿定律;d) 热力学定律。

答案:a) 波粒二象性。

3.对于一个量子系统,其波函数的平方表示什么?a) 粒子的位置;b) 粒子的动量;c) 粒子的波动性;d) 粒子的能量。

答案:c) 粒子的波动性。

4.下列哪项是量子纠缠的特点?a) 粒子之间的状态不相关;b) 粒子之间的状态不确定;c) 粒子之间的状态相关;d) 粒子之间的状态独立。

答案:c) 粒子之间的状态相关。

5.量子力学中的观测算子对应于什么?a) 粒子的位置;b) 粒子的动量;c) 粒子的能量;d) 物理量的测量结果。

答案:d) 物理量的测量结果。

第二部分:简答题1.量子隧穿现象是什么?请简要解释。

答:量子隧穿现象是指在经典物理学中,粒子在能量不足以越过势垒时不可通行,而在量子力学中,粒子可以通过隧穿效应越过势垒。

这是由于波粒二象性的特性,波函数在势垒区域内会有一定的概率分布,因此粒子以概率的形式通过势垒,即使其能量低于势垒高度。

2.什么是量子比特?请简要解释。

答:量子比特(qubit)是量子计算的最小信息单位,类似于经典计算机中的比特(bit)。

而不同之处在于,量子比特允许同时处于多个状态的叠加态,而比特只能处于0或1状态。

量子比特的叠加态可以通过量子叠加原理进行并行计算,从而在某些计算问题上具有优势。

第三部分:计算题1.一粒子处于基态和第一激发态的叠加态上,其波函数可以表示为|ψ⟩=a|0⟩+b|1⟩,其中a和b为复数,且|a|^2+|b|^2=1。

若进行测量得到粒子处于基态的概率为1/3,则计算a和b的值。

量子力学考试题库及答案

量子力学考试题库及答案

量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。

下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。

以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。

答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。

答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。

答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。

这一现象在经典物理学中是不可能发生的。

一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。

6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。

答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。

这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。

四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。

答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 量子力学中,描述一个量子态最基本的方法是()。

A. 波函数B. 哈密顿算符C. 薛定谔方程D. 路径积分答案:A2. 海森堡不确定性原理表明,粒子的()和()不能同时被精确测量。

A. 位置,速度B. 能量,时间C. 动量,位置D. 时间,动量答案:C3. 波函数的绝对值平方代表的是()。

A. 粒子的速度B. 粒子的能量C. 粒子在某一位置出现的概率密度D. 粒子的动量答案:C4. 薛定谔方程是一个()。

A. 线性偏微分方程B. 非线性偏微分方程C. 线性常微分方程D. 非线性常微分方程答案:A5. 在量子力学中,泡利不相容原理指的是()。

A. 两个费米子不能处于同一个量子态B. 两个玻色子不能处于同一个量子态C. 所有粒子都不能处于同一个量子态D. 所有粒子都必须处于同一个量子态答案:A二、填空题1. 在量子力学中,一个粒子的波函数必须满足__________方程,才能保证波函数的归一化条件。

答案:连续性2. 量子力学的基本原理之一是观测者效应,即观测过程会影响被观测的__________。

答案:系统3. 量子纠缠是量子力学中的一种现象,其中两个或多个粒子的量子态以某种方式相互关联,以至于一个粒子的状态立即影响另一个粒子的状态,这种现象被称为__________。

答案:非局域性三、简答题1. 请简述德布罗意假说的内容及其对量子力学的贡献。

德布罗意假说提出了物质波的概念,即所有物质都具有波粒二象性。

这一假说不仅解释了电子衍射实验的现象,而且为量子力学的发展奠定了基础,使得物理学家开始将波动性质引入到粒子的描述中,从而推动了波函数理论的发展。

2. 什么是量子隧穿效应?请给出一个实际应用的例子。

量子隧穿效应是指粒子在遇到一个能量势垒时,即使其能量低于势垒高度,也有可能穿透势垒出现在另一侧的现象。

这一效应是量子力学中特有的,与经典物理学预测的结果不同。

一个实际应用的例子是半导体器件中的隧道二极管,它利用量子隧穿效应来实现电流的传导,具有非常快的开关速度和低功耗的特性。

量子力学期末考试题

量子力学期末考试题
________________________________________________________________.
20. (本题 3分)(1824)
一 100 W 的白炽灯泡的灯丝表面积为 5.3×10-5 m2.若将点燃的灯丝看成是
黑体,可估算出它的工作温度为___________________ . (斯特藩─玻尔兹曼定律常数σ = 5.67×10-8 W/m2·K4)
________________________________________________________________.这种
效应是微观粒子_____________________________的表现.
32. (本题 4分)(4991)
根据量子力学,粒子能透入势能大于其总能量的势垒,当势垒加宽时,贯 穿系数__________;当势垒变高时,贯穿系数____________.(填入:变大、变 小或不变)
一矩形势垒如图所示,设 U0 和 d 都不很大.在Ⅰ区中向
U(x)
右运动的能量为 E 的微观粒子, (A) 如果 E > U0,可全部穿透势垒Ⅱ进入Ⅲ区
U0 ⅠⅡⅢ
(B) 如果 E < U0,都将受到 x = 0 处势垒壁的反射,不可
Od
x
能进入Ⅱ区.
(C) 如果 E < U0,都不可能穿透势垒Ⅱ进入Ⅲ区. (D) 如果 E﹤U0,有一定概率穿透势垒Ⅱ进入Ⅲ区.
普朗克的量子假说是为了解释_______________________的实验规律而提出
来的.它的基本思想是_________________________________________________
_____________________________________________________________________

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案1. 关于量子态,以下说法正确的是()A. 量子态是可连续变化的B. 量子态是离散的答案:B2. 量子叠加原理是指()A. 多个量子态可以同时存在B. 量子态只能有一个答案:A3. 量子纠缠现象说明了()A. 量子之间存在相互作用B. 量子之间存在非定域性关联答案:B4. 在量子力学中,测量会导致()A. 量子态的改变B. 量子态的保持不变答案:A5. 关于波函数,以下说法正确的是()A. 描述了量子系统的状态B. 是一个实数函数答案:A6. 海森堡不确定性原理涉及到哪两个物理量的不确定性()A. 位置和动量B. 能量和时间答案:A7. 量子力学中的算符表示()A. 物理量B. 对量子态的操作答案:B8. 泡利不相容原理适用于()A. 电子B. 所有费米子答案:B9. 以下哪种现象与量子力学有关()A. 黑体辐射B. 光电效应答案:B10. 在量子力学中,能量的量子化表现为()A. 能量只能取特定的值B. 能量可以连续变化答案:A11. 关于量子隧道效应,以下说法正确的是()A. 粒子可以穿过势垒B. 粒子不能穿过势垒答案:A12. 量子力学中的可观测量对应的是()A. 厄米算符B. 非厄米算符答案:A13. 狄拉克方程描述的是()A. 电子的运动B. 所有粒子的运动答案:B14. 关于量子力学的诠释,以下说法正确的是()A. 只有一种诠释是正确的B. 有多种诠释,且都有实验支持答案:B15. 量子力学中的全同粒子()A. 是完全相同的B. 可以区分答案:A16. 关于量子力学的基本假设,以下说法错误的是()A. 物理量都可以用实数来描述B. 量子态的演化是确定性的答案:AB17. 量子力学中的概率幅表示()A. 概率的大小B. 概率的相位答案:B18. 以下哪种实验验证了量子力学的基本原理()A. 双缝干涉实验B. 迈克尔逊-莫雷实验答案:A19. 量子力学中的守恒量对应的是()A. 不变的物理量B. 随时间变化的物理量答案:A20. 关于量子力学中的对称性,以下说法正确的是()A. 存在多种对称性B. 对称性与物理规律无关答案:A21. 量子力学中的密度算符描述的是()A. 量子系统的概率分布B. 量子系统的能量分布答案:A22. 以下哪种量子系统具有简并性()A. 氢原子B. 自由粒子答案:A23. 量子力学中的散射理论主要研究()A. 粒子的碰撞过程B. 粒子的传播过程答案:A24. 关于量子力学中的表象,以下说法正确的是()A. 有多种表象可以选择B. 表象是唯一确定的答案:A25. 量子力学中的时间演化算符描述的是()A. 量子态随时间的变化B. 物理量随时间的变化答案:A26. 以下哪种量子系统的能级是分立的()A. 谐振子B. 自由电子答案:A27. 量子力学中的角动量算符具有()A. 分立的本征值B. 连续的本征值答案:A28. 关于量子力学中的路径积分表述,以下说法正确的是()A. 是一种量子力学的表述方式B. 与薛定谔方程等价答案:AB29. 量子力学中的对称性破缺会导致()A. 新的物理现象B. 物理规律的改变答案:A30. 以下哪种量子系统的波函数可以用球谐函数来描述()A. 氢原子B. 原子核答案:A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学选择题1.能量为100ev 的自由电子的DeBroglie 波长是A A.1.2A 0.B.1.5A 0.C.2.1A 0.D.2.5A 0. 2.能量为0.1ev 的自由中子的DeBroglie 波长是A.1.3A 0.B.0.9A 0.C.0.5A 0.D.1.8A 0.3.能量为0.1ev ,质量为1g 的质点的DeBroglie 波长是A.1.4A 0.B.1.9⨯1012-A 0.⨯1012-A 0.D.2.0A 0. 4.温度T=1k 时,具有动能E k TB =32(k B 为Boltzeman 常数)的氦原子的DeBroglie 波长是A.8A 0.B.5.6A 0.C.10A 0.D.12.6A 0.5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量m 为( ,2,1,0=n )AA.E n n = ω.B.E n n =+()12 ω.C.E n n =+()1 ω.D.E n n =2 ω.6.在0k 附近,钠的价电子的能量为3ev ,其DeBroglie 波长是 A.5.2A 0.B.7.1A 0.C.8.4A 0.D.9.4A 0.7.钾的脱出功是2ev ,当波长为3500A 0的紫外线照射到钾金属表面时,光电子的最大能量为A. 0.25⨯1018-J.B.1.25⨯1018-J.C.0.25⨯1016-J.D.1.25⨯1016-J.8.当氢原子放出一个具有频率ω的光子,反冲时由于它把能量传递给原子而产生的频率改变为A.2μc .B. 22μc .C. 222μc .D. 22μc .pton 效应证实了A.电子具有波动性.B.光具有波动性.C.光具有粒子性.D.电子具有粒子性. 10.Davisson 和Germer 的实验证实了A.????电子具有波动性.B.光具有波动性.C.光具有粒子性.D.电子具有粒子性.11.粒子在一维无限深势阱U x x a x x a (),,,=<<∞≤≥⎧⎨⎩000中运动,设粒子的状态由ψπ()sinx C x a =描写,其归一化常数C 为BA.1a .B.2a .C.12a .D.4a .12.设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为DA.δ()x .B.δ()x dx .C.δ2()x .D.δ2()x dx .13.设粒子的波函数为ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为CA.ψ(,,)x y z dxdydz 2.B.ψ(,,)x y z dx 2.C.dx dydz z y x )),,((2⎰⎰ψ.D.dx dy dz x yz ψ(,)⎰⎰⎰2.14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为DA.c c 112222ψψ+.B.c c 112222ψψ++2*121ψψc c . C.c c 112222ψψ++2*1212ψψc c .D.c c 112222ψψ++c c c c 12121212****ψψψψ+.15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 16.有关微观实物粒子的波粒二象性的正确表述是 A.波动性是由于大量的微粒分布于空间而形成的疏密波. B.微粒被看成在三维空间连续分布的某种波包. C.单个微观粒子具有波动性和粒子性. D.A,B,C. 17.已知波函数ψ1=-+u x i Et u x i Et ()exp()()exp() ,ψ21122=-+u x i E t u x iE t ()exp()()exp(),ψ312=-+-u x i Et u x iEt ()exp()()exp() ,ψ41122=-+-u x i E t u x i E t ()exp()()exp().其中定态波函数是A.ψ2.B.ψ1和ψ2.C.ψ3.D.ψ3和ψ4. 18.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数) 19.波函数ψ1、ψψ21=c (c 为任意常数), A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1:c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c. D.ψ1与ψψ21=c 描写粒子的状态相同.20.波函数ψ(,)(,)exp()x t c p t ipx dp =⎰12π 的傅里叶变换式是CA.c p t x t ipx dx (,)(,)exp()=⎰12π ψ.B.c p t x t i px dx (,)(,)exp()*=⎰12π ψ. C.c p t x t i px dx (,)(,)exp()=-⎰12π ψ.D.c p t x t i px dx (,)(,)exp()*=-⎰12π ψ.21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数.(2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的.(4)方程中关于波函数对时间坐标的导数应为线性的.(5)方程中不能含有决定体系状态的具体参量.(6)方程中可以含有决定体系状态的能量.则方程应满足的条件是 A.(1)、(3)和(6).B.(2)、(3)、(4)和(5).C.(1)、(3)、(4)和(5).D.(2)、(3)、(4)、(5)和(6).22.两个粒子的薛定谔方程是A.∑=ψ∇=ψ21212221),,(2),,(iitrrtrrtiμ∂∂),,(),,(2121trrtrrUψ+B.∑=ψ∇=ψ21212221),,(2),,(iitrrtrrtμ∂∂),,(),,(2121trrtrrUψ+C.∑=ψ∇=ψ21212221),,(2),,(iiitrrtrrtμ∂∂),,(),,(2121trrtrrUψ+D.∑=ψ∇=ψ21212221),,(2),,(iiitrrtrrtiμ∂∂),,(),,(2121trrtrrUψ+23.几率流密度矢量的表达式为CA.J=∇ψ-2μ()**ψψ∇ψ.B.Ji=∇ψ-2μ()**ψψ∇ψ.C.Ji=-∇ψ2μ()**ψ∇ψψ.D.J=-∇ψ2μ()**ψ∇ψψ.24.质量流密度矢量的表达式为CA.J=∇ψ-2()**ψψ∇ψ.B.Ji=∇ψ-2()**ψψ∇ψ.C.Ji=-∇ψ2()**ψ∇ψψ.D.J=-∇ψ2()**ψ∇ψψ.25.电流密度矢量的表达式为CA.Jq=∇ψ-2μ()**ψψ∇ψ.B.Jiq=∇ψ-2μ()**ψψ∇ψ.C.Jiq=-∇ψ2μ()**ψ∇ψψ.D.Jq=-∇ψ2μ()**ψ∇ψψ.26.下列哪种论述不是定态的特点DA.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱U xx ax a(),,=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为D A.πμ22224na,B.πμ22228na,C.πμ222216na,D.πμ222232na.28.在一维无限深势阱U xx ax a(),,=<∞≥⎧⎨⎩中运动的质量为μ的粒子的能级为CA.πμ22222na,B.πμ22224na,C.πμ22228na,D.πμ222216na.29.在一维无限深势阱U x x b x b (),/,/=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A A.πμ22222 n b ,B.πμ2222 n b ,C.πμ22224 n b ,D.πμ22228 n b .30.在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于基态,其位置几率分布最大处是 A.x =0,B.x a =,C.x a =-,D.x a =2.31.在一维无限深势阱U x x a x a(),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于第一激发态,其位置几率分布最大处是A.x a =±/2,B.x a =±,C.x =0,D.4/a x ±=. 32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 33.线性谐振子的能级为CA.(/),(,,,...)n n +=12123 ω.B.(),(,,,....)n n +=1012 ω.C.(/),(,,,...)n n +=12012ω.D.(),(,,,...)n n +=1123 ω. 34.线性谐振子的第一激发态的波函数为ψαα()exp()x N x x=-122122,其位置几率分布最大处为A.x =0.B.x =±μω.C.x =μω.D.x =±μω.35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 36.线性谐振子的能量本征方程是AA.[]-+= 222222212μμωψψd dx x E .B.[]--= 22222212μμωψψd dx x E .C.[] 22222212μμωψψd dx x E -=-.D.[] 222222212μμωψψd dx x E +=-.37.氢原子的能级为DA.- 2222e n s μ.B.-μ22222e n s .C.242n e s μ -.D.-μe n s 4222 .38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为DA.r r R nl )(2.B.22)(r r R nl .C.rdr r R nl )(2.D.dr r r R nl 22)(. 39.在极坐标系下,氢原子体系在不同方向上找到电子的几率为A.),(ϕθlmY .B.2),(ϕθlm Y .C.Ωd Y lm ),(ϕθ.D.Ωd Y lm 2),(ϕθ.40.波函数ψ和φ是平方可积函数,则力学量算符 F为厄密算符的定义是C A.ψφτφψτ*** F d F d =⎰⎰.B.ψφτφψτ** ( )F d F d =⎰⎰.C.( ) **F d Fd ψφτψφτ=⎰⎰.D.***F d Fd ψφτψφτ=⎰⎰.41. F和 G 是厄密算符,则 A. FG必为厄密算符.B. FG GF -必为厄密算符.C.i FG GF ()+必为厄密算符. D.i FG GF ()-必为厄密算符.42.已知算符 x x =和pi x x =- ∂∂,则AA. x和 p x 都是厄密算符.B. xp x 必是厄密算符.C. xp p x x x +必是厄密算符. D. xpp x x x -必是厄密算符. 43.自由粒子的运动用平面波描写,则其能量的简并度为 A.1.B.2.C.3.D.4.44.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π45.角动量Z 分量的归一化本征函数为CA.12πϕ exp()im .B.)ex p(21r k i ⋅π.C.12πϕexp()im .D.)ex p(21r k i ⋅π.46.波函数)ex p()(cos )1(),(ϕθϕθim P N Y ml lm m lm -= A.????是 L2的本征函数,不是 L z 的本征函数.B.不是 L 2的本征函数,是L z 的本征函数. C 是 L2、 L z 的共同本征函数.D.即不是 L 2的本征函数,也不是L z 的本征函数. 47.若不考虑电子的自旋,氢原子能级n=3的简并度为 A.3.B.6.C.9.D.12. 48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是A.????库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为W r dr R r dr 323222()=,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是A.a 0.B.40a .C.90a .D.160a .51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为A.E E 321434,;,.B.E E 321232,;,-.C.E E 321232,;,.D.E E 323414,;,. 52.接51题,该体系的角动量的取值及相应几率分别为A.21 ,.B. ,1.C.212 ,.D.212,. 53.接51题,该体系的角动量Z 分量的取值及相应几率分别为A.01434,;,- .B.01434,;,.C.01232,;, -.D.01232,;,-- . 54.接51题,该体系的角动量Z 分量的平均值为A.14 .B.-14 .C.34 .D.-34 .55.接51题,该体系的能量的平均值为A.-μe s 4218 .B.-3128842μe s .C.-2925642μe s .D.-177242μe s . 56.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C.- k .D.12 k.57.接上题,体系的动量取值几率分别为 A.1,0.B.1/2,1/2.C.1/4,3/4/.D.1/3,2/3. 58.接56题,体系的动量平均值为A.0.B. k .C.- k .D.12 k.59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为A.3252 ωω,.B.1252 ωω,.C.3272 ωω,.D.1252 ωω,.60.接上题,该振子的能量取值E E 13,的几率分别为A.2321,c c .B.232121c c c +,232123c c c +.C.23211c c c +,23213c c c +.D.31,c c .61.接59题,该振子的能量平均值为A.????ω 232123215321c c c c ++.B.5 ω.C.92 ω.D.ω 232123217321c c c c ++.62.对易关系[ ,()]p f x x 等于(f x ()为x 的任意函数)A.i f x '().B.i f x ().C.-i f x '().D.-i f x (). 63.对易关系[ ,exp()]p iy y 等于A.)exp(iy .B.i iy exp().C.- exp()iy .D.-i iy exp(). 64.对易关系[,]x p x 等于 A.i .B.-i .C. .D.- . 65.对易关系[,]L y x 等于A.i z.B. z .C.-i z .D.- z . 66.对易关系[, ]L zy 等于A.-i x.B.i x .C. x .D.- x . 67.对易关系[, ]L zz 等于 A.i x.B.i y.C.i .D.0. 68.对易关系[, ]x py 等于A. .B.0.C.i .D.- . 69.对易关系[ , ]pp y z 等于A.0.B.i x.C.i p x .D.p x . 70.对易关系[ ,]L L x z 等于 A.i L y.B.-i L y.C.L y.D.- L y.71.对易关系[ , ]L L z y等于A.i L x.B.-i L x.C.L x .D.-L x .72.对易关系[ , ]L L x 2等于 A. L x .B.i L x .C.i L L z y ( )+.D.0. 73.对易关系[ , ]L L z 2等于 A. L z .B.i L z .C.i L L x y ( )+.D.0. 74.对易关系[, ]L px y 等于A.i L z .B.-i L z.C.i p z .D.-i p z. 75.对易关系[,]p L z x 等于 A.-i py .B.i py .C.-i L y.D.i L y.76.对易关系[ , ]L p zy 等于A.-i px .B.i p x .C.-i L x.D.i L x. 77.对易式[ , ]L x y 等于A.0.B.-i z.C.i z .D.1. 78.对易式[ , ]F F m n 等于(m,n 为任意正整数)A. Fm n+.B. Fm n-.C.0.D. F. 79.对易式[ , ]F G 等于A. FG.B. GF .C. FG GF -.D. FG GF +. 80..对易式[,]F c 等于(c 为任意常数)A.cF.B.0.C.c .D.F ˆ. 81.算符 F和 G 的对易关系为[ , ]F G ik =,则 F 、 G 的测不准关系是 A.( )( )∆∆F G k 2224≥.B.( )( )∆∆F G k 2224≥. C.( )( )∆∆F G k 2224≥.D.( )( )∆∆F G k 2224≥. 82.已知[ , ]x p i x = ,则 x和 p x 的测不准关系是 A.( )( )∆∆x p x 222≥ .B.( )( )∆∆x p 2224≥ .C.( )( )∆∆x p x 222≥ .D.( )( )∆∆x p x 2224≥ . 83.算符 L x 和 L y 的对易关系为[ , ] L L i L x y z = ,则 L x、 L y 的测不准关系是A.( )( ) ∆∆L L L x yz 22224≥ .B.( )( ) ∆∆L L L x y 22224≥ . C.( )( ) ∆∆F G L z 22224≥.D.( )( ) ∆∆F G L 22224≥ . 84.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze r E s .B.[]-∇+= 22222μψψze r E s.C.[]-∇-= 2222μψψze r E s .D.[]-∇-= 22222μψψze r E s .85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222 .B.-μ224222z e n s .C.-μze n s 2222 .D.-μz e n s 24222 .86.在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动的质量μ为的粒子,其状态为 ψππ=42aa x a x sin cos ,则在此态中体系能量的可测值为 A.22222229,2a a μπμπ ,B.πμπμ2222222 a a ,,C.323222222πμπμ a a ,,D.524222222πμπμ a a ,. 87.接上题,能量可测值E 1、E 3出现的几率分别为A.1/4,3/4.B.3/4,1/4.C.1/2,1/2.D.0,1. 88.接86题,能量的平均值为A.52222πμ a ,B.2222πμ a ,C.72222πμ a ,D.5222πμ a .89.若一算符 F 的逆算符存在,则[ , ]F F -1等于A.1.B.0.C.-1.D.2.90.如果力学量算符 F 和 G 满足对易关系[ , ]F G =0,则A. F和 G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. F和 G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值. C. F和 G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值. D. F和 G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值. 91.一维自由粒子的能量本征值A.????可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式[ , ()]p p f x x x 2等于A.-i p f x x '()2.B.i p f x x '()2.C.-i p f x x ()2.D.i p f x x ()2. 93.定义算符yx L i L L ˆˆˆ±=±,则[ ,]L L +-等于A.z L ˆ .B.2 L z .C.-2 L z .D.z L ˆ-. 94.接上题,则[ ,]L L z +等于 A. L +.B. L z .C.-+ L .D.-L z . 95.接93题,则[ ,]L L z -等于 A. L -.B. L z .C.-- L .D.-L z .96.氢原子的能量本征函数ψθϕθϕnlm nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数. 97.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数. 98.对易关系式[ ,]FG H 等于A.[ , ] [ , ]F H G F G H +.B.[ , ] F H GC. [ , ]F G H .D.[ , ] [ , ]F H G F G H -.99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'ex p(21)('x p ix Pπψ=,它在动量表象中的表示是A.δ(')p p -.B.δ(')p p +.C.δ()p .D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是 A.δ(')x x -.B.δ(')x x +.C.δ()x .D.δ(')x .101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是BA.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是BA.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001.B.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010.C.1000⎛⎝ ⎫⎭⎪⎪⎪⎪.D.0100⎛⎝ ⎫⎭⎪⎪⎪⎪. 103.线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a .B.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a .C.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 0b a .D.00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪. 104.在(, L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 A. .B.- .C.2 .D.0.105.算符 Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符 (,)F x i x ∂∂在Q 表象中的矩阵元的表示是B A.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂.B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂. C.F u x F x i x u x dx mnn m =⎰()(,)()* ∂∂.D.F u x F x i x u x dxmn m n =⎰()(,)()*∂∂.106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵.B 一个上三角方阵.C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p x∂∂.B.i p x ∂∂.C.-i p x 2∂∂.D.i p x 2∂∂. 108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+ .B.p p 2222212μμω∂∂-.C.22222212p p ∂∂μωμ -.D.--p p 2222212μμω∂∂. 109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是 A.±1.B.0.C.±i .D.1±i .110.接上题,F 的归一化本征态分别为A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.B.1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.C.12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,. 111.幺正矩阵的定义式为 A.SS +-=.B.S S +=*.C.S S =-.D.S S *=-.112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符()( )/axip=+μωμω212,则对易关系式[ , ]a a +等于 A.[ , ]a a +=0.B.[ , ]a a +=1.C.[ , ]a a +=-1.D.[ , ]a a i +=.114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似)A.E H H E E nnn mn nmm()()()''0200++-∑.B.E H H E E nnn mn nmm()()()'''0200++-∑.C.E H H E E nnn mn mnm()()()'''0200++-∑.D.E H H E E nnn mn mnm()()()''0200++-∑.115.非简并定态微扰理论中第n 个能级的一级修正项为 A.H mn '.B.H nn '.C.-H nn '.D.H nm '.116.非简并定态微扰理论中第n 个能级的二级修正项为A.H EE mnnmm'()()200-∑.B.''()()H EE mnnmm200-∑.C.''()()H EE mnmnm200-∑.D.H EE mnmnm'()()200-∑.117.非简并定态微扰理论中第n 个波函数一级修正项为A.H EE mnnmm m '()()()000-∑ψ.B.''()()()H E E mn nmm m000-∑ψ.C.''()()()H E E mn mnm m000-∑ψ.D.H EE mnmnm m'()()()000-∑ψ.118.沿x 方向加一均匀外电场ε,带电为q 且质量为μ的线性谐振子的哈密顿为A. H d dx x q x =-++ 22222212μμωε.B. H d dx x q x =-++ 2222212μμωε.C. H d dx x q x =-+- 2222212μμωε.D. H d dx x q x =-+- 22222212μμωε.119.非简并定态微扰理论的适用条件是A.H E E mkkm'()()001-<<.B.H E E mk km'()()001+<<.C.H mk '<<1.D.E E km()()001-<<.120.转动惯量为I ,电偶极矩为D 的空间转子处于均匀电场ε中,则该体系的哈密顿为A.ε ⋅+=D I L H 2ˆˆ2.B.ε ⋅+-=D I L H 2ˆˆ2.C.ε⋅-=D I L H 2ˆˆ2.D.ε ⋅--=D I L H 2ˆˆ2.121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm nm mm H E E =+-∑()()()()''0000.B.ψψψn n mn nm mm H E E =+-∑()()()()''0000.C.ψψψn nmn mnmmH E E =+-∑()()()()''0000.D.ψψψn nnm mnmm H E E =+-∑()()()()''0000.122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为 A.????五个子能级.B.四个子能级.C.三个子能级.D.两个子能级. 123.一体系在微扰作用下,由初态Φk 跃迁到终态Φm 的几率为A.22' )'ex p('1⎰t mk mkdt t i H ω .B.2' )'ex p('⎰tmk mkdt t i H ω.C.22')' ex p(1⎰tmk mkdt t i Hω .D.2' )'ex p(⎰tmk mkdt t i Hω.124.用变分法求量子体系的基态能量的关键是 A.????写出体系的哈密顿.B 选取合理的尝试波函数.C 计算体系的哈密顿的平均值.D 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach 实验证实了A.????电子具有波动性.B.光具有波动性.C.原子的能级是分立的.D.电子具有自旋.126. S 为自旋角动量算符,则[ , ]SS y x 等于A.2i .B.i .C.0.D.-i S z.127. σ为Pauli 算符,则[ , ]σσx z 等于A.-i y σ.B.i y σ.C.2i y σ.D.-2i y σ.128.单电子的自旋角动量平方算符 S2的本征值为 A.142 .B.342 .C.322 .D.122 .129.单电子的Pauli 算符平方的本征值为 A.0.B.1.C.2.D.3.130.Pauli 算符的三个分量之积等于 A.0.B.1.C.i .D.2i .131.电子自旋角动量的x 分量算符在S z 表象中矩阵表示为A. S x =⎛⎝ ⎫⎭⎪ 21001.B. S i i x =-⎛⎝ ⎫⎭⎪ 200.C. S x =⎛⎝ ⎫⎭⎪ 20110.D.S x =-⎛⎝ ⎫⎭⎪21001. 132.电子自旋角动量的y 分量算符在S z 表象中矩阵表示为A. S y =⎛⎝ ⎫⎭⎪ 21001.B. S i y =-⎛⎝ ⎫⎭⎪ 20110.C. S i i i y =-⎛⎝ ⎫⎭⎪ 200.D.S i i y =⎛⎝ ⎫⎭⎪200. 133.电子自旋角动量的z 分量算符在S z 表象中矩阵表示为A. S z =⎛⎝ ⎫⎭⎪ 21001.B. S z =-⎛⎝ ⎫⎭⎪ 20110.C. S z =-⎛⎝ ⎫⎭⎪ 21001.D.S i z =-⎛⎝ ⎫⎭⎪21001. 134. , J J 12是角动量算符,J J J =+12,则[ , ] J J 212等于 A. J 1.B.- J 1.C.1.D.0. 135.接上题,[ , ] J J z 12等于 A.i J J xy( )11+.B.i J z1.C.Jz1.D.0.136.接134题,]ˆ,ˆ[12z J J 等于A.i J J x y ( )11+.B.i J z 1.C.J z1.D.0.137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0, .B.0,- .C. 22,.D. 22,-.138.接上题,测得s z 为22,-的几率分别是 A.a b ,.B.a b 22,.C.a b 2222/,/.D.a a b b a b 222222/(),/()++.139.接137题,s z 的平均值为A. 0.B.)(222b a - .C.)22/()(2222b a b a +- .D. .140.在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为A. ,-.B. /,2.C. /,/22-.D. ,/-2. 141.接上题,测量s z 的值为 /,/22-的几率分别为 A.3212/,/.B.1/2,1/2.C.3/4,1/4.D.1/4,3/4. 142.接140题,s z 的平均值为A. /2.B. /4.C.- /4.D.- /2. 143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性. 145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A.???0,1,2,3,4.B.1,2,3,4.C.0,1,2,3.D.1,2,3.146.下列各物体哪个是绝对黑体(B)(A)不辐射任何光线的物体(B)不能反射任何光线的物体(C)不能反射可见光的物体(D)不辐射可见光的物体 147.金属的光电效应的红限依赖于:(C)(A)入射光的频率(B)入射光的强度(C)金属的逸出功(D)入射光的频率和金属的逸出功 148.关于不确定(测不准)关系有以下几种理解: (1)粒子的动量不可能确定(2)粒子的坐标不可能确定(3)粒子的动量和坐标不可能同时确定(4)不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:()(A)(1),(2)(B)(2),(4)(C)(3),(4)(D)(4),(1) 149.完全描述微观粒子运动状态的是:() (A)薛定谔方程(B)测不准关系(C)波函数(D)能量 150.完全描述微观粒子运动状态变化规律的是:() (A)波函数(B)测不准关系(C)薛定谔方程(D)能级151,卢瑟福粒子实验证实了[];斯特恩-盖拉赫实验证实了[];康普顿效应证实了[];戴维逊-革末实验证实了[].(A)光的量子性.(B)玻尔的能级量子化假设.(C)X 射线的存在.(D)电子的波动性(E)原子的有核模型.(F)原子的自旋磁矩取向量子化. 152.关于光电效应有下列说法:(1)任何波长的可见光照射到任何金属表面都能产生光电效应;(2)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,释出的光电子的最大初动能也不同;(3)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,单位时间释出的光电子数一定相等;(4)若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍.其中正确的是:()(A)(1),(2),(3)(B)(2),(3),(4)(C)(2),(3)(D)(2),(4)153.已知氢原子从基态激发到某一定态所需能量为10.19eV,若氢原子从能量为-0.85eV 的状态跃迁到上述定态时,所发射的光子的能量为:()(A)2.56eV(B)3.41eV(C)4.25eV(D)9.95eV 154.若光子与电子的波长相等,则它们:()(A)动量及总能量均相等(B)动量及总能量均不相等(C)动量相等,总能量不相等(D)动量不相等,总能量相等155.量子力学能够正确地描述______的运动规律()A.宏观物体B.微观粒子C.高速运动D.低速运动156、下列选项中不属于波函数标准条件的是() A 连续性;B 有限性;C 周期性;D 单值性。

相关文档
最新文档