北斗卫星导航系统空间信号授时设计分析

合集下载

基于GPS和北斗卫星授时的高精度时间显示系统设计

基于GPS和北斗卫星授时的高精度时间显示系统设计
信息工程
基于 GPS 和北斗卫星授时的高精度时间显示系统 设计
张鸣凤,谢家祖,吴筝,付玉,时瑞瑞,郭辉,邓帅 (天津师范大学电子与通信工程学院,天津,300387)
摘要:本论文根据目前国内通讯授时系统的情况, 结合了GPS和北斗卫星导航系统(以下简称BDS)的双模授时方法, 提出一种基于GPS和BDS 授时的高精度时间显示系统的设计方案。本文研究了一种由单片机STM32控制的基于GPS和BDS授时的高精度时间显示系统,该系统确保 在卫星数据丢失的条件下,时间显示依然精准稳定,方案中自主设计的STM32F103RCT6模块,在系统工作空间不受局限的同时,预留了 很多可增加的功能空间。 关键词:北斗卫星导航系统;授时系统;STM32处理器
图 2 信号采集模块的程序框架
处理器开机启动后通过卫星信号接收电路中的 RX1 引 脚和 TX1 引脚采集时间数据,然后将时间数据发送到本地 自守时电路,本地自守时电路根据时间推算的算法保证精确 并自动推算时间。在卫星数据丢失的时候,处理器将直接根 据本地自守时电路推算出来的时间作为当前时间,此时间与 卫星信号发送的实际时间几乎无差别。
块均正常工作 , 若任意一个卫星信号的 1PPS 信号检测不到, 和湿度数值,最后将已经获得的时间信息、温度信息和湿度
对应模块都会自动进行重复采集信号的工作。信号采集芯片 信息发送到大尺寸的 LED 数码管显示。图 3 是该系统的程
能将此信号中的时间信息,利用相应的算法原理,转换成当 序处理流程图。
LED 显示电路采用 74HC245 芯片组成的驱动数码管动
态显示电路,LED 显示电路主要用于将处理器发送过来的
时间信息、温度信息和湿度信息显示给用户。
图 1 为本系统的电路结构连接框图。

北斗卫星室内定位授时解决方案

北斗卫星室内定位授时解决方案

室内是卫星定位盲区
建筑
地铁
隧道
矿井
机增加设备复杂度和成本 达不到工业级高精度要求
现有室内定位不能满足高精度定位需求
目前主流三种室内定位导航:WIFI、蓝牙、UWB
WIFI精度2米左右,部分环境施工困难
蓝牙4.2技术方案成熟,精度1-3米;成本低
蓝牙5.1接近UWB,精度较高可达分米级,2019年面世,成熟 方案少
全场景连续定位,地图坐标统一,室内外定位无感切换 手机、车载终端无需下载专用APP程序,支持高德等常规导航软件方案意义
实现室内外定位低成本无缝融合 提高卫星定位在各行业应用深度 有助于快速高效应急救援救灾
增强站
增强站转为室内环境下 的高精度定位需求设备而设 计,如无人驾驶车辆、高度 自动化的机械设备等,优化 整个智能制造、智慧物流系 统的性能和安全性
隧道导航方案
基准站
中继站
中继站
车站机场导航方案
公交车辆定位管理专用方案
接入其他卫星系统
实际室内定位需要兼容其他卫星系统 美国GPS卫星系统在国内有大量应用 大众场所需要支持美国GPS卫星系统 专用定位系统可只使用北斗卫星系统 另外两个卫星系统根据情况选择支持
UWB技术成熟,有穿透力强、抗多径效果好、安全性高、定位 准确性高;但覆盖范围有限、芯片供应商少、系统建设成本偏
高;不是手机标配,成本较高
方案原理
室内伪卫星定位系统
基准站
卫星信号转发到室内 室内外导航终端通用 导航精度室内外相当 容易覆盖室内大空间 卫星信号覆盖成本小
系统构成
接入室外卫星信号接收 天线,接收卫星信号及 卫星时间,获取实时星 历数据
低损耗电缆
基准站
基准站

北斗卫星导航系统性能分析及应用研究

北斗卫星导航系统性能分析及应用研究

北斗卫星导航系统性能分析及应用研究本文以北斗卫星导航系统性能分析及应用研究为主体,重点研究了北斗卫星伪距多路径效应误差改正、GNSS数据质量分析及软件开发、北斗空间信号精度评估、北斗卫星星载原子钟性能评估分析、BDS/GPS组合双系统相对定位性能分析及其应用。

论文主要进行了以下的工作和研究:1.本文首先总结概括了研究背景以及GNSS数据质量评估分析技术、北斗监测评估分析和BDS/GPS组合双系统组合相对定位技术的研究现状,然后简要阐述了本文的研究目的和主要内容。

2.本文针对全球卫星导航系统的观测信息,详细介绍了GNSS数据质量分析的基本原理,主要内容包括卫星导航定位系统的一些基本观测量、常见组合观测量、主要误差源和一些常见的数据质量分析参数等。

3.本文针对多路径效应对GNSS导航定位的影响,开展了对北斗卫星伪距多路径误差的研究,分析了北斗卫星伪距多路径误差与高度角和信噪比的关系,并对北斗卫星伪距多路径误差与高度角进行了相关性强度分析,采用了二次多项式拟合法和小波变换法对北斗卫星伪距多路径进行了修正。

4.本文针对目前流行的GNSS数据质量分析软件的局限性,编制了能有效处理GNSS数据的质量分析软件GDQA,软性操作方便,功能完善,实现了对GNSS观测文件的编辑、观测数据质量检核和结果可视化等功能,并开展了对我国北斗三号卫星观测数据质量的分析。

5.本文针对我国北斗空间信号精度的研究现状,详细介绍了BDS广播轨道精度评估、广播钟差精度评估和用户测距误差URE精度评估的定义和计算流程,并开展了以精密星历为参考,对北斗卫星导航系统进行了广播轨道精度评估、广播钟差精度评估和用户测距误差URE的精度评估。

6.本文针对目前BDS在轨卫星原子钟运行状况,研究了星载原子钟性能评估的相应指标、算法和模型,对我国北斗在轨卫星星载原子钟进行了频率准确度、频率漂移率、频率稳定度、钟差模型残差序列评估分析和钟差噪声识别性能分析等。

北斗卫星授时接收机的设计与实现

北斗卫星授时接收机的设计与实现

北斗卫星授时接收机的设计与实现徐宁波【摘要】针对北斗卫星导航系统的时钟高稳特性,研究了高精度、低成本授时接收机的设计和实现方法.介绍了授时接收机从北斗卫星提取授时时标的设计方案,对方案中各部分做了功能分析.对产生授时时标中的关键环节、本地时钟的选择、本地时钟钟差的处理、卫星位置偏差的处理和授时时标合成策略进行了阐述.给出了授时系统的测试方法,分析了性能指标,测试结果表明能够达到优于100 ns (1σ)的授时精度.【期刊名称】《无线电工程》【年(卷),期】2010(040)010【总页数】3页(P38-39,61)【关键词】授时时标;本地钟差;卫星星历【作者】徐宁波【作者单位】武汉大学,测绘学院,湖北,武汉,430079;远东华强导航定位有限公司,河北,石家庄,050081【正文语种】中文【中图分类】TN850 引言时间和频率与人类的生活越来越息息相关,对国民经济建设和发展起着重要作用。

随着北斗一号卫星导航系统日趋成熟,基于该系统的授时应用也越来越得到人们的关注。

基于卫星信号传递时间的方法一般有2种:①卫星共视法,地面上距离很远的2台或几台时钟进行比较而实现同步;②载波相位法,通过计算2台接收机与卫星之间的几何距离得到时间信息。

针对简单便捷应用的授时,前2种方法虽然精度更高,但设计复杂需要多台接收机同时工作以互相比对提取时间信息,而且地域性受到制约不利于授时接收机的普遍应用。

因而提出了应用单颗卫星采用位置保持模式授时的方法,并在实践中得到验证。

1 授时接收机设计方案1.1 授时接收机的组成授时型接收机是在卫星接收机的基础上添加了授时模块。

授时模块主要由本地钟、时刻比对、钟差计算、秒脉冲(1pps)合成和秒脉冲(1pps)合成控制等部分组成,如图1所示。

从硬件实现上包括可编程逻辑器件(FPGA)和处理器(DSP)两部分,通过相互配合来完成授时时标的输出,其中钟差计算和1pps合成控制在DSP中实现,其他部分在FPGA内部实现。

北斗卫星导航系统的应用分析

北斗卫星导航系统的应用分析

北斗卫星导航系统的应用分析摘要:“古有北斗七星辨方向,今有北斗卫星测全球”。

广义上的“北斗”是指“北斗七星”,即天枢星、天璇星、天玑星、天权星、玉衡星、开阳星和瑶光星。

本文的“北斗”是指由中国科研团队自主研发的中国北斗卫星导航系统(以下简称“北斗系统”)。

随着科技不断发展,我国越来越重视全球导航技术研发,“北斗”从最初的一个雏形,到现在已经成为较成熟的全球卫星导航系统,可为全球用户提供精确定位、导航、授时服务,是我国重要的空间基础设施。

关键词:北斗卫星;导航系统1 全球卫星导航系统目前全球共有4种全球卫星导航系统,分别为美国的GPS、俄罗斯的GLONASS、欧盟的Galileo和中国的BDS[2]。

1957年10月,前苏联成功发射了世界上第一颗人造卫星给了美国很大启发;经过20 a的研究建设,美国完成了全球卫星导航系统的研制工作。

冷战期间,前苏联紧追不舍,也提出了建设卫星导航系统的设想。

1982年10月,前苏联成功发射了第一颗GLONASS卫星。

1970年,我国发射了第一颗人造地球卫星东方红一号;此后,我国科学家陆续研究、开发自己的卫星导航系统,但由于我国经济、技术等条件的局限性,难以发展类似美国和前苏联的全球定位系统。

1990年海湾战争爆发,美国军队利用GPS系统进行军事作战,这让我国意识到卫星导航系统的重要价值。

随后,我国科学家又提出并开展了大量关于卫星理论和技术上的研究工作,1994年正式启动中国北斗一号系统的建设工作。

2000年4月,国际电联正式批准中国申报频率资源和轨道位置;紧接着在2000年10月和12月我国发射了2颗地球静止轨道卫星(实验卫星);2004年8月中国正式启动北斗二号系统工程[2]。

经过26 a的研究和磨炼以及无数次的实验,截至2020年7月29日,我国已经成功发射了55颗卫星;至2020年7月31日,中国向全世界郑重宣告北斗三号全球卫星导航系统正式开通。

2 北斗卫星导航系统北斗系统是基于国家安全和经济社会发展而自主建设运行和面向全球的卫星导航系统,为全球用户提供导航、精确定位以及授时服务,是我国重要的空间基础设施。

开题报告书 北斗卫星导航系统(BDS)数据质量分析及定位精度评价

开题报告书 北斗卫星导航系统(BDS)数据质量分析及定位精度评价
**大学生姓名
学科、专业
研究方向
指导教师
姓名、职称
培养学院
开题报告时间
**大学研究生院制表
重点针对重点针对重点针对现阶段基本星座下现阶段基本星座下现阶段基本星座下33颗地球同步轨道卫星颗地球同步轨道卫星颗地球同步轨道卫星geogeogeo33颗倾斜地球同步轨道卫星颗倾斜地球同步轨道卫星颗倾斜地球同步轨道卫星igsoigsoigso的北斗的北斗的北斗卫星导航系统服务性能进行了仿真分析对比了北斗卫星导航系统卫星导航系统服务性能进行了仿真分析对比了北斗卫星导航系统卫星导航系统服务性能进行了仿真分析对比了北斗卫星导航系统compasscompasscompass与与与gpsgpsgps兼容兼容兼容后在中国地区测量精度的变化后在中国地区测量精度的变化后在中国地区测量精度的变化20112011分析了北斗卫星导航系统分析了北斗卫星导航系统分析了北斗卫星导航系统的组成结构在仿真的组成结构在仿真的组成结构在仿真compasscompasscompass系统星座结构的基础上分析该系统在中国大陆区域内卫星系统星座结构的基础上分析该系统在中国大陆区域内卫星系统星座结构的基础上分析该系统在中国大陆区域内卫星的可见性的可见性的可见性pdoppdoppdop值和定位精度

北斗卫星导航系统定位精度分析

北斗卫星导航系统定位精度分析

北斗卫星导航系统定位精度分析摘要:随着北斗卫星导航系统的应用和普及,定位也将会引入更多的先进技术,比如BP神经网络、深度学习等,分析定位过程中存在的误差及影响因素,进一步降低动态定位误差,提高动态定位性能。

基于此,本文对北斗卫星导航系统定位精度进行了分析。

关键词:北斗;卫星轨道;原子钟;电离层;多路径;差分引言卫星定位在国防建设、森林防火、抗震救灾、海洋渔业、交通、水利等行业发挥了重要作用。

在卫星定位系统中GPS的应用最广,与其相比北斗卫星导航系统在市场占有率与服务体验上还有一定差距。

但作为国家十三五规划重点推进项目,北斗系统的广泛应用,有利于我国摆脱对GPS的过度依赖,消除国家战略安全的潜在威胁。

为了增加科研人员以及普通用户对北斗系统的了解,加快北斗系统的推广,对北斗定位系统定位精度的研究是很有必要的。

1.北斗定位系统的定位精度1.1卫星轨道影响卫星轨道参数作为求解方程中的已知量,是求解位置的基础。

卫星轨道信息是包含在卫星历书内的,历书的精度决定了定位的精度,通过对历书的生成与更新的研究,发现历书的精度与摄动力模型有关。

卫星是绕地飞行物,万有引力是其维持在运行轨道面的力学基础,由于地球质量分布不均匀,或者是其他星体、潮汐等引起的引力变化,以及大气阻力与太阳光压的影响,卫星偏离了原定轨道,从而造成导航电文内包含的历书信息与卫星实际轨道不符。

这些摄动力对卫星轨道偏离的影响,需要建立相应的摄动力模型来预报轨道变化,修正历书减小误差。

北斗定位系统采用了三种轨道面,包括中轨道,倾斜地球同步轨道以及地球同步轨道,需要建立三种摄动力模型用来预测并纠正卫星轨道。

GPS系统只有中轨道卫星,并且摄动力模型已经经过三十多年的完善,北斗卫星观测数据积累不足,且摄动力模型参考GPS模型,摄动力模型与光压模型还不能满足定位精度对摄动力模型的要求,依据北斗系统的三轨道面的摄动力模型仍然是研究的重点。

卫星轨道变动的动力来自于摄动力与发动机,其中摄动力是带来误差的外力。

北斗授时系统原理

北斗授时系统原理

北斗授时系统原理北斗授时系统是中国自主研发的全球卫星导航系统,它的授时功能是北斗系统的基本功能之一。

北斗授时系统的原理是利用卫星导航定位和钟差传播原理,通过北斗卫星提供的授时信号进行时间同步。

北斗授时系统利用了北斗卫星的导航定位信号,该信号由各个卫星以无线电波的形式广播到空中,并通过接收器接收到地面接收机。

接收机将接收到的导航定位信号进行处理,计算出接收机与卫星之间的距离差,并结合卫星的位置信息,通过三角定位原理计算出接收机的位置坐标。

在北斗授时系统中,授时信号是通过卫星导航信号广播到接收器的。

卫星上搭载高精度原子钟,它的稳定性和准确性能够满足时间同步的需求。

卫星将原子钟的时间信息以与导航定位信号相分离的方式进行广播。

接收器接收到授时信号后,将其与接收到的导航定位信号进行对比,计算出信号传播的时间差,从而得到接收机当前的时间。

授时信号的传播过程受到大气等环境因素的影响,因此需要进行误差校正。

北斗授时系统中,采用了差分授时的方法进行误差校正。

差分授时是以参考站的时间为准,通过与参考站的比对来校正接收机的时间。

参考站位于已知位置,并且配备有高精度的原子钟,可以提供准确的时间信息。

接收器与参考站进行通信,将接收到的授时信号与参考站的时间进行比对,计算出二者之间的时间差,并通过校正算法对接收器的时间进行校正。

通过北斗授时系统,可以实现广域的时间同步功能。

北斗卫星以多颗星座布局在不同的轨道上,覆盖范围广阔,可以提供全球性的北斗导航服务。

授时信号的广播范围与导航信号保持一致,因此可以实现全球范围内的时间同步。

北斗授时系统具有高精度、高稳定性的特点,可以满足各种领域的时间同步需求。

总之,北斗授时系统是利用北斗卫星导航定位信号和授时信号进行时间同步的系统。

它通过卫星导航定位信号计算接收机的位置,利用授时信号与参考站的时间进行差分校正,实现时间同步功能。

北斗授时系统具有全球覆盖范围和高精度的特点,可以应用于多个领域,满足各种时间同步需求。

“北斗掉线”问题暨北斗导航系统改进之建议

“北斗掉线”问题暨北斗导航系统改进之建议

link appraisement伍爱群1 刘芳宇2 蒯震华1.上海航天信息科技研究院、同济大学;2.院第八〇四研究所图1 北斗卫星导航系统组成示意图图2 北斗混合导航星座设计及其星下点分布示意图GEO卫星星下点为固定点,IGSO卫星星下点为“8”字,MEO卫星星下点为可变弧段基础产品终端产品系统集成运营服务CHINA SCIENCE AND TECHNOLOGY INFORMATION May.2021·中国科技信息2021年第10期航空航天◎平台,价格也各不相同。

目前,2G网络的行车记录仪价格在200~260元左右,4G网络的价格在1000~4500元不等,增加人脸识别监控功能的,则需要5000元左右。

北斗行车记录仪的运用的确为营造更好的货运环境做出了不小的贡献,一方面是帮助公司和监管部门对车辆进行管控,另一方面也是提醒司机不要超速和疲劳驾驶,保障司机和交通道路的安全。

但是,不少车主却对此“叫苦不迭”。

首先是应用与管理层面的问题。

一般来说,重卡上的北斗系统会在监测到车主行车3个半小时的时候报警提醒,但如果此时车主距离服务区或者下个出口特别远,应急车道又不能违停,那就很难避免行车记录仪上超出4小时的疲劳驾驶记录。

此外,还有的车主是因为堵车而“被迫”疲劳驾驶。

另外还存在一些技术层面的问题。

例如卡明明插进去了,信号却错误显示没有插卡;或者老老实实停车休息了,调取的记录却还是有问题等。

还有部分卡车司机认为北斗的行车监管太硬性化、指标化,没有考虑司机们的感受,缺乏人性化管理,可见,以北斗行车记录仪来判断疲劳驾驶,还需要不断地改进与完善。

建议在初步了解了北斗卫星导航系统和北斗行车记录仪的基本情况以后,可以对“北斗掉线”问题进行一定的分析。

通过前面对北斗卫星导航系统的介绍可知,引发争议的“北斗掉线”其实与北斗卫星导航系统之间没有太大的联系。

北斗卫星导航系统为用户提供导航信号,用户终端接收该信号并进行定位。

GNSS空间信号质量评估方法

GNSS空间信号质量评估方法

法2023-11-07•引言•gnss信号特性•gnss空间信号质量评估指标•gnss空间信号质量评估方法•gnss空间信号质量监控系统设计目•总结与展望录01引言研究背景与意义信号质量直接影响到定位精度、可靠性和安全性等关键性能指标,对于GNSS系统的可用性和可信度具有重要影响。

在复杂环境和特定应用场景中,信号质量评估对于保障GNSS服务质量和提升用户体验尤为关键。

全球导航卫星系统(GNSS)在定位、导航和授时等领域具有广泛应用,信号质量评估对于其应用性能至关重要。

研究现状与问题现有的信号质量评估方法主要基于统计分析和模式识别等技术,但这些方法在复杂环境和动态变化场景下的性能和可靠性有待提高。

同时,现有研究在信号质量评估的全面性、准确性和实时性等方面存在不足,难以满足日益增长的应用需求。

目前,针对GNSS信号质量评估的研究主要集中在信号捕获、跟踪和定位等环节,对于信号质量评估的理论和方法尚未形成完善的体系。

研究内容与方法01研究内容:本研究旨在建立完善的GNSS空间信号质量评估方法体系,包括信号质量评估指标、评估模型和评估算法等。

02方法:本研究将综合运用理论分析、数值模拟和实地测试等方法,对GNSS空间信号质量进行深入分析和评估。

03首先,我们将基于信号传播理论和空间信号模型,分析GNSS空间信号的质量特征和影响因素;其次,将构建基于统计分析和模式识别的信号质量评估模型和算法;最后,通过实地测试验证评估方法的可行性和有效性。

02 gnss信号特性gnss信号结构信号结构GNSS信号结构包括伪随机码、导航电文和载波三部分。

伪随机码由二进制序列组成的伪随机码,用于标识发送信号的卫星。

导航电文包含卫星导航信息,如卫星位置、时间戳、星历参数等。

载波GNSS信号的载波频率较高,以实现较长的传播距离和较低的传播损耗。

GNSS信号采用二进制相移键控(BPSK)调制方式。

调制方式将导航电文和伪随机码通过BPSK调制到载波上,实现信号的调制。

北斗卫星授时介绍

北斗卫星授时介绍

北斗卫星授时方案简介1 概述1.1 北斗系统介绍“BD一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称:“双星定位”系统或“BD一号”系统。

主要是利用两颗地球同步卫星来测量地球表面和空中的各种用户的位置,并同时兼有双向报文通信和定时授时的功能。

该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星导航、定位、通信系统。

随着2003年5月25日“BD一号”系统的第3颗卫星成功发射升空,将进一步完善“BD一号”系统工作的稳定性和可靠性。

1.2 卫星授时对于一个进入信息社会的现代化大国,导航定位和授时系统是最重要、而且也是最关键的国家基础设施之一。

现代武器实(试)验、战争需要它保障,智能化交通运输系统的建立和数字化地球的实现需要它支持。

现代通信网和电力网建设也越来越增强了对精度时间和频率的依赖。

从建立一个现代化国家的大系统工程总体考虑,导航定位和授时系统应该说是基础的基础。

它对整体社会的支撑几乎是全方位的,星基导航和授时是未发展的必然趋势。

美国投入巨资建成了全球定位系统(GPS),俄罗斯也使自己的全球导航卫星系统(GLONASS)投入了运行。

欧盟一些国家也正在联合开展伽利略(Galileo)卫星导航系统的研制。

为了提高民用定位定时的性能和可靠性、安全性,利用这些卫星系统建立广域增强系统(Waas)在美国、日本、欧洲和俄罗斯也在计划或研制之中。

“北斗”无源授时型接收机仅接收“北斗”卫星信号,在注入用户当前的地理位置后便可以实现精确的授时和守时。

该产品已经过信息产业部通信计量中心的鉴定测试,鉴定测试时应用铯钟作为时间基准,鉴定测试结果表明“其北斗无源授时型接收机在天线位置精度为10m 的条件下,经过23个小时的连续测试,输出的秒脉冲定时偏差小于22.54ns。

同时,该无源授时型接收机已应用于几个单位的产品中,另外,无源授时型接收机也可以广泛的应用于如:通信、电力、交通运输、港口管理、水力监控、海洋作业,海上缉私和抢险救灾等民用部门和行业中。

北斗一号卫星导航系统定位算法及精度分析

北斗一号卫星导航系统定位算法及精度分析

北斗一号卫星导航系统定位算法及精度分析北斗一号卫星导航系统定位算法及精度分析3赵树强,许爱华,张荣之,郭小红(西安卫星测控中心,陕西西安710043)摘要:针对我国建立的北斗一号导航定位系统,介绍了该系统的定位原理,给出了基于北斗双星和三星定位算法的模型,进行了实测数据的解算,分析了星历误差、信号传播误差和接收机钟差等误差对定位精度的影响,计算结果表明该算法简单、实用,可满足中高精度的导航定位用户需求,对二代导航系统定位数据处理和精度分析具有参考价值。

统系统,是我国自行研制、(RDSS ,Radio Determination Satellite Service) ,能为用户提供快速定位、简单数字报文通信及高精度授时服务的全天候、区域性的卫星导航定位系统。

在2000年10月31日和12月21日发射了两颗“北斗导航试验卫星”,具备了双星定位的功能。

关键词:北斗一号卫星;定位算法;定位误差;精度分析北斗一号卫星导航定位系统又称为双星定位建立的一种区域性定位系中图分类号: P207文献标识码:A文章编号:1008 -9268 (2008) 01 -0020 -051.引言是待测站。

但是,地球表面不是一个规则椭球面,即用户一般不在参考椭球面上,要唯一确定待测站“北斗一号”卫星导航定位系统是有源的,需要和“北斗”定位总站即中心站建立联系才能定位,因此存在着系统用户数量易饱和以及定位速度慢等方面的缺点。

2003年5月25日我国将第三颗“北斗一号”备份卫星送入太空,这使得我国“北斗一号”系统具备了无源定位的功能。

针对北斗双星有源定位和三星无源定位的算法与定位精度进行研究。

2.北斗一号卫星导航系统定位原理3.1双星定位原理以两颗卫星为球心,以卫星到待测站的距离为半径分别作两个球。

因为两颗卫星在轨道上的弧度距离为60°,即两颗卫星的直线距离约为42000km之间,这一直线距离小于卫星到观测站的两个距离之和(约为72000km) ,所以两个大球必定相交。

基于GPS和北斗双模同步的高精度频率源对时的设计

基于GPS和北斗双模同步的高精度频率源对时的设计

基于GPS和北斗双模同步的高精度频率源对时的设计摘要:近年来,社会进步迅速,我国的科学技术的发展也有了改善。

电力系统事故分析需要对系统故障前后的电压与电流数据、保护装置和断路器动作顺序及某一时刻波形进行分析,这些事故能否准确及时分析,取决于是否有统一、精度高的时间同步信号。

随着电力系统可靠性要求越来越高,GPS 授时系统抗干扰能力、安全性、授时连续性及可靠性低的问题不断凸显出来。

自 2003 年 5 月,我国将第三颗“北斗一号”成功送入太空,标志着我国成为第三个拥有完善卫星导航定位系统的国家。

目前,我国正建设“北斗二代”系统,该系统由静止轨道上 5 颗卫星和非静止轨道上 30 颗卫星组成,可满足我国各个行业发展需要。

关键词:GPS;北斗双模同步;高精度频率源对时;设计引言预计 2020 年全球将进入 5G 时代,在 5G 时代人们可以享受千倍提速的网络、通信等服务,这些便利的服务要求时钟系统具有极高的准确性和稳定性,对时钟精度要求甚至达到纳秒级别,并且各个系统都要求达到严格的时间同步。

卫星授时是目前主流的时间同步技术,其中美国的全球卫星导航系统(GPS)技术最为成熟,凭借覆盖面广、精度高等特点成为了卫星授时的首选。

但是GPS 归美国政府所有,由美国军方开发和控制,存在着故意降低精度的可能,甚至在战争等不确定因素下可能导致中国等其他地区不能使用 GPS 服务,对国内各种 GPS应用造成了潜在隐患。

1各功能模块设计BDS/GPS 双模授时系统采用模块化设计,由以下几个部分组成:1)标准信号接收单元。

该单元通过对外部输入的多路径标准信号(空间时间信号和有限传输时间信号)进行信号质量判别及进度测试,对信号优先级进行排序或通过人为操作控制,为系统提供标准时间信号和信息。

2)时间信号产生单元。

该单元是系统核心部件,由频率驯服组件和时间信号产生组件组成。

频率驯服组件通过标准信号和本地频率源信号进行频率比的测量,以获得频率误差;时间信号产生组件是将已驯服的内部频率源和标准接收单元时间信息合成产生本地各种时间信号和信息,如IRIG - B、NTP、1PPS、1PPM、1PPH 等。

北斗导航卫星系统定位原理的研究与分析;通信工程

北斗导航卫星系统定位原理的研究与分析;通信工程

图 1-1 GPS 卫星星座
GPS 由美国国防部控制,可提供军民两种服务。军码定位精度 10 米,仅供美军 及盟友使用;民码定位精度 20 米左右,平时向全球开放,战时能实施局部关闭。GPS 在海湾战争中特别是科索沃战争中,对空中平台导航、武器发射瞄准、精确制导、打 击目标定位等重要作战环节都起到了难以替代的关键作用。 该系统是目前最成功的卫 星导航系统, 在实际应用和产业化上处于国际垄断地位。 GPS 已经成为一个国际性的 产业。 2.俄罗斯格洛纳斯(GLONASS) 70 年代初,前苏联国防部也提出了全球导航星系统(GLONASS)的方案设想, 1978 年开始系统设计,1995 年系统组网成功并投入运营,建设耗资 40 多亿美元。系 统星座由分布 3 个轨道面上的 24 颗卫星组成,由俄军方控制[1]。GLONASS 在系统 组成 2w、定位测速原理等方面类似于 GPS,但在一些具体技术体制上也与其存在一 定的差别。GLONASS 可提供军民两种导航定位服务,民用精度 50 米左右,军码精 度与 GPS 相当。GLONASS 的民用市场应用程度远不及 GPS,但其军码系统已在其 武器装备中普遍使用。由于俄罗斯近年来经济不景气,系统补网不及时,随着星座中 卫星寿命到期失效,到 2002 年 8 月只有 5 颗卫星在轨工作了。其中 3 颗(1 组)为 2000 年 10 月发射,2 颗为 2001 年 12 月发射。目前,从高技术战争需要出发,俄罗 斯已下决心恢复和进一步发展该系统。 俄政府于 2001 年 8 月 20 日通过了第 587 号 “全 球导航系统”联邦专项规划,明确了在 2005 年前恢复系统正常工作,并制订了 2010 年前 GLONASS 发展的详细计划。 3. 欧洲伽利略(GALILEO) 欧洲 GALILEO 计划于 1992 年 2 月提出,拟于 2008 年建成,计划投资约 28 亿 美元,系统星座由分布在 3 个轨道面上的 30 颗卫星组成,是欧盟 15 个国家参与建设 的民用商业系统[2]。GALILEO 系统提供 3 种类型服务,即面向市场的免费服务,定 位精度 12-15 米;商业服务,定位精度 5-10 米;公众服务,定位精度 4-6 米。其中后 两种服务是受控和收费服务。欧盟寻求与俄和中国合作,希望分担其部分经费,以其 产品占领市场。GALILEO 系统空间段由 30 颗(其中 3 颗为在轨备份)均匀分布在高 度 23616 公里、倾角 56° 的 3 个圆轨道面上的中圆轨道(MEO)卫星组成,星上装有 导航和搜救载荷。地面段与 GPS 和 GLONASS 相比,增加了对系统差分、增强与完 第 3 页 共 46 页

北斗授时最大时间误差__概述说明以及解释

北斗授时最大时间误差__概述说明以及解释

北斗授时最大时间误差概述说明以及解释1. 引言1.1 概述北斗授时技术是指利用中国自主研发的北斗导航卫星系统进行时间同步和授时的技术。

这项技术在各个领域具有广泛的应用,如交通运输、金融支付系统以及科学研究等。

但随着授时精度要求的提高,人们对于北斗授时技术的最大时间误差也提出了更高的要求。

1.2 文章结构本文将从以下几个方面阐述北斗授时最大时间误差的概述、分析与解释。

首先介绍北斗授时技术的背景和原理,然后详细讨论时间误差的来源和影响因素。

接着,通过数据分析方法与标准化评估指标,对北斗授时技术的最大时间误差进行评估与分析。

此外,我们还将探讨不同领域中时间误差带来的影响,并提出解决方案。

最后,总结归纳时间误差相关内容,讨论北斗授时技术的优势与局限性,并提出未来发展方向及改进建议。

1.3 目的本文旨在全面了解北斗授时技术的最大时间误差问题,并对时间误差的来源进行深入分析。

通过评估和探讨不同领域中时间误差带来的影响,为解决这一问题提供可行的解决方案。

同时,对北斗授时技术的优势与局限性进行评估,并提出未来发展方向及改进建议,以期为相关研究和实践提供有益参考。

2. 北斗授时技术2.1 背景介绍北斗授时技术是指利用中国的北斗导航卫星系统进行时间同步的一种技术。

北斗导航卫星系统是我国自主研发的卫星定位与导航系统,具备全球覆盖能力。

除了提供精准的位置信息外,北斗系统还能够通过广播信号传输时间信息,实现对用户终端设备的时间同步。

2.2 原理解析北斗授时技术的原理基于卫星与用户终端之间的通信。

首先,北斗卫星上搭载高精度的原子钟设备,确保卫星本身具有高准确度的时间标准。

然后,卫星通过广播信号向用户终端发送时间信息。

用户终端接收到广播信号后,利用内部设备对接收到的信号进行处理,并根据卫星发射信号与接收信号之间所需的时间差来计算出授时误差。

2.3 授时过程北斗授时技术中包括以下几个主要步骤:(1)用户终端接收广播信号:用户终端通过天线接收到由北斗卫星发送的广播信号。

北斗三号卫星系统总体设计

北斗三号卫星系统总体设计

第52卷第6期2020年12月Vol.52No.6Dec.2020南京航空航天大学学报Journal of Nanjing University of Aeronautics&Astronautics北斗三号卫星系统总体设计陈忠贵,武向军(中国空间技术研究院通信与导航卫星总体部,北京,100094)摘要:北斗三号全球卫星导航系统(The third generation Beidou navigation satellite system,BeiDou⁃3)于2020年7月31日正式开通运行。

BeiDou⁃3不仅提供定位导航授时服务,同时提供具有北斗特色的多功能服务,包括区域短报文、星基增强、精密单点定位、全球短报文通信、国际搜救等服务。

本文从卫星系统设计角度,详细分析介绍了BeiDou⁃3的功能,并讨论了卫星采用的主要新技术,包括卫星信号体制、星间链路、时频基准、星载综合电子、高效电源以及器部件的自主可控等。

最后,对三类轨道的卫星设计进行了综合论述。

关键词:导航卫星;卫星系统;北斗三号;总体设计中图分类号:V474文献标志码:A文章编号:1005⁃2615(2020)06⁃0835⁃11General Design of the Third Generation BeiDou Navigation Satellite SystemCHEN Zhonggui,WU Xiangjun(Department of Telecommunication and Navigation Satellites,China Academy of Space Technology,Beijing,100094,China)Abstract:The third generation Beidou navigation satellite system(BeiDou-3)officially started full-scale global services on July31,2020.The Beidou satellites are designed to provide positioning,navigation and timing services,as well as certain specific functions,like local and global short message communication,satellite-based augmentation,precise point positioning and international search-and-rescue service.This paper introduces the functions of BeiDou-3in terms of the design principles and new technologies that are integrated into the system.Some novel breakthroughs are particularly analyzed,including the satellite signal system,inter-satellite links,time and frequency standards,space-borne electronics,effective powers and overall automatic controls.Finally,the general design of satellites that specifically targets three kinds of orbits is reviewed.Key words:navigation satellites;satellite system;the third generation Beidou navigation satellite system;general design北斗卫星导航系统是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。

12-北斗-全球卫星导航系统(GNSS)定时单元性能要求及测试方法BD420006-2015介绍

12-北斗-全球卫星导航系统(GNSS)定时单元性能要求及测试方法BD420006-2015介绍

BD 420006—2015北斗/全球卫星导航系统(GNSS) 定时单元性能要求及测试方法Performance requirements and test methods forBeiDou/Global Navigation Satellite Systems (GNSS) timing unit2015-11-01实施2015-10-19 发布目次前言 .............................................................................................................................................................. I II1 范围 (1)2 规范性引用文件 (1)3 术语和定义、缩略语 (1)3.1 术语和定义 (1)3.2 缩略语 (3)4 要求 (4)4.1 总则 (4)4.2 组成 (4)4.3 功能 (4)4.4 性能 (5)4.5 接口 (8)4.6 环境条件 (11)5 测试方法 (12)5.1 测试环境条件 (12)5.2 测试信号 (12)5.3 测试设备 (12)5.4 测试场地 (12)5.5 功能测试 (12)5.6 性能测试 (13)附录A(规范性附录) IRIG-B码码元定义及波形 (22)参考文献 (27)前言为适应我国卫星导航发展对标准的需要,全国北斗卫星导航标准化技术委员会组织制定北斗专项标准,推荐有关方面参考采用。

本标准由中国卫星导航系统管理办公室提出。

本标准由全国北斗卫星导航标准化技术委员会归口。

本标准起草单位:中国科学院国家授时中心、中国卫星导航工程中心、中国航天标准化研究所、中国电子科技集团公司第二十研究所、郑州威科姆科技股份有限公司。

本标准主要起草人:胡永辉、吴海玲、武建锋、张向波、宋成、王如龙、何在民、吴华兵、杨玉清、王康、王维嘉、吕宏春。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北斗卫星导航系统空间信号授时设计分析摘要北斗卫星导航系统是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。

北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。

随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。

关键词:卫星导航系统;精准授时;卫星定位;北斗系统目录摘要 (1)第1章绪论 (1)1.1 课题研究背景 (1)1.2 理论概述 (1)第2章北斗系统 (2)2.1北斗一号 (2)2.2北斗二号 (2)第3章授时分析 (3)3.1基本概念 (3)3.2授时原理 (3)3.3北斗授时 (5)第4章误差分析 (6)第5章总结 (6)参考文献 (8)第1章绪论1.1 课题研究背景中国北斗卫星导航系统(英文名称:BeiDou Navigation Satellite System,简称BDS)是中国自行研制的全球卫星导航系统,也是继GPS、GLONASS之后的第三个成熟的卫星导航系统。

北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。

2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空。

北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。

北斗卫星导航系统是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。

随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。

卫星导航系统是全球性公共资源,多系统兼容与互操作已成为发展趋势。

中国始终秉持和践行“中国的北斗,世界的北斗”的发展理念,服务“一带一路”建设发展,积极推进北斗系统国际合作。

与其他卫星导航系统携手,与各个国家、地区和国际组织一起,共同推动全球卫星导航事业发展,让北斗系统更好地服务全球、造福人类。

1.2 理论概述卫星导航、定位和授时系统中需解决的技术问题有:(1)系统时间建立的概念及实现方法在现代卫导系统中,为了保证系统中各个钟的精确同步,需要一个准确、稳定和可靠的时间参考,这通常是以系统中的部分钟或全部的钟为基础。

利用统计平均的方法建立一个系统时间来实现。

其建立的概念和实现方法,直接影响到系统时间的好坏,进而影响到整个卫导系统中各个钟的同步。

这个研究对系统中原子钟的选择与配置也有指导意义。

(2)系统时间与UTC协调方法系统时间与UTC协调方法是授时所必要的。

这需要研究国际标准时间到系统时间传递的各个环节,是提高授时准确度中的最要一环。

(3)系统钟的同步方法这主要涉及到系统中各个钟的精确数据的收集方法和控制方法,要研究相对论效应对星载钟同步的影响。

比对测量和钟驾驭方法的研究是它的基础。

(4)系统授时方法这包括卫星电文中的与时间有关的信息的制定与产生。

(5)用户终端定时技术主要涉及到接收、比对及控制技术。

第2章北斗系统2.1北斗一号(1)基本情况上世纪90年代,美国GPS在海湾战争中的成功使用,坚定了我国建设自主卫星导航系统的决心。

在项目立项阶段,考虑到当时的国情,我国选择了“863计划”倡导者陈芳允院士提出的双星定位原理系统,也就是我们现在所熟知的“有源定位”,也叫做RDSS卫星无线电测定服务,该系统只需两颗卫星和地面高程数据库就能实现我国和周边地区定位。

(2)组成北斗一号系统总构成分为三段,分别是空间段、地面段和用户段。

空间段:由3颗地球静止轨道卫星组成,两颗工作卫星分别定位于东经80°和140°赤道上空,另有一颗位于东经110.5°的备份卫星,可在某工作卫星失效时予以接替。

地面段:由中心控制系统和标校系统组成。

中心控制系统主要用于卫星轨道的确定、电离层校正、用户位置确定、用户短报文信息交换等。

标校系统可提供距离观测量和校正参数。

用户段:用户的终端。

(3)基本定位工作原理第一步,由地面中心站向位于同步轨道的两颗卫星发射测距信号,卫星分别接到信号后进行放大,然后向服务区转播;第二步,位于服务区的用户机在接收到卫星转发的测距信号后,立即发出应答信号,经过卫星中转,传送到中心站;第三步,中心站在接收到经卫星中转的应答信号后,根据信号的时间延迟,计算出测距信号经过中心站——卫星——用户机——卫星中心站的传递时间,并由此得出中心站——卫星——用户机的距离,由于中心站——卫星的距离已知,由此可得用户机与卫星的距离;第四步,根据用上述方法得到的用户机与两颗卫星的距离数据,在中心站储存的数字地图上进行搜索,寻找符合距离条件的点,该点坐标即是所求的坐标;第五步,中心站将计算出来的坐标数据经过卫星发送往用户机,用户机再经过卫星向中心站发送一个回执,结束一次定位过程。

2.2北斗二号(1)基本情况2007年4月14日,我国发射了第一颗北斗二号卫星,这颗卫星采用与GPS相似的体制,即“无源定位”服务,也叫RNSS卫星无线电导航服务,理论上,采用该种体制的卫星导航系统,用户数量是无限制的。

从2007年开始,到2012年为止,我国在5年内共发射了16颗北斗二号卫星,实现了对亚太区域的覆盖,并在2012年底正式对外提供服务,完成了北斗三步走战略的第二步。

同时,鉴于北斗一号短报文和位置报告功能的实用性,该项功能在北斗二号中得到了保留。

(2)系统组成空间段由5颗对地球静止轨道(GEO)卫星和30颗对地球非静止轨道(Non-GEO)卫星组成。

地面段由主控站、上行注入站和监测站组成。

主控站用于系统运行管理与控制等。

主控站从监测站接收数据并进行处理,生成卫星导航电文和差分完好性信息,而后交由注入站执行信息的发送;注入站用于向卫星发送信号,对卫星进行控制管理,在接受主控站的调度后,将卫星导航电文和差分完好性信息向卫星发送;监测站用于接收卫星的信号,并发送给主控站,可实现对卫星的监测,以确定卫星轨道,并为时间同步提供观测资料。

用户段由北斗用户终端以及与其他GNSS兼容的终端组成。

第3章授时分析3.1基本概念“授时”是指利用无线电波发播标准时间信号的工作,英文名为"time service"。

根据授时手段的不同分为短波授时、长波授时、卫星授时、互联网和电话授时等。

其中的卫星授时便是本篇文章的主题。

授时是卫星导航系统一个非常重要的功能,实现授时服务的前提是解决时间的测量与同步问题,这就需要将卫星导航系统各个部分的时钟都统一到一个公共的时间标准上,因此,卫星导航系统对时间的要求可归结为时间的同步比对问题.根据国际电联(ITU)的授时系统发播标准,授时系统时间和标准时间UTC之间的偏差应维持在100ns以内,所以,卫星导航系统的系统时间首先要溯源到标准时间并保持良好性能,才能进一步为用户提供高精度的授时服务。

3.2授时原理授时系统三大要素为:时钟源、时间传递、校时。

其中,授时所使用的时间参照有:天文时(UTl)、国际原子时(TAl)、协调世界时(UTC)、北京时间等。

时间同步是指设备整体都工作在同一时间下,不能有毫秒甚至是微秒级的差异。

这样便于准确记录每个事件发生的时刻,特别是出问题时可以追根朔源,找到问题的发生时间点。

卫星授时分为三种模式:RDSS单向授时、RDSS双向授时和RNSS授时。

(1)RDSS单向授时:在单向授时模式下,用户机不需要与地面中心站进行交互,但需已知接收机精密坐标,从而可计算出卫星信号传输时延,经修正得出本地精确的时间。

接收机所进行的矫正运算和授时原理如图1所示。

(2)RDSS双向授时:双向定时的所有信息处理都在中心控制站进行,用户机只需把接收的时标信号返回即可。

中心站系统在T0时刻发送时标信号ST0, 该时标信号经过延迟Tl后到达卫星,经卫星转发器转发后再经T2到达定时用户机,用户机对接收到的信号进行的处理,也可看做信号转发,经T3的传播时延到达卫星,卫星把接收的信号转发,经T4的传播时延传送回中心站系统。

即表示时间T0的时标信号ST0, 最终在T0+Tl+ T2+T3+T4时刻重新回到中心站系统。

中心站系统把接收时标信号与发射时刻相减,得到双向传播时T1+T2+T3+T4,除以2得到从中心站到用户机的单向传播时延。

中心站把这个单向传播时延发送给用户机,定时用户机接收到的时标信号及单向传播时延计算出本地钟与中心控制系统时间的差值,根据差值修正本地钟,使之与中心控制系统的时问同步,其原理如图2。

图1图2(3)RNSS授时:RNSS授时,用户设备只需接收卫星广播的RNSS导航信号,即可获得北斗系统的时间,然后将本地时间与北斗系统时间进行比较,得到本地时钟与北斗系统时间的偏差。

如果监测站坐标已知,并且精度可靠,那么只要收到一颗卫星的信号即可进行精确授时。

如果监测站坐标未知,RNSS只要能接收到四颗或四颗以上卫星,即可解算出位置和钟差,实现定位与授时。

3.3北斗授时(1)接收模块北斗授时接收模块主要包括:接收天线、射频模块、中频数字接收单元、卫星数据处理单元和用户接口单元。

通过设定用户本地位置、北斗卫星信号的接收与卫星定时信号的恢复,生成授时信号,实现单向授时功能。

北斗高精度授时接收模块接收“北斗一号“卫星信号,采用单向授时技术,采用一次下变频射频技术,实现北斗卫星信号的快速捕获、跟踪、解调功能,恢复出卫星数据和同步信号。

结合高精度北斗卫星授时数据处理技术与高精度数字时频标合成技术,完成卫星轨道数据的平滑滤波和最优估值、电波的电离层校正、多普勒校正、电波时延等计算、TOD时间信息输出和时标信号合成控制。

设计输出1PPS性能指标优于100ns。

(2)时钟模块根据对时间保持能力的要求高低配置不同的晶体钟或原子钟,测量两个脉冲之间的相位差(时间间隔),通常可采用高频脉冲计数法实现。

相关文档
最新文档