现代优化设计方法的现状和发展趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M ac hi neBuil di ng Auto m atio n,D
ec2007,36(6):5~6,9
现代优化设计方法的现状和发展趋势
王基维1,熊伟2,李会玲1,汪振华3
(1.宁波职业技术学院,浙江宁波315800;2.湖南生物机电职业技术学院,湖南长沙410126;
3.南京理工大学,江苏南京210094)
摘要:优化设计是近年来发展起来的一门新学科,为机械设计提供了一种重要的科学设计方
法。优化设计在解决复杂设计问题时,能从众多设计方案中寻到尽可能完美或最适宜的设计
方案。对现代优化设计方法进行了概括和总结,展望了现代优化设计的发展方向和发展趋势。
关键词:优化设计;机械设计;发展趋势
中图分类号:T H122文献标识码:B文章编号:167125276(2007)0620005202
Develop ing T rend on M odern O pt im a l Design M ethods
WANG J i2wei1,XI ONG W ei2,LI H u i2li ng1,WANG Zhen2hua3
(1.Ni ngbo Voca ti on Te chno l ogy C o ll e ge,N i n gbo315800,C h i na;
2.Huna n B i o l ogy Me c ha ni c a la nd E l e c tri c a lP ro f e ss i ona lTe chno l ogy C o ll ege,C ha ngsha410126,C h i na;
3.Na n ji ng Un i ve rs ity o f S c i e nc e a nd Te chno l o gy,Na n ji ng210094,C h i n a)
Abstr ac t:As a new d i s c i p l i ne,o p tm i a l de s i gn p rov i de s an m i p o rtan t sc i en tifi c de s i gn m e t h od f o r e ng i nee i ng op tm i a ld es i gn, t he y can fi nd o ut a nea rl y pe rf e ct o r op tm i um des i gn s ch em e fr om l o ts o f feas i b l e ap p r o ache s.T he p ape r s um m a ri ze s t he de ve l o p i ng trend a nd d ir e cti o n o f t he m ode rn op tm i a l des i gn m e t hod s.
K ey word s:op tm i a ld es i g n;m a ch i n e des i gn;de ve l o p t re nd
0引言
机械设计与制造是机械工程领域中最重要的内容,而机械设计又是机械制造的前提。优化设计(opti m a l de2 si gn)是近年来发展起来的一门新的学科,优化设计为机械设计提供了一种重要的科学设计方法,在机械设计上起着重要的作用,使得在解决复杂设计问题时,能从众多的设计方案中寻到尽可能完美的或最适宜的设计方案[1]。实践证明,在机械设计中采用优化设计方法,不仅可以减轻机械设备质量,降低材料消耗与制造成本,而且可以提高产品的品质和工作性能[2]。文中初步论述了机械优化设计方法的发展现状和趋势。
优化设计方法[3]是数学规划和计算机技术相结合的产物,它是一种将设计变量表示为产品性能指标、结构指标或运动参数指标的函数(称为目标函数),然后在产品规定的性态、几何和运动等其它条件的限制(称为约束条件)的范围内,寻找满足一个目标函数或多个目标函数最大或最小的设计变量组合的数学方法。优化设计方法已成为解决复杂设计问题的一种有效工具。
1优化设计方法及应用现状
优化设计的基础和核心是优化理论和算法。迄今为止,己有上百种优化方法提出,这里重点介绍以下几种优化方法[4,5]。
a)线性逼近法:线性逼近法SLP是将原非线性问题转化为一系列线性优化问题,通过求解线性优化问题得到原问题的近似解。根据形成线性优化的方法不同,可以得到不同的线性逼近法。常用的线性逼近法有近似规划法和割平面法;
b)遗传算法[2,6,14]:遗传算法GA(genetic a l gorith m s)是一种基于生物自然选择与遗传机理的随机搜索算法。它是1962年首先由美国密执安大学的J.H.H olland教授提出、随后主要由他和他的一批学生发展起来的[7],并在1975年的专著中作了介绍,首先提出了以二进制串为基础的基因模式理论,用二进制位串来模拟生物群体的进化过程。进化结束时的二进制所对应的设计变量的值即为优化问题的解。GA方法的主要优点是具有很强的通用优化能力,它不需要导数信息,也不需要设计空间或函数的连续性条件,其优化搜索具有隐性并行性,可以多点同时在大空间中作快速搜索,因此有可能获得全局最优解。由于G A有着其他优化算法不可比拟的优点,因此,GA的应用非常广泛,取得大量研究应用成果。在结构优化设计方面的如离散结构的遗传形状优化设计[8]、悬臂扭转结构和梁结构的优化设计[9]、桁架和薄壁的结构优化问题[10]等。在文献[11]中对平面四杆机构的遗传优化设计进行了研究。文献[12]介绍了一个用于ZL40装载机的直齿圆锥齿轮差速器的优化设计问题,用GA中的实数编码进行优化求解,取群体大小为50,交叉率为0.2,变异率为0.5,经过120代的进化并经圆整后得到最优解。文献[15]中通过把机械方案设计过程看作是一个状态空间的求解问题,用遗传算法控制其搜索过程,完善了新的遗传编码体系,为了适应新的编码体系重新构建了交叉和变异等遗传操作,并利用复制、交换和变异等操作进行一次次迭代,最终自动生成一组最优的设计方案。
此外,G A还应用在函数优化、机械工程、结构优化、电工、神经网络、机器学习、自适应控制、故障诊断、系统工程调度和运输问题等诸多领域中[13];
#5
#