第三章 路基稳定性分析讲解

合集下载

第三章路基稳定性分析解析

第三章路基稳定性分析解析
将车辆布置于路堤上,车辆的设计荷载换算成相当于土层厚度h0
公路—Ⅰ级和公路—Ⅱ级汽车荷载,L=12.8m
B——横向分布车辆轮胎外缘之间总距,m
B Nb (N 1)d
b——每一辆车轮胎外缘之间的距离,m d——相邻两辆车轮胎之间的净距,m
2.荷载分布方式
⑴可分布在行车道宽度范围内 ⑵考虑实际行车有可能偏移或车辆停放在路肩上,也可认为当量土层
四、各种方法的应用——针对不同的填方土质和可能的破坏形式
(一)填方高边坡
1.砂性土边坡:平面滑动面 法验算; 2.粘性土边坡或软弱地基:圆弧法(宜于使用简化Bishop法) 验算路堤稳定性和路堤——地基整体稳定性。 3.针对工况考虑其他外力影响和安全系数 (1)施工期 (2)运营期——新建成和已建成 (3)集中降雨、浸水路堤(考虑渗透动水压力和浮力)和地震 (考虑地震力)
(二)挖方高边坡
——土质高于20m,岩质高于30m或不良地质地段挖方边坡
基于地质勘察,针对可能的破坏形式
1.规模较大的碎裂结构岩质边坡和土质边坡采用简化Bishop法; 2.可能产生直线形破坏的边坡采用平面滑动面 法; 3.可能残生折线形破坏的边坡采用不平衡推力法; 4.对于结构复杂的岩质边坡,可配合采用赤平投影法和、实体比 例投影法和楔形滑动面法; 5.针对工况采用不同的外力组合和安全系数。 (1)正常工况——天然状态下的工况; (2)非正常工况Ⅰ——暴雨或连续降雨状态; (3)非正常工况Ⅱ——地震
根据不同土类及其所处的状态,经过长期的生产实践和大量的 资料调查,拟定边坡的稳定值参考数据,在设计时,将影响边 坡稳定的因素作比拟,采用类似条件下的稳定边坡值。
(一)平面滑动面法
K F Q cos tan cL
T

第三章 路基边坡稳

第三章 路基边坡稳

㈢汽车荷载当量换算
路基承受自重作用、车辆荷载(按车辆最不利情况 排列,将车辆的设计荷载换算成相当于土层厚度H0 ) H0称为车辆荷载的当量高度或换算高度。
b-后轮轮距1.8m m- 相邻两辆车后轮的中心间距,1.3m
h0
m
B=Nb+(N-1)m+d
1、已知某路堤有双层土体组成。上层边坡坡率为1:1.5, 土层高位8m,上层土单位体积的重力为17.5kN/m3,内 摩擦角为30°,粘结力为5.0kpa;下层边坡坡率为1: 1.75,土层高为7m,下层土的单位体积的重力为19.0 kN/m3,内摩擦角为40°,粘结力为2.0kpa。试确定边坡 稳定性验算参数单位体积的重力、内摩擦角和粘结力的取 值。 2、已知某土质路堤边坡,高10m,坡率为1:1.4,土的单 位体积的重力 =18 kN/m3,内摩擦角 =20°,粘结 力=14kpa。试分析此边坡的稳定性。 3、
第五节 浸水路堤的稳定性分析
◆3、渗透动水压力对浸水路堤的作用

1)浸水路堤的受力:自重、行车荷载、浮力 渗透动水压力。
2)浸水路堤的不利时刻:涨水?、落水?。 3)土的渗透性:由于土中含有空隙,在水位变化过程中伴有土 中含水量的变化。


对砂性土-渗透性好,动水压力较小;
对黏性土-渗透性不好,动水压力也不大; 对亚砂土、亚黏土-具有一定的渗透性,动水压力较大 ,边坡容易失稳。
稳定性分析步骤
1. 按比例绘制路基横断面图 2. 确定圆心的大致位置和圆弧的形状:通过坡脚任意选定可能 发生的圆弧滑动面AB,其半径为R,沿路线纵向取单位长度 1m。 3. 根据情况分段:将滑动土体分成若干个一定宽度的垂直土条, 其宽一般为2-4m。 4. 计算分段土条的Qi、αi、Ni、Ti,进而计算出K1

高速铁路路基稳定性分析与设计

高速铁路路基稳定性分析与设计

高速铁路路基稳定性分析与设计高速铁路的发展已经成为现代交通运输领域的重要方向之一。

而在高速铁路的建设中,路基的稳定性是至关重要的,它直接关系到列车运行的安全和舒适性。

因此,高速铁路的路基稳定性分析与设计是一个关键的工作环节。

首先,对于高速铁路的路基稳定性分析,需要从地质条件、水文地质条件、地下水位、降雨情况、地震烈度等方面进行全面的调查和分析,以确定土壤的力学性质。

在分析中,可以利用现代地质探测技术,如地质雷达、地震勘探、土壤采样等,获取更加准确的地质数据。

同时,还需要进行地质灾害风险评估,对可能存在的地质灾害进行辨识和预测,以便采取相应的防治措施。

其次,在高速铁路路基的设计中,要充分考虑土壤的力学性质和承载能力。

在选择路基类型时,需要根据不同地质条件和设计要求来确定具体的设计方案,例如选择填筑路基或挖方路基。

在路基设计中,需要进行土壤力学参数的计算和选取,以确定合适的填土层厚度和路基底土的强度要求。

此外,还需要考虑路肩、边沟等配套设施的设计,以确保路基的稳定性。

为了提高高速铁路的路基稳定性,还可以采取一些辅助措施。

例如,可以在路基表面进行特殊处理,如铺设防渗透层、加设护坡等,以提高路基的抗水性和抗冲刷性。

同时,还可以进行路基加固设计,使用加筋土工格栅等土木工程材料来增强路基的承载能力和稳定性。

此外,路基建设过程中还要注意施工质量的控制,确保各项工程质量指标符合设计要求。

最后,高速铁路的路基稳定性需要进行定期监测和维护。

通过对路基的应力、变形等参数进行实时监测,可以及时发现并解决潜在的问题。

同时,对路基进行定期检修和维护,如清理排水系统、补充路床材料、修复路面等,以延长路基的使用寿命,并确保列车的运行安全。

总之,高速铁路的路基稳定性分析与设计是一个非常关键且复杂的工作。

只有通过全面的地质调查、科学的设计和加固措施以及定期的监测维护,才能确保高速铁路的路基稳定性,提供安全、高效和舒适的运输服务。

重载货物运输背景下公路路基边坡稳定性分析

重载货物运输背景下公路路基边坡稳定性分析

中国储运网H t t p ://w w w .c h i n a c h u y u n .c o m4.结语:寄售制是一种有益于供应链上下游企业的物料管理模式,可以减轻库存压力,快速响应客户需求,有效提高服务水平,增强在行业市场中的整体竞争力。

但是寄售制并不是适用于所有种类的产品,通常存在竞争品的备件、成本不高但是售价高的产品、仓储或者货运花费比较高的产品以及需求稳定同时库存透明的产品,采购方和供应商之间比较容易协商达成寄售策略。

近年来,这种供应模式在制造行业中已经成为一种趋势,也在实践中获得了巨大的效益。

不过合理的寄售策略也需要遵守一些原则,首先是合作性原则,要求采购方和供应商之间相互信任,保证信息透明和信息共享;然后还要遵守互惠原则,采购方和供应商应该共同关注的不是利益和成本如何分配,应该从整体上共同降低成本的投入和风险的发生;再就是目标一致的原则,当然确定共同目标的前提是采购方和供应商都要明确自己的责任;最后双方还要遵循持续改进的原则,在实践中会产生各种问题,面对问题及时调整,才能达成最后的目标,双方才能享受到利益。

寄售制的最理想状态即零库存,但鉴于采购方与供应商之间的物料需求的周期性与不确定性,如何实现真正意义上的“零库存”管理值得进一步研究。

C(作者单位:中车青岛四方机车车辆股份有限公司)引用出处[1]顾波军,杨新龙.寄售模式下海产品供应链收益共享协同契约研究[J ].浙江海洋大学学报(人文科学版),2018,35(01):31-37.[2]张杨.基于寄售的供应链库存控制策略研究[J ].物流科技,2018,41(01):136-138.[3]胥海军.寄售采购(V MI )在供应链中的作用[J ].纳税,2017(15):1931.公路路基边坡概况为实现对重载货物运输对公路路基边坡稳定性的影响分析,选择以某公路作为依托,针对该公路路基边坡,模拟重载货物运输,并对其稳定性变化情况进行分析。

路基稳定性分析

路基稳定性分析
考虑条间力简化为一水平推力E 而忽略T 影响,其误差仅为2~7%.此时: 此时: 考虑条间力简化为一水平推力 i,而忽略 i影响,其误差仅为 此时
S i + E i − E i -1) cos α i = W i sin α i + Q i cos α i ( ∆ E i = E i − E i - 1 = W i tg α i + Q i − S i sec α
∑(
yi
c iℓ i + N if i )R = Ks
∑W X
i
i
+ ∑ Qi Z i
i i
αi Wi Qi Si Ni αi
Ks =
∵ N i = Wi cos α i − Qi sin α i
∑(C ℓ + N f ) z (W Sinα + Q ) ∑ R
i i i i i i
+ (W i cos α i − Q i sin α i ) f i ] Ks zi y ∑ (W i Sin α i + Q i R ) 一般情况下, 相比很小, 相差不大, 一般情况下,Qi与Wi相比很小,或Zi与Yi相差不大,则Qi ·Zi/R近似用 近似用 Qicosαi代替。 α 代替。 ∑[Ciℓi + (Wi cosαi −Qi sin αi ) fi ] Ks = ∑(Wi Sinαi +Qi cosαi )
∑ [C ℓ =
i
i
此法因为未考虑条间力,故算出的 偏小 偏低可达10%~20% 偏小。 10%~20%, 此法因为未考虑条间力,故算出的Ks偏小。偏低可达10%~20%,过 于保守,但计算简单,故广泛采用,不过仅适用于园弧滑动面情况。 于保守,但计算简单,故广泛采用,不过仅适用于园弧滑动面情况。

4.路基稳定性的分析与计算

4.路基稳定性的分析与计算

设作用于分条上的水平 总合力为Qi,则: 取滑面上能提供的抗滑 力矩为Mr,与滑动力矩M0之 比为安全系数k,则有:
其中:
15
瑞典法存在的问题: 滑面为圆弧面及不考虑分条间作用力的2个假设, 使分析计算得到极大的简化,但也因此出现一定误差: 1.滑动面的形状问题 现实的边坡破坏,滑动面并非真正的圆弧面。但大 量试验资料表明,均质土坡的真正临界剪切面与圆弧 面相差无几,按圆弧法进行边坡稳定性验算,所得的 安全系数其偏差约为0.04。但这一假定对非均质边坡, 则会产生较大的误差。 2.分条间的作用力问题 无论何种类型的边坡,坡内土体必然存在一定的应 力状态;边坡失稳时,还将出现一种临界应力状态。 这两种应力状态的存在,必然在分条间产生作用力, 通常包括分条间的水平压力和竖向摩擦阻力。
根据这一假定滑动面上的抗滑阻力t根据图在滑动面上沿着x轴建立平衡式这时滑动面上的下滑力s当边坡达到极限平衡状态时滑动面上的抗滑阻力与下滑力相等可根据上列两式相等的条件求得分条两侧边的土压力增值e21按竖直方向上的平衡条件可以求得滑动面上的法又根据水平方向的平衡条件可求得整个边坡的安全系数为
1
边坡滑坍是工程中常见的病害之一。路基的稳定 性包括:①边坡稳定;②基底稳定;③陡坡上路堤整体 稳定。 这一讲主要介绍边坡稳定性分析方法。此外,还 将介绍浸水路堤以及地震地区路基稳定性问题。
分析时,可按单向固结理论进行计算。当边坡上的地 表不存在附加荷载或附加荷载下地基已达到完全固结, 或者是计算岩质边坡的稳定性时,则不必考虑超水压 力对边坡稳定性的影响。 地下水渗透压力的计算比较麻烦,在工程设计中, 通常有2种作法,即精确解和简化计算法。 1.精确解 通过对流线的数学分析或 根据试验,计算出各点的流速, 可得到比较精确的解。但计算 比较麻烦,工程中通常不采用。 2.简化计算法 基于任一点的渗透压力等于静水压力来进行分析, 简化计算法能满足工程设计要求,常被工程设计 18

第三章--边坡稳定性分析

第三章--边坡稳定性分析
35
验算方法
⑴ 将土体按地面变
T1
坡点垂直分块后自 α1 W 1 N1
上而下分别计算各 E1
τ1
土块的剩余下滑力.
α1 α2
E2
T2
W2 N2
τ2
E1 α1
⑵自第二块开始, 均需计入上一条块剩余下滑力对本条块的作用 把其当作作用于本块的外力,方向平行于上一块土体滑动面。
⑶Ei计算的结果若出现负值,计算Ei+1时,公式中Ei以零值代入。
cL
N
A ω θ Ntgφ W
H
K f G cos cL G sin
10
二、解析法
D B
θ
K f G cos cL G sin
H
1:m T
cL
N
A ω θ Ntgφ W
因G HL sin( )则
K
f
2
ctg
sin
2c
H
sin(
sin ) sin
令 0
2c
H
K ( f 0 )ctg
②土的极限平衡状态只在破裂面上达到,破裂面的位置要 通过计算才能确定。
力学分析法主要包括:圆弧滑动面法、平面滑动面法、 传递系数法等。
8
§ 3.2 直线滑动面的边坡稳定性计算
K min K
一、试算法
T
KR T
θ ω
N W
K W cos tan cL W sin
纯净砂类土 c = 0,则
15
◆ 计算稳定系数
①切向力
o
Ti x Qi sin i
R
'
i
i'
10 1:m2
E
98

高速公路路基的强度与稳定性分析

高速公路路基的强度与稳定性分析

高速公路路基的强度与稳定性分析随着交通运输的快速发展和城市化的加剧,高速公路作为城市交通的重要组成部分,发挥着极其重要的作用。

而高速公路的路基作为其基础设施的重要组成部分,其强度与稳定性的分析显得尤为关键。

一、高速公路路基的强度分析高速公路路基的强度主要指路基的承载能力。

高速公路车流量大且运输速度较快,路基需要承受车辆的重量以及车辆行驶时所产生的动力荷载。

因此,对高速公路路基进行强度分析,能够帮助我们确定适当的设计强度,确保路基充分承载车辆荷载,提高路面使用寿命。

1. 材料选择高速公路路基的材料选择直接影响着强度分析的结果。

一般情况下,水泥土、沥青混凝土等材料常用于高速公路路基。

这些材料的力学性质、稳定性和耐久性等是进行强度分析时需要考虑的主要因素。

2. 荷载分析高速公路路基需要承受车辆荷载,因此荷载分析是强度分析的一个重要步骤。

通常,我们需要确定高速公路上各种类型车辆的荷载以及荷载的分布情况。

这可以通过实地采集数据或模拟计算得到。

在进行荷载分析时,我们还需考虑车辆荷载的时变性,即车辆行驶时加速度、减速度以及转弯等因素对路基的影响。

3. 承载能力计算通过荷载分析,我们可以得到高速公路路基所受到的荷载。

而路基的承载能力则是指路基能够承受的最大荷载。

在进行承载能力计算时,我们需要考虑路基的材料特性、路基的宽度、路基的厚度以及基础土的力学性质等因素。

通过计算,我们可以判断路基是否能够满足设计要求,是否需要加固或改造路基。

二、高速公路路基的稳定性分析高速公路路基的稳定性是指路基在受到荷载作用时的抗倾覆能力和抗滑动能力。

稳定性分析旨在判断路基的稳定性,以确保高速公路的安全运营。

1. 抗倾覆能力分析高速公路路基的抗倾覆能力是指路基倾覆的抵抗能力。

在进行抗倾覆能力分析时,我们需要考虑路基的几何形状、土壤的力学特性、路基的荷载以及路基和基础土的摩擦力等因素。

通过分析这些因素,我们可以判断路基在荷载作用下是否能够保持稳定。

路基工程导论

路基工程导论

草皮
<2.5m/s 三合土
<3.0m/s 干砌片石
>3.0m/s 浆砌片石
注:三合土
石灰—粘土—炉渣 (1:1:5)
地下排水设施设计
地下水处理方法:
① 拦截地下水(上侧坡体有含水层出露时) ② 疏干边坡坡体内地下水(路堑边坡坡体内水量大时,边坡渗沟) ③ 降低地下水位(地势低洼、地下水位高时)
米宽的护坡道),坡面防护,挡土结构。 路堑:全部由地面挖出的路基称路堑 分:全路堑、半路堑(台口式)、半山峒 边坡视土(岩)质、高度为直线或折线,路堑下方坡脚处——边坡, 上方——截水沟,坡面不良时——碎落台,坡面防护,支挡结构。 半填半挖 横坡较陡时,兼有路堤和路堑的构造和要求。
地基
(1)足够的稳定性(承载能力)和抗变形能力(沉降小)
明沟:适用于地下水埋藏较浅,起拦截、疏干、降低地下水位、兼排
地面水作用,矩形、梯形断面。
渗沟:适用于地下水埋藏较深,沟内用粗颗粒透水性材料,迎水面处
设反滤层,顶部铺草皮。底部设排水孔,石砌或管壁带孔的排水管。
边坡渗沟:沟底设在坚硬的不透水层内,深度视工程要求而定,确保
在潮湿土层或地下水位线以下,纵坡适当放大。 设计的前提是正确掌握地质资料,摸清地下水活动规律,测定地下水的
1、路基工程的内容: 设计:
①横断面设计与边坡确定, ②排水设计:排水系统的布置、排水构筑物设计, ③稳定性分析与加固措施设计
施工:①准备②土、石方施工③验收与评定 养护与管理—与路面工程统筹考虑
2、路基工程的特点
⑴变异性、不确定性大,力学参数取值范围波动大 ⑵复杂的复合结构—设计方法:
经验性(力学-经验法)+解析法 ⑶设计、施工、监测、管理是相互作用的 ⑷与环境相互作用

路基边坡稳定性分析

路基边坡稳定性分析

γ――路基填料的容重,kN/m3
B――荷载横向分布宽度,m B=Nb+(N-1)m+ d 其中:b-—后轮轮距,取1.8m
h0
NQ
LB
d-—轮胎着地宽度,取0.6m
m——相邻两辆车后轮的中心间距,取1.3m
关于荷载分布宽度,可以分布在行车道范围,实际情况亦可
认为路肩有可能停放车辆(最不利的情况),则分布在整修路基宽度
(包括路面、路肩的宽度)。
3、直线滑动面(Slip Surface)的验算法
1)填方边坡(试算法) 如下图,土楔体沿破裂面AD滑动,Q=G 下滑力:T=Gsinω 抗滑力:F=CL+Nf = CL+N tgφ=CL+ Gcosωtgφ
式中:G-土楔体重,包括换算成土柱高的车辆 荷载,kN ω-破裂面对于水平面的倾斜角 φ-土体内摩阻角 θ-边坡坡度角 C-边坡单位长度粘聚力 L-破裂面的长度 f——摩擦系数,f=tgφ 其中,c、φ、γ值均须通过试验确定。
为使土楔体稳定,在破裂面上需有一定的安全
系数k : k F G costg CL
T
G sin
通过坡脚点A,可有任意个滑动面,滑动面的位置 不同,k值亦不同,边坡稳定与否的判断依据,应 是稳定系数的最小值kmin,相应的最危险滑动面的 倾角为ω0。(b图)
(2)影响压实的因素
上式表明:k值是ω值的函数,为此可选择3~5个滑动面, 计算并绘制k与ω的关系曲线,如c图,即可确定kmin及 其相应ω0,不言而喻,当kmin值符合规定,路基边坡为 稳定,否则,路基断面另行设计与验算,直到符合要求 为止。
若 k=1时,极限平衡态
k>1时,稳定态 k<1时,不稳态 考虑到滑动面的近似假定,c、φ土工试验局限性及气候环 境因素,为保证边坡稳定性有足够安全储备。kmin≥1.201.25,但kmin不宜过大,以免造成工程不经济。

第3章路基边坡稳定性设计

第3章路基边坡稳定性设计


1 K
[Q2
c os 2

E1
sin(1
2 )]tan2

c2l2
Chongqing Jiaotong University
重庆交通大学
第3章 路基边坡稳定性设计
3.4 不平衡推力传递法(传递系数法、剩余推力法)
验算方法:
第n块土块的剩余下滑力;
En
Tn

Rn K
[Qn sin n
18030’
30028’ 45045’
重庆交通大学
重庆交通大学
第3章 路基边坡稳定性设计
3.5 浸水路堤边坡稳定性验算
最不利情况:最高水位骤然降落 验算方法:考虑浮力和动水压力作用,其余同普通路堤。
动水压力: D IB0
Chongqing Jiaotong University
重庆交通大学
第3章 路基边坡稳定性设计
复习题
1.简述影响路基边坡稳定性的因素。 2.何为力学验算法?何为工程地质法? 3. 路基边坡稳定性分析中,有关的计算参数如何确定? 4.简述荷载当量高度的计算方法。 5.简述直线法、圆弧法和不平衡推力传递法的使用条件和计算方 法。 6.在路基边坡稳定性验算中,已求得某个滑动面上的稳定系数K= 1.5,试问该路基边坡是否稳定?为什么? 7.在路基边坡稳定性验算中,浸水路堤与普通路堤有何区别?
重庆交通大学
第3章 路基边坡稳定性设计
3.4 不平衡推力传递法(传递系数法、剩余推力法)
验算方法:
②自上而下分别计算各土块的剩 余下滑力;
E1
T1

R1 K
Q1 sin 1

1 K
(Q1 cos 1

3第三章 边坡稳定性分析

3第三章 边坡稳定性分析

2. 计算分析方法: 计算分析方法:
(1)工程比拟法;(2)极限平衡理论;(3)数值分析方法; (1)工程比拟法;(2)极限平衡理论;(3)数值分析方法; 工程比拟法;(2)极限平衡理论 数值分析方法 (4)图解法 (5)复合分析法 图解法; (4)图解法;(5)复合分析法
3.稳定性分析与计算的范围 3.稳定性分析与计算的范围
(2)极限平衡理论 (2)极限平衡理论
以土的抗剪强度理论为基础, 以土的抗剪强度理论为基础,按力的极限平衡原理建立相应 计算式。 计算式。 具体步骤: 具体步骤: (1)假定岩土体破坏是由于滑体内滑动面上发生滑动而造成 (1)假定岩土体破坏是由于滑体内滑动面上发生滑动而造成 滑动面上土体服从破坏条件; 的,滑动面上土体服从破坏条件; 假设滑动面已知,其形状可以是平面、圆弧面、 (2) 假设滑动面已知,其形状可以是平面、圆弧面、对数 螺旋面或其它不规则曲面; 螺旋面或其它不规则曲面; (3)通过考虑由滑动面形成隔离体的静力平衡 通过考虑由滑动面形成隔离体的静力平衡, (3)通过考虑由滑动面形成隔离体的静力平衡,通常将有滑 动趋势范围内的边坡岩体按某种规则划分为一个个小块体, 动趋势范围内的边坡岩体按某种规则划分为一个个小块体, 通过块体的平衡条件建立整个边坡平衡方程,以此为基础, 通过块体的平衡条件建立整个边坡平衡方程,以此为基础, 确定沿这一滑面发生滑动时的破坏荷载。 确定沿这一滑面发生滑动时的破坏荷载。 (4)令滑体发生破坏所能加的最小的荷载就是要求的极限破 (4)令滑体发生破坏所能加的最小的荷载就是要求的极限破 坏荷载,与之对应的滑动面就是最危险的滑动面。 坏荷载,与之对应的滑动面就是最危险的滑动面。
1. 滑坡有两种类型: 滑坡有两种类型:
(1)是天然边坡由于水流冲刷、 (1)是天然边坡由于水流冲刷、地壳运动或人类活动破坏 是天然边坡由于水流冲刷 了它原来的地质条件而产生的滑坡; 了它原来的地质条件而产生的滑坡; (2)人工开挖或填筑的人工边坡 由于设计的边坡 人工开挖或填筑的人工边坡, 设计的边坡不当或 (2)人工开挖或填筑的人工边坡,由于设计的边坡不当或 工作条件的变化改变了岩土体内部的应力状态, 工作条件的变化改变了岩土体内部的应力状态,使某几 个面上的剪应力达到岩土体的抗剪强度, 个面上的剪应力达到岩土体的抗剪强度,坡体的稳定平 衡状态遭到破坏而发生的滑坡。 衡状态遭到破坏而发生的滑坡。

路基工程教案3和4章

路基工程教案3和4章

3-3路基附属设施
取土坑、弃土堆、护坡道、碎路台、堆料坪、错车道 一、取土坑 1、平坦地区,如果用土量较少,可两侧设取坑取土。 2 、取土坑的深度、宽度应综合考虑,平坦区深度不大 于1m。 3、取土坑的边坡 — 靠路基一侧 1:1.5 另一侧不大于 1:1 。 4、取土坑的排水 —底宽较窄时,设2-3%的单向横坡, 底宽时双向横坡中间排水(P71图3-9)。 5 、在桥头引道或洪水淹没地段,路堤两旁不设取土坑。

二、路基边坡稳定性验算的设计参数
γ、С、Φ应事先实验测定。 多层土用加权平均法求得
n



i .hi
i 1 n
n
c
ci h
i 1 n
n
tan
h . tan
i 1 i
i

i 1
hi
hi
i 1
h
i 1
n
i

三、荷载当量高度计算 按车辆最不利情况排列,把车辆荷载换算成当量 土高,即以相等压力的土层厚度来代替荷载,叫当量 高度 NQ
哈尔滨理工大学
《路基工程》讲义
宋高嵩
第三章 一般路基设计
本章主要内容: 1、 路基典型横断面及设计要点 2、 路基的基本构造与几何尺寸设计 3、 路基附属设施的设计。

本章重点: 一般路基断面设计 边坡坡度设计

3-1行车道及路基宽度


一般路基——是指一般地区,填方高度或挖方深度小于 规范规定高度或深度的路基,且有典型横断面和成熟的设 计规定。 一、 行车道数及行车道宽度 行车道数:单车道、双车道、四车道、六车道、八车道 和多车道 二、中间带与路肩宽度: 1、中间带——由两条左侧路缘带及中央分隔带组成。 2、路肩宽度 l 高速,一级公路、二级公路——硬肩路+土路肩 l 三级路及以下——土路肩 三、路基宽度——行车道与路肩宽度之和(高速、一级公 路包括中间带宽度)

岩溶路基稳定性分析

岩溶路基稳定性分析

岩溶路基稳定性分析【摘要】针对岩溶路基的特征进行了分析,合理的处理好岩溶工程问题,必须从岩溶病害形成机理、岩溶所在地区规律性分析入手。

通过调查分析岩溶路基稳定性,表明岩溶受地形地貌、地质构造行为方式和变迁、岩性、岩层层理等结构面特征、水文环境与水动力特征为主的因素控制和影响。

【关键词】岩溶路基稳定性结构面1 引言岩溶是一种复杂的地质现象,其是水对可溶性岩石进行以化学溶蚀作用为主,并包含水的物理侵蚀、崩塌作用,以及物质的携出、转移、再沉积的综合作用,和由此所产生的现象的统称[1-3]。

岩溶具有成生、发育、发展、死亡的生命链特征,但其是循环链,死亡的可以复活。

其受地形地貌、地质构造行为方式和变迁、岩性、岩层层理等结构面特征、水文环境与水动力特征为主的因素控制和影响。

因此,要安全、经济。

合理的处理好岩溶工程问题,必须从岩溶病害形成机理、岩溶所在地区规律性分析入手。

2 工程概况项目所在区处在武陵山区,燕山期强烈的褶皱上升运动,造成山体隆起,地势起伏。

碳酸盐岩在山区,大面积裸露或浅覆盖,受区域新华夏系主构造应力场控制,场地基岩陡倾角节理构造非常发育,切割深,并往往成组出现。

在地表起伏较大形成的地面坡降较大情形下,大气降水形成的地表水向下流速快、水力梯度大,侵蚀力强烈,为垂直岩溶发育提供下有利的背景条件,成而形成大量的陡倾角“溶缝”(有关名词解释,见后述)、落水洞等竖直岩溶形态,更进一步的发展,岩溶塌陷型漏斗、洼地随即出现。

溯源更古老的地质历史,项目区可溶岩的最早形成,大致于早谷生代(距今约5亿7千万年)寒武纪开始,此后本区持续凹陷接受海相沉积,直到石炭纪,其间虽有局部短时间构造抬升,造成的沉积间断,但总趋势仍是持续凹陷。

石炭系时期停止了凹陷,本区处在整体缓慢抬升阶段,但并未有剧烈的造山运动,石炭纪后~三叠纪,本区再次持续凹陷(期间有局部短暂海退)。

燕山运动强烈造山,项目区一带大多强烈隆升为陆(张家界一带较缓,形成永定陆间盆地,沉积白垩系红层),白垩纪末的喜山运动,对项目区一带是进一步抬升,此后至今,本区地壳基本上处于抬升之中,地表一直接受长期、强烈的剥蚀,项目区一带(除一标外),所见到的最新的岩石,为志留系龙马溪页岩。

公路路基稳定性分析

公路路基稳定性分析

公路路基稳定性分析公路路基的稳定性是指公路基础部分在承受交通荷载和自然环境条件下保持稳定的能力。

路基的稳定性直接影响着公路工程的安全、经济和使用寿命。

因此,对公路路基的稳定性进行分析和评估是非常重要的。

一、路基稳定性的相关因素公路路基稳定性受到多种因素的影响,主要包括以下几个方面:1. 路基土的性质:路基土的物理性质、化学性质和力学性质直接影响着路基的稳定性。

土壤的稠密度、孔隙比、剪切强度等指标是判断土壤稳定性的关键参数。

2. 地下水位:地下水的存在会导致土壤中的孔隙水压力的增加,从而降低土壤的抗剪强度,进而影响路基的稳定性。

因此,地下水位的高低对路基的影响不能忽视。

3. 交通荷载:不同类型的车辆对路基施加的荷载不同,而荷载又是影响路基稳定性的重要因素之一。

车辆的速度、轴重以及交通流量等都会对路基产生一定的影响。

4. 自然环境条件:自然环境条件包括气候、地震、降雨等因素。

气候的变化会导致土壤的干湿交替,进而影响土壤的稳定性;地震和降雨等自然灾害则可能造成路基的破坏。

二、路基稳定性的分析方法为了评估公路路基的稳定性,一般可以采用以下几种分析方法:1. 土壤力学试验:通过室内试验,可以对路基土进行各种力学性质的测试,如密度试验、剪切试验等。

试验结果可以帮助工程师了解土壤的稳定性,并为后续的设计提供依据。

2. 现场勘察:通过对路基所处地区地质条件的勘察,包括地形、地质构造、土层分布等,以及地下水位的测量,可以对路基的稳定性进行初步评估。

3. 数值模拟分析:运用计算机模拟软件,结合路基土的性质和工程荷载等数据,进行数值模拟分析,可以计算得到路基在不同条件下的应力、位移等参数,从而评估路基的稳定性。

三、路基稳定性分析的结果及应对措施通过上述分析方法,我们可以得到路基稳定性的结果。

如果发现路基的稳定性存在问题,需要采取相应的应对措施,以确保公路的安全和可靠性。

常见的应对措施包括:1. 加固土质:可以通过加固土质的方式来提高路基土的稳定性,如使用加筋土工布、土工格栅等材料。

第三章 边坡稳定性分析

第三章 边坡稳定性分析

(1)基本原理 (1)基本原理 采用圆弧条分法分析边坡稳定时, 采用圆弧条分法分析边坡稳定时,一般 假定土为均质和各向同性;滑动面通过坡脚; 假定土为均质和各向同性;滑动面通过坡脚; 不考虑土体的内应力分布及各土条之间相互 作用力的影响,土条间无侧向力作用, 作用力的影响,土条间无侧向力作用,或虽 有侧向力,但与滑动面圆弧的切线方向平行。 有侧向力,但与滑动面圆弧的切线方向平行。
1-2 路基稳定性分析与设计验算
一般
路 基 路 面 工 程 授 课 讲 义
第三章 边坡稳定性分析
1-1 概述
路基边坡稳定分析与验算的方法很多,归纳起来有力学 路基边坡稳定分析与验算的方法很多, 验算法和工程地质法两大类。 学验算法又叫极限平衡法, 验算法和工程地质法两大类。力学验算法又叫极限平衡法, 是假定边坡沿某一形状滑动面破坏, 是假定边坡沿某一形状滑动面破坏,按力平衡原理建立计算 式进行判断。按边坡滑动面形状不同,可分为直线、曲线、 式进行判断。按边坡滑动面形状不同,可分为直线、曲线、 折线三种。 折线三种。 力学验算法采用以下假定作近似计算: 力学验算法采用以下假定作近似计算: 路 基 路 面 工 程 授 课 讲 义 (1)不考虑滑动土体本身内应力的分布; 不考虑滑动土体本身内应力的分布; 认为平衡状态只在滑动面上达到, ( 2 ) 认为平衡状态只在滑动面上达到 , 滑动土体成整体 下滑; 下滑; (3)极限滑动面位置要通过试算来确定。 极限滑动面位置要通过试算来确定。
第三章 边坡稳定性分析
1-2 路基稳定性分析与设计验算
一般
路 基 路 面 工 程 授 课 讲 义
第三章 边坡稳定性分析
1-2 路基稳定性分析与设计验算
一般
路 基 路 面 工 程 授 课 讲 义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5)求稳定系数(简化Bishop法)
Fs

Mr Ms

R( R
ci Li ni tan i ) (Wi Qi ) sin i

Ki
(Wi Qi ) sin i
式中:Wi——第i土条重力;
αi——第i土条底滑面的倾角;
Qi———第i土条垂直方向外力;
Ki———系数,由土条所在位置分别按照下式计算。
式中凡是标注脚标t者,表示路堤部分的各项参数;凡是标注 脚标d者,表示地基部分的各项参数。
6)再假定几个可能的滑动面,计算相应k值,由辅助线求取Kmin
4.5h法
36º法
可以用求驻点的办法求最危险破裂面吗?
(三)不平衡推力法(传递系数法/推力传递法/剩余下滑力法)
Ei
WQi

1 Fs
cili
WQicosi 源自 Ei1 i1 i1

cos(i1
i )

1 Fs
sin(i1
i ) tani
四、各种方法的应用——针对不同的填方土质和可能的破坏形式
(一)填方高边坡
1.砂性土边坡:平面滑动面 法验算; 2.粘性土边坡或软弱地基:圆弧法(宜于使用简化Bishop法) 验算路堤稳定性和路堤——地基整体稳定性。 3.针对工况考虑其他外力影响和安全系数 (1)施工期 (2)运营期——新建成和已建成 (3)集中降雨、浸水路堤(考虑渗透动水压力和浮力)和地震 (考虑地震力)
T
Q sin
tan
3.直线破裂的路堑或已知破裂面需要反求边坡的情况分析
K F Q cos tan cL
T
Q sin
( f a) cot a cot( )
Kmin (2a f )cot 2 a( f a) cos
f——土体内摩擦系数, f tan
(二)破裂面的假定
1.松散的砂性土和砾石内摩擦角较大,粘聚力较小,滑动 面近似平面,平面力学模型采用直线。
2.粘性土粘聚力较大,内摩擦角较小,破裂时滑动面为圆 柱形、碗形,近似于圆曲面,平面力学模型采用圆弧
二、边坡稳定性分析的计算参数
(一)所需土的试验资料 1.对于路堑天然边坡或地基部分,取原状土,测其容重γ,内 摩擦角Φ,粘聚力c,根据实际情况采用原位剪切试验、直剪 试验或三轴试验。 2.对路堤边坡:取与现场压实度一致的压实土试验数据
2.条分法分类
1)简化条分法 ①简单条分法(Fellenius法/瑞典法) ②简化Bishop条分法
2)严格条分法 ③Janbu普遍条分法 ④Spencer法
3.简化Bishop条分法假定
①土体均质,各向同性 ②各土条间传递水平推力,不传递竖向剪力 ③忽略水平推力作用点的位置
4.圆弧法基本步骤
第三章 路基稳定性分析
针对问题:1.边坡失稳 2.陡坡路堤的失稳 3.地基失稳
第一节 边坡稳定性分析
一、边坡稳定性分析原理——静力平衡
(一)静力平衡的基本假定
1.对边坡稳定性进行力学分析时,为简化计算,都 按平 面问题处理 2.不考虑滑动主体本身内应力的分布 3.认为平衡状态只在滑动面上达到,滑动土体整体下滑 4.极限滑动面位置通过试算来确定
1)通过坡脚任意选定可能滑动面AB,半径为R,纵向单位长 度,滑动土体分条(5~8)
2)计算每个土条重Gi(土重、荷载重)垂直滑动面法向分力
3)计算每一段滑动面抵抗力NitgΦ(内摩擦力)和粘聚力cLi (Li为1小段弧长)
4)以圆心o为转动圆心,半径R为力臂。计算滑动面上各点对o 点的滑动力矩和抗滑力矩。
将车辆布置于路堤上,车辆的设计荷载换算成相当于土层厚度h0
公路—Ⅰ级和公路—Ⅱ级汽车荷载,L=12.8m
B——横向分布车辆轮胎外缘之间总距,m
B Nb (N 1)d
b——每一辆车轮胎外缘之间的距离,m d——相邻两辆车轮胎之间的净距,m
2.荷载分布方式
⑴可分布在行车道宽度范围内 ⑵考虑实际行车有可能偏移或车辆停放在路肩上,也可认为当量土层
(1)施工期稳定分析:采用cu、Φu(直剪快剪或三轴不排水剪) (2)运营期稳定分析:新建路堤采用ccu、Φcu(直剪固结快剪或三轴固结不排水剪);
已建成路堤采用cu、Φu(直剪快剪或三轴不排水剪)
※路堤各层填料性质不同时,所采用验算数据可按加权平 均法求得。
(二)路堤上汽车荷载的换算
1.当量土柱高度
当土条滑弧位于路堤中时:
Ki

ctibi
(Wti Qi ) tan ti
mai
当土条滑弧位于地基中时:
Ki

cdibi
Wdi
tan di
U (Wti mai
Qi ) tan di
m i
cosi

sin i tan i
Fs
式中:bi——各个土条的宽度 U——地基平均固结度(0~1.0)
分布于整个路基宽度上
(三)边坡的取值
B
E
D C
A
1:n
1:n 1:n
h1
h2
h
h3
三、边坡稳定性分析方法
※力学分析法
1.数值分析法—假定几个滑动面,按照力学平衡原理分析验算, 找出极限滑动面。 2.图解或表解法—在计算机或图解的基础上,制定图或表,用查 图或查表来进行,简单不精确。
※工程地质类比法
(二)挖方高边坡
——土质高于20m,岩质高于30m或不良地质地段挖方边坡
基于地质勘察,针对可能的破坏形式
1.规模较大的碎裂结构岩质边坡和土质边坡采用简化Bishop法; 2.可能产生直线形破坏的边坡采用平面滑动面 法; 3.可能残生折线形破坏的边坡采用不平衡推力法; 4.对于结构复杂的岩质边坡,可配合采用赤平投影法和、实体比 例投影法和楔形滑动面法; 5.针对工况采用不同的外力组合和安全系数。 (1)正常工况——天然状态下的工况; (2)非正常工况Ⅰ——暴雨或连续降雨状态; (3)非正常工况Ⅱ——地震
根据不同土类及其所处的状态,经过长期的生产实践和大量的 资料调查,拟定边坡的稳定值参考数据,在设计时,将影响边 坡稳定的因素作比拟,采用类似条件下的稳定边坡值。
(一)平面滑动面法
K F Q cos tan cL
T
Q sin
1.路堤情况 的极限破裂 面
2.纯砂土路基情况分析
K F Q cos tan cL tan
a——参数,a 2c / h
C B
其他符号意义同前
h ΦΘ
A
(二)圆弧——条分法
粘性土滑坍时破裂面为曲面近似为圆弧滑动面 1.基本原理 1)将圆弧滑动面上土体划分为若干竖条 2)依次计算每一土条沿滑动面的下滑力和抗滑力 3)叠加计算整个土体的稳定性
计算精度与分段数有关越大越精确,一般为8~10段。结 合横断面特性,划分在边坡或地面坡度变化处以简化计算。
相关文档
最新文档