数学建模(微积分)二
数学建模的常用方法上
VS
积分方程建模是利用积分性质和积分方程研究实际问题的方法。
详细描述
积分方程建模是通过建立积分方程来描述实际问题中量的累积关系。积分方程能够反映自变量和因变量之间的整体关系,适用于研究具有累积效应的量之间的关系。例如,物理学中的波动、统计学中的概率分布等都可以通过积分方程建模来描述。
总结词
积分方程建模
02
CHAPTER
线性代数建模法
矩阵是数学建模中的重要工具,用于表示和操作线性关系。
矩阵建模主要用于解决线性关系的问题,如线性方程组、线性变换等。通过矩阵的运算,可以方便地描述和求解线性问题,简化计算过程。
矩阵建模
详细描述
总结词
总结词
向量是一维数组,用于表示具有方向和大小的量。
详细描述
向量建模常用于描述物理现象和工程问题,如力、速度、加速度等。通过向量的运算,可以方便地描述和求解与方向和大小有关的量。
详细描述
非线性规划建模是线性规划建模的扩展,用于解决目标函数或约束条件为非线性的优化问题。
非线性规划建模涉及的函数形式更为复杂,可能包含平方、立方、对数等非线性项。求解非线性规划问题的方法包括梯度法、牛顿法、拟牛顿法等,这些方法通过迭代的方式逐步逼近最优解。
总结词
详细描述
非线性规划建模
总结词
动态规划建模是一种数学方法,用于解决具有重叠子问题和最优子结构特性的优化问题。
数学建模的常用方法
目录
微积分建模法 线性代数建模法 概率论与数理统计建模法 离散数学建模法 优化建模法
01
CHAPTER
微积分建模法
总结词
导数建模是利用导数性质和函数变化率研究实际问题的方法。
详细描述
导数建模是通过分析函数在某一点的切线斜率或函数在某区间的变化率来描述实际问题中量的变化和相互关系。例如,经济学中的边际分析、物理学中的速度和加速度等都可以通过导数建模来描述。
数学建模重要知识点总结
数学建模重要知识点总结一、微积分微积分是数学建模中最重要的数学工具之一,它包括微分和积分两大部分。
微分是求函数的导数,用于描述函数的变化率和曲线的切线。
而积分则是求函数的不定积分或定积分,用于描述函数的面积、体积等性质。
在数学建模中,微积分可以用于建立问题的数学模型,求解微分方程和积分方程,对函数进行优化等。
例如,在物理建模中,我们经常会用到微积分来描述物体的运动、速度和加速度等。
在经济学建模中,微积分可以用来描述供求关系、利润最大化等问题。
二、线性代数线性代数是研究向量空间、线性映射和矩阵等数学对象的学科。
在数学建模中,线性代数可以用于描述多维空间中的几何关系、解线性方程组、求解最小二乘问题等。
例如,在计算机图形学中,线性代数可以用来描述和变换三维物体的位置和姿态。
在统计学建模中,线性代数可以用来对数据进行降维、拟合线性模型等。
三、概率论与数理统计概率论与数理统计是研究随机现象的规律性和统计规律的学科。
在数学建模中,概率论与数理统计可以用于描述随机现象的概率分布、推断总体参数、假设检验等。
例如,在风险管理建模中,我们经常会用到概率论与数理统计来描述风险的分布和进行风险评估。
在机器学习建模中,概率论与数理统计可以用来对数据进行建模和推断。
四、数学优化数学优化是研究如何在给定约束条件下,找到使目标函数取得极值的方法和理论。
在数学建模中,数学优化可以用来对问题进行建模和求解。
例如,在生产调度问题中,我们可以用数学优化来寻找最优的生产计划;在投资组合优化中,我们可以用数学优化来构建最优的资产配置。
五、微分方程微分方程是研究未知函数及其导数之间关系的方程。
在数学建模中,微分方程可以用来描述系统的动力学行为、生物种群的增长规律、热传导过程等。
我们可以通过对微分方程进行数值求解、解析求解或者定性分析,来获得系统的行为特征。
六、离散数学离散数学是研究离散结构及其性质的数学学科,包括集合论、图论、逻辑和代数等内容。
数学建模思想融入微积分
目录
数学建模概述 微积分基础知识 数学建模在微积分中的应用 案例分析 数学建模思想在微积分教学中的实践与思考
01
数学建模概述
数学建模的定义
数学建模:运用数学语言、符号、公式和理论对现实问题进行抽象和简化,以解决实际问题的方法和过程。
数学建模是一种跨学科的综合性技术,涉及数学、计算机科学、工程学等多个领域。
详细描述
无穷小和极限在建模中有着广泛的应用。例如,在物理学中,瞬时速度可以看作是平均速度的极限,而瞬时加速度则可以看作是平均加速度的无穷小变化量。在经济学中,无穷小和极限的概念也常用于描述经济变量的变化趋势和规律。
总结词
无穷小与极限在建模中的应用案例
05
数学建模思想在微积分教学中的实践与思考
强调概念背景
对实际问题进行深入分析,明确问题的背景、条件和目标。
问题分析
根据问题分析的结果,选择适当的数学方法和工具,建立数学模型。
建立模型
运用数学方法和计算机技术,求解建立的数学模型。
求解模型
对求解结果进行评估,并根据实际情况对模型进行优化和改进。
模型评估与优化
数学建模的基本步骤
02
微积分基础知识
03
导数与微分的应用
定积分与不定积分
定积分是积分的一种特殊形式,用于计算具体几何量或物理量;不定积分则用于求函数的原函数或反导数。
积分的应用
积分在解决实际问题中有着广泛的应用,如计算旋转体的体积、曲线的长度等。
积分
级数概念
级数是无穷多个数的和,可以用来表示连续变化的过程或现象。
无穷小的概念
无穷小是数学中的一个重要概念,用于描述函数在某点附近的变化趋势。
建模赛和数学竞赛中与微积分相关题目
建模赛和数学竞赛中与微积分相关题目在建模赛和数学竞赛中,微积分是一个重要的题目类型。
微积分作为数学的一个重要分支,对于解决实际问题具有重要的作用。
在建模赛和数学竞赛中,与微积分相关的题目往往涉及到函数的极值、曲线的面积、体积以及微分方程等知识点。
本文将结合建模赛和数学竞赛中常见的题目类型,介绍与微积分相关的题目,并对如何高效地解决这些题目进行讨论。
一、函数的极值在建模赛和数学竞赛中,函数的极值是一个常见的题目类型。
通常会给出一个函数,要求求出其极大值或者极小值。
解决这类题目时,需要使用微积分的极值定理,即对函数求导并令导数等于零,解出导数为零的点,再通过二阶导数判断极值的类型。
对于函数f(x)=x^2-2x+1,求其极小值,首先对函数求导得到f'(x)=2x-2,令f'(x)=0,解出x=1,再求出f''(x)=2,由f''(1)>0可知x=1处是函数f(x)的极小值点,极小值为f(1)=0。
二、曲线的面积另一个与微积分相关的常见题目类型是曲线的面积。
这类题目通常要求计算曲线与坐标轴所围成的区域的面积。
解决这类题目时,需要使用定积分的概念,即将曲线分成无穷小的小矩形,然后对这些小矩形的面积进行累加。
对于函数f(x)=x^2,要求计算其在区间[0,1]上与x轴所围成的面积,可以使用定积分进行计算,即∫[0,1] x^2 dx = 1/3。
三、曲线的体积除了曲线的面积,曲线的体积也是一个常见的题目类型。
这类题目通常要求计算曲线绕坐标轴旋转一周所形成的立体的体积。
解决这类题目时,需要使用定积分的概念,即将旋转后的曲线分成无穷小的小圆柱体,然后对这些小圆柱体的体积进行累加。
对于函数f(x)=x^2,要求计算其在区间[0,1]上绕x轴旋转一周所形成的立体的体积,可以使用定积分进行计算,即π∫[0,1] (x^2)^2 dx = π/5。
四、微分方程微分方程也是建模赛和数学竞赛中与微积分相关的题目类型之一。
微积分方法建模飞机的降落曲线数学建模案例分析
第二章 微积分方法建模现实对象涉及的变量多是连续的,所以建立连续模型是很自然的,而连续模型一般可以用微积分为工具求解,得到的解析解便于进行理论分析,于是有些离散对象,如人口的演变过程,也可以构造连续模型.当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测它的未来性态时,通常要建立对象的动态模型.建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其它对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析或预测了.§1 飞机的降落曲线根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线(如图).在整个降落过程中,飞机的水平速度保持为常数u ,出于安全考虑,飞机垂直加速度的最大绝对值不得超过10/g (这里g 是重力加速度).已知飞机飞行高度h (飞临机场上空时),要在跑道上O 点着陆,应找出开始下降点0x 所能允许的最小值.一、由题设有 .将上述的四个条件代入y 的 表达式⎪⎪⎩⎪⎪⎨⎧=++='=+++==='==023)()(0)0(0)0(020*******c bx ax x y hd cx bx ax x y c y d y 得 ,0,0,3,22030===-=d c x h b x ha飞机的降落曲线为 )32(23020x x x x hy --= 二、 找出最佳着陆点飞机的垂直速度是y 关于时间t 的导数,故dt dx x x x x h dt dy )66(2020--= 其中dtdx 是飞机的水平速度,,u dt dx = 因此 )(60220x x x x hu dt dy --= 垂直加速度为)12(6)12(6020202022--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0202-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 2026)(max x hu x a = []0,0x x ∈设计要求 106202g x hu ≤,所以gh u x 600⋅≥ (允许的最小值) 例如:小时/540km u =,m h 1000=,则0x 应满足:)(117378.9100060360010005400m x =⨯⨯≥ 即飞机所需的降落距离不得小于11737米.。
数学建模简介[1] 2
数学建模这个世界太需要数学了!但我们却往往视而不见。
自人类萌发了认识自然之念、幻想着改造自然之时,数学便一直成为人们手中的有力武器。
牛顿的万有引力定律、伽利略发明的望远镜让世界震惊,其关键的理论工具却是数学。
然而,社会的发展却使数学日益脱离自然的轨道,逐渐发展成为高深莫测的“专项技巧”。
数学被神化,同时,又被束之高阁。
近半个世纪以来,数学的形象有了很大变化。
数学己不再单纯是数学家和少数物理学家、天文学家、力学家等人手中的神秘武器,它越来越深入地引用到各行各业之中,几乎在人类社会生活的每个角落都在展示它的无穷威力。
这一点尤其表现在生物、政治、经济以及军事等数学应用的非传统领域。
数学不再仅仅作为一种工具和手段,而日益成为一种“技术”参与实际问题中。
近年来,随着计算机的不断发展,数学的应用更得到突飞猛进的发展。
一、什么是数学模型?数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
随着社会的发展,生物、医学、社会、经济……,各学科、各行业都涌现现出大量的实际课题,急待人们去研究、去解决。
但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。
他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。
而且不止是要用到数学,很可能还要用到别的学科、领域的知识,要用到工作经验和常识。
特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机。
数学建模课后答案
《数学模型》作业答案第二章(1)(2012年12月21日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++030032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数.16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式. 解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1) 由量纲i P 定理 得g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(21010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y 得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(12001101000110k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g lt =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mgkl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1gm l k g l t '''='ϕ 当无量纲量l l m m '='时, 就有 ll l g g l t t '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.⎩⎨⎧==---22/112/112/12/1ππk g m l g tl解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rT c T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),( 2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q CTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022)()()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kT T r k r c 2)(2⋅-= 于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dTdC令, 得)(221r k r c kc T -=*易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,T r k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b kc b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TTt <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β)(2)8322(22022bp a T T t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(max 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天)根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dT dC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k )(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为: max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域.925002+-=TdT dC直线l :20x+30y=c 在可行域内平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 max S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 max x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.2ll1x1l2x易知:当l 过l 1与l2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为: max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .max S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0.01,1单调减少时当t i dtdis s ∴-σσ .0)(lim.0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f ()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt 3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Qvl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()((1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ ,(1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点;②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dt dx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rN h N x --=,2412NrN hN x -+=易知:21N x <, 22Nx > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max N xrx h -=,易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln )(① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;Ex()x f② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rN h N N x --=, 2412rN hN N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..m a x x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k由(2)得 )3()(0102 y y x x k k -=-++β(1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101 ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-= 则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换 B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的.32154→→→→13542→→→→42135→→→→→→→41325→等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A令()Te 1,1,1,1,1=,各级得分向量为()()T Ae S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==, ()()()T AS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0= 数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n n npq q m npq m q m 于是带走产品的平均数是 ()122-+-n n npq q m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n ) ∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n n p q q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111mn n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'mn n D ---≈当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:m nE 4≈,226'mn E ≈ ∴ m n E E 32/'=,当n m 时,132 mn , ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章。
数学建模经典案例详解
数学模型概述; 微积分模型;随机模型
P24
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
了解实际背景 明确建模目的 形成一个
准
比较清晰
备 搜集有关信息 掌握对象特征 的‘问题’
数学建模.
数学模型概述; 微积分模型;随机模型
数学建模的一般步骤
模
针对问题特点和建模目的
将数学语言表述的解答“翻译”回实际对象 用现实对象的信息检验得到的解答
实践 理论 实践
数学建模.
数学模型概述; 微积分模型;随机模型
P28
1.5 数学模型的特点和分类
数学模型的特点
模型的逼真性和可行性 模型的非预制性
模型的渐进性 模型的强健性
模型的条理性 模型的技艺性
模型的可转移性
模型的局限性
数学建模.
• Matlab (工程中应用最广的数学软件 Matrix Laboratory)
数学建模.
数学模型概述; 微积分模型;随机模型
P11
1.2 数学建模的具体应用
• 分析与设计
• 预报与决策
• 控制与优化
• 规划与管理
如虎添翼
数学建模
计算机技术
知识经济
数学建模.
数学模型概述; 微积分模型;随机模型
p5931报童的诀窍假设报童已经掌握了需求量的随机分布规律即在他的销售范围内每天报纸的需求量为份的概率是购进太多卖不完退回赔钱购进太少不够销售赚钱少应根据需求确定购进量每天需求量是随机的优化问题的目标函数应是长期的日平均收入每天收入是随机的存在一个合适的购进量即日收入的数学期望值数学模型概述
微积分的基本概念与性质
微积分的基本概念与性质微积分是数学中的一个重要分支,它研究函数的变化率和曲线的面积,是实现数学建模和理论推导的基础。
微积分的基本概念和性质对于深入理解和应用微积分都至关重要。
本文将介绍微积分的基本概念和性质,帮助读者对微积分有更清晰的了解。
一、微积分的基本概念1.1 函数与导数在微积分中,函数是一个很常见的概念。
函数关系可以通过图像、表达式或者散点给出,它描述了一个变量与另一个变量之间的依赖关系。
函数导数是描述函数变化率的工具,表示了函数曲线在某一点的切线斜率。
对于函数f(x),它的导数可以表示为f'(x)或者dy/dx。
1.2 极限与连续微积分中的极限是一种趋近某个值的概念。
当自变量趋近于某个特定的值时,函数的值也会趋近于某个特定的值。
极限是微积分中计算导数和定积分的基础。
而连续是一个函数在一段区间上没有任何断裂或间断点的特性。
若函数在某点处连续,则导数也存在,这种关系称为微积分基本定理。
1.3 定积分与不定积分定积分是计算曲线下面积的工具,也可以理解为曲线与x轴之间的有向面积。
定积分可以用一系列无限小的面元相加的方式计算。
不定积分是定积分的逆运算,表示函数的原函数。
不定积分和定积分是微积分中使用最广泛的工具,它们被广泛应用于物理、生物、经济等领域的建模与求解过程中。
二、微积分的性质2.1 导数的运算法则导数是微积分中的重要概念,它有许多运算法则可以简化求导的过程。
常见的导数运算法则包括常数法则、幂法则、和差法则、乘积法则和商积法则等。
这些运算法则能够帮助我们快速计算函数的导数,从而更方便地研究函数的特性和行为。
2.2 积分的性质积分也有一些重要的性质。
其中,积分的线性性质是最基本也是最常用的性质之一。
根据积分的线性性质,我们可以将一个复杂的积分问题拆解为多个简单的积分问题,并逐个求解。
此外,积分还具有区间可加性、导数与积分的关系等性质,通过合理运用这些性质,可以更加灵活地进行积分运算。
微积分方法建模12传染病模型--数学建模案例分析
§12 传染病模型建立传染病模型的目的是描述传染过程、分析受感染人数的变化规律、预报高潮期到来的时间等等。
为简单起见假定,传播期间内所观察地区人数N 不变,不计生死迁移,时间以天为计量单位。
模型(一)(SI 模型) 模型假设1、人群分为健康者和病人,在时刻t 这两类人中所占比例分别为)(t s 和)(t i ,即1)()(=+t i t s 。
2、平均每个病人每天有效接触人数是常数λ,即每个病人平均每天使)(t s λ个健康者受感染变为病人,λ称为日接触率。
模型建立与求解据假设,在时刻t ,每个病人每天可使)(t s λ个健康者变成病人,病人数为)(t Ni ,故每天共有)()(t i t Ns λ个健康者被感染,即Nsi dtdiNλ= 又由假设1和设0=t 时的比例0i ,则得到模型⎪⎩⎪⎨⎧=-=0)0()1(i i i i dt diλ (1)(1)的解为te i t i λ--+=)11(11)(0(2)21i m dtdi )(m 21i模型解释1、当21=i 时,dt di 达最大值,这个时刻为)11ln(01-=-i t m λ,即高潮到来时刻,λ越大,则m t 越小。
2、当∞→t 时1→i ,这即所有的人都被感染,主要是由于没有考虑病人可以治愈,只有健康者变成病人,病人不会再变成健康者的缘故。
模型(二)(SIS 模型) 在模型(一)中补充假设3、病人每天被治愈的占病人总数的比例为μ,称为日治愈率。
模型修正为⎪⎩⎪⎨⎧=--=0)0()1(i i ii i dt diμλ (t 时刻每天有μNi 病人转变成健康者) (3)(3)的解为⎪⎪⎩⎪⎪⎨⎧=+≠--+-=----μλλμλμλλμλλμλ101)(0)1(])1([)(i t e i t i t (4) 可以由(3)计算出使dt di 达最大的高潮期m t 。
(dt di 最大值m dt di )(在λμλ2-=i 时达到)。
数学建模的主要建模方法
数学建模的主要建模方法数学建模是一种用数学语言描述实际问题,并通过数学方法求解问题的过程。
它是数学与实际问题相结合的一种技术,具有广泛的应用领域,如物理、工程、经济、生物等。
数学建模的主要建模方法可以分为经典建模方法和现代建模方法。
经典建模方法是数学建模的基础,主要包括数理统计、微积分、线性代数等数学工具。
经典建模方法的特点是基于简化和线性的假设,并通过解析或数值方法来求解问题。
1.数理统计:统计学是数学建模的重要工具之一,它的主要任务是通过对样本数据的分析,推断出总体的特征。
数理统计中常用的方法有概率论、抽样理论、假设检验等。
2.微积分:微积分是数学建模中常用的工具,它研究变化率和积分问题。
微积分的应用范围广泛,常用于描述物体的运动,求解最优化问题等。
3.线性代数:线性代数是研究向量空间与线性变换的数学学科。
在数学建模中,线性代数经常出现在模型的描述和求解过程中,如矩阵运算、线性回归等。
现代建模方法是近年来发展起来的一种新的建模方法,主要基于现代数学工具和计算机技术。
现代建模方法的特点是模型更为复杂,计算更加精确,模拟和实验相结合。
1.数值模拟:数值模拟是一种基于计算机技术的建模方法,通过离散和近似的数学模型,利用数值计算方法求解模型。
数值模拟常用于模拟和预测实际问题的复杂现象,如天气预报、电路仿真等。
2.优化理论:优化理论是数学建模中的一种重要工具,它研究如何找到最优解或最优化方案。
优化问题常用于求解资源分配、生产排程等实际问题。
3.系统动力学:系统动力学是一种研究系统结构和行为的数学方法,它通过建立动态模型,分析系统的变化趋势和稳定性。
系统动力学常用于研究生态系统、经济系统等复杂系统。
4.随机过程:随机过程是描述随机事件随时间变化的数学模型。
它在数学建模中常用于分析随机现象的特征和规律,如金融市场变动、人口增长等。
总体而言,数学建模的方法多种多样,建模方法的选择取决于问题的性质、可用数据和计算资源等因素。
常用数学建模方法数学建模方法的流程图
常用数学建模方法数学建模方法的流程图数学建模少见微积分方法以及常见题型核心提示:数学建模方法一、机理分析法从基本磁学物理定律以及系统内的结构数据来推导出模型 1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研的重要分析方法,对社会学和经济学等教育领域领域的实际缺陷,在决策,对策等重新得到学科中曾得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立" 瞬时变化率" 的表达式。
5. 偏微分方程--逐步解决因变量与两个以上自数学建模方法一、机理分析法以及基本物理定律从系统的结构数据来推导出模型1. 比例分析法--建立变量之间函数隔阂的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研的关键性方法,人类学对社会学和经济学等领域的实际难题,在决策,对策等学科中所得到广泛应用。
4. 常微分方程--解决两个变量之间的癸日变化规律,关键是建立" 瞬时变化率" 的表达式。
5. 偏微分方程--解决因变量与四个以上自变量之间的变化规律。
二、数据分析法从大量的观测数据利用统计方法建立数学模型1. 回归分析法--用于对函数f (x )的一组观测值(xi,fi )I=1,2,…,n,确定函数的表达式,由于处理的是静态的独立资料,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为原核细胞统计方法。
3. 回归分析法--用于对函数f (x )的一组观测值(xi,fi )I=1,2,…,n,确定函数的表达式,于处理统合的是静态的分立数据,故称为数理统计方法。
4. 时序分析法--处理的是动态的相关数据,又称为过程统计数据方法。
三、仿真和其他方法1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
数学建模微积分模型例题
数学建模微积分模型例题
以下是一个简单的数学建模微积分例题:
题目:有一根细棒,其长度为10米,质量为1千克。
我们需要计算这根细棒的弯曲程度。
首先,我们需要理解什么是弯曲程度。
弯曲程度可以理解为细棒弯曲的弧长与其原长的比值。
因此,我们可以用以下数学模型表示细棒的弯曲程度:设细棒的原长为L 米,弯曲的弧长为s 米,则弯曲程度y = s / L。
接下来,我们需要考虑如何计算弯曲的弧长s。
由于细棒弯曲时形成的是一个圆弧,因此我们可以使用微积分的知识来求解。
设细棒在弯曲过程中形成的圆弧的半径为r 米,圆心角为θ度,则弧长s = r ×θ。
由于细棒的质量分布均匀,因此我们可以认为细棒在弯曲过程中形成的圆弧的半径r 是恒定的。
同时,我们知道细棒的总质量M = 1 千克,因此我们可以计算出细棒在弯曲过程中形成的圆心角θ。
设细棒在弯曲过程中形成的圆心角为θ度,则θ= M ×g / (r ×g)。
其中g 是重力加速度,g = 9.8 m/s^2。
将以上模型整合,我们可以得到以下微积分方程:
y = s / L = r ×θ/ L = (M ×g / (r ×g)) ×90°/ L
其中,y 是弯曲程度,s 是弯曲的弧长,L 是细棒的原长,r 是圆弧的半径,θ是圆心角。
这是一个简单的数学建模微积分例题,通过这个例题我们可以理解数学建模的基本思路和方法。
数学建模第二章微积分方法建模24城市人口统计模型
把[0,T ]时间区分为 n 等分,每个小区间长度为 t
t
t0 0 t1
t2 … t j1
tj
…
tn T
初始时刻的人口数为 P(0) ,到时刻 T 将只剩下 h(T )P(0) 。当 t 很小时,从时刻 t j1 到 t j ,净增人口的 比率近似为常数 r(t j ) 。这段时期净增的人口数近似为 r(t j )t ,t j 时刻的人口到时刻T 时只剩下 h(T t j )r(t j )t 。 所以在T 时刻的总人口数近似为
设 P(t) 表示 t 时刻城市人口数,人口变化受下面两
条规则的影响:
1、 t 时刻净增人口以每年 r(t) 的比率增加;
2、在一段时期内,比如说从T1 到T2 ,由于死亡或迁移, T1 时刻的人口数 P(T1) 的一部分在T2 时刻仍然存在,用 h(T2 T1)P(T1) 来表示,这里 0 h(T2 T1) 1 , T2 T1 是这段 时间的长度。
rj 2
rj
2 1
rj 2
(rj
r)2
2 rj r (r)2 2 rj r ,( r 很小)
第 j 个圆环上的人口数近似为 P(rj ) 2 rj r ,因此
n
N P(rj ) 2 rj r j 1
令 n ,得
ห้องสมุดไป่ตู้
C
N 0 P(r)2 rdr
二、模型 2 (预测城市未来人口)
n
P(T ) h(T )P(0) h(T t j )r(t j )t j 1
令 n ,得
T
P(T ) h(T )P(0) 0 h(T t)r(t)dt
《数学模型》试题及参考答案
A卷2009-2010学年第2学期《数学建模》试卷专业班级姓名分组号与学号开课系室数学与计算科学学院考试日期 2010 年7月题号一二三四五六七八总分得分阅卷人数学建模试卷(1007A)一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。
(2)建立数学模型的一般方法是什么?在建模中如何应用这些方法,结合实例加以说明。
二(10分)、(1).简述数学建模的一般步骤,分析每个步骤的主要内容和注意事项。
(2)简述数学模型的表现形态,并举例说明。
第一页三(10分)、(1)简述合理分配席位的Q-值方法,包括方法的具体实施过程,简述分配席位的理想化原则。
(2)建立录像机记数器读数与录像带转过时间之间的关系模型,包括模型假设与模型建立全过程。
四(15分)(1)建立不允许缺货情况下的存储模型,确定订货周期和订货量(包括问题叙述,模型假设和求解过程).(2)建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,k r.在每个生产周期T内,开始的一段时间(0 t T0)一边生产一边销售,后来的一段时间(T0t T)只销售不生产.设每次生产开工费为c1,单位时间每件产品贮存费为c2,(a)求出存储量q(t) 的表示式并画出示意图。
(2)以总费用最小为准则确定最优周期T,讨论kr的情况.第二页五(15分)、(1)建立传染病传播的SIS模型并求解(简述假设条件和求解过程),(2)建立SIR模型,并用相平面方法求解,在相平面上画出相轨线并进行分析。
六(15分)(1)建立一般的战争模型,分析各项所表示的含义。
(2)在假设x0y0,b 9a条件下对正规战争模型(忽略增援和非战斗减员)进行建模求解,确定战争结局和结束时间。
第三页七(15分)设渔场鱼量的自然增长服从模型x rxln N,又单位时间捕捞量为xh Ex.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量hm及获得最大产量的捕捞强度E m 和渔场鱼量水平x0.八(10分)假设商品价格y k和供应量x k满足差分方程y k1 y0(xk1x k x0), 02xk1 x0(y k y0) 0求差分方程的平衡点,推导稳定条件第四页A卷2009-2010学年第2学期《数学模型》试题参考答案与评分标准专业班级开课系室数学与计算科学学院考试日期2010年7月数学建模试卷(1007A)参考答案与评分标准一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。
数学建模知识点总结
数学建模知识点总结一、数学建模概述1.1 数学建模的概念数学建模是利用数学方法和技术解决实际问题的过程,是将实际问题抽象成数学模型,再通过数学分析和计算来解决问题的一种方法。
数学建模可以应用于工程、科学、经济、环境等各个领域,对于解决复杂的实际问题具有重要的作用。
1.2 数学建模的基本步骤数学建模的基本步骤包括问题分析、建立数学模型、求解模型、模型验证和应用。
在处理实际问题时,首先要对问题进行充分的分析,然后建立相应的数学模型,再通过数学方法来求解模型,最后对模型进行验证和应用。
1.3 数学建模的应用范围数学建模的应用范围非常广泛,可以涉及到自然科学、社会科学、工程技术等各个领域。
例如,在工程领域可以用数学建模来设计飞机、汽车、桥梁等结构的强度和稳定性;在环境科学领域可以用数学建模来研究气候变化、环境污染等问题;在生物医学领域可以用数学建模来研究人体的生理过程。
1.4 数学建模的意义数学建模可以帮助人们更好地理解实际问题,设计出更优秀的工程产品,提高生产效率,优化资源配置,解决环境污染等问题,对于推动科技进步和社会发展具有重要的意义。
二、数学建模的数学基础2.1 微积分微积分是数学建模的基础。
微积分是研究变化的数学分支,包括导数、积分、微分方程等概念。
在数学建模中,微积分可以用来描述变化率、优化函数、求解微分方程等问题。
2.2 线性代数线性代数是数学建模的另一个基础。
线性代数是研究向量、矩阵、线性方程组等概念的数学分支,可以用来描述多维空间的几何关系、解决大规模线性方程组等问题。
2.3 概率论与统计学概率论与统计学是数学建模的重要工具。
概率论研究随机事件的概率分布、随机过程等概念,统计学研究数据的收集、处理、分析等方法。
在数学建模中,概率论和统计学可以用来描述随机现象、分析数据、评估模型等问题。
3.1 最优化方法最优化方法是数学建模常用的方法之一。
最优化方法是研究如何找到使目标函数取得最大(小)值的变量取值。
两个数学建模实例
3. 每天油价250美元/吨,日固定开支1000美元。
上一页
下一页
主 页
返 回
两个数学建模实例
模型建立
一次航行所需费用:总油耗+固定开支
希望总花费最小。
1)容易算出每天工作的时数:
L 9.6(h / 天), v0 8 v0 20 n mile / h
50 k 3 20
2)比例系数:
上一页
两个数学建模实例 例1:录像机计数器的用途
一盘录像带从头到尾,时间用了183分30秒,计 数器读数从0000变到6152。能否建立计数器读数与 录像带转过时间的关系?由此计数器可以起到记录 时间的作用。请看下列的工作原理图。
右轮盘 左轮盘 主动轮 录象带
0000
计数器
磁头
压轮
上一页
下一页
主 页
返 回
盘半径为 r;
上一页 下一页 主 页 返 回
两个数学建模实例
模型建立
建立 t 与 n 之间的关系有多种途径,譬如:
一、当右轮盘转到第i圈时,其半径为r + wi,周长为 2π(r + wi),m圈的总长度恰好等于录象带转过的长度 vt。(w << r)即
2 (r wi) vt,
i 1
下一页
主 页
返 回
两个数学建模实例
模型建立
总油耗:
L 50v3 T1 3 250 9.6 v 20
L T2 1000 9.6 v
固定开支:
总费用:
L 50v3 L min T T1 T2 3 250 1000 9.6 v 20 9.6 v
m
且m kn
数学建模试题(带答案)
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,不难求得 (4)
2c1 r c2
T
2c1 rc 2
再根据(1)有,
Q
(5)
宁波职业技术学院数学教研室
数学建模讲座
Q
2c1 r c2
(5)
这就是经济理论中著名的经济订货批量公式(EOQ公式) 货物本身的价格可不考虑,这是因为若记每吨货 的价格为k,则一周期的总费用 C 中应添加kQ,由于
Q rT
(1)
订货后贮存量由Q均匀地下降,记任意时刻t的贮 存量为q,则q(t)的变化规律可以用图1表示
宁波职业技术学院数学教研室
数学建模讲座 q
Q A r T 图1 t
0
考察一个订货周期的总费用:订货费为c1;贮存费是
c2 q(t )dt 其中积分恰等于图中三角形的面积为A,显然
0 T
1 A QT 2
实例十一、森林救火数学模型
宁波职业技术学院数学教研室
数学建模讲座
贮存模型 背景 不允许缺货的贮存数学模型 知识 工厂要定期地订购各种原料,在仓库里供生产
之用。商店要成批地购进各种商品,放在货柜中以 备零售。水库在雨季蓄水,用于旱季的灌溉和航运。 无论是原料、商品还是水的贮存,都有贮存多少的 问题。原料、商品贮存得太多,贮存费用高;贮存 得太少,则无法满足需求。水库雨季蓄水过量,更 可能危及安全。当影响贮存量的因素包含随机性时, 如顾客对商品的需求,天气对蓄水的影响,需要建 立贮存模型。
Q rT 所以公式(3)中增加一常数项kr,对求解结果
式(4)、(5)没有影响。 (5)式表明,订货费c1越高,需求量越大,订货批量 Q应越大;贮存费c2越高,订货批量Q应越小,这些关系 当然是符合常识的,不过公式在定量上表明的平方关系 却是凭常识方法得到的
宁波职业技术学院数学教研室
数学建模讲座
数学建模讲座
针对房屋管理部门的要求,我们考虑两种情形:
r 1、 (t ) 是常数,即对一场长时间内持续不断的下雨过 程来说,这时将出现或者水槽溢出,檐槽不能胜任, 或者水槽中水的深度趋于一个低于0.075米的稳定值, h(t ) 0 对于后一种情况来说,即 ,因此
h 802568 .85r 2
(3)
C C 利用微分法,令 0, 0,可以求出T,Q的最优值 T Q
分别记作T ´,Q´,有
T 2c1 c 2 c3 rc 2 c3 Q c3 2rc1 c 2 c 2 c3
宁波职业技术学院数学教研室
数学建模讲座
若记
c2 c3 c3 ( 1)
当 r 0.0205 厘米/秒时,将有 h 7.5厘米,雨水将从槽 中溢出,当 r 0.0205 厘米/秒时, 5.02 厘米,这时不 h 会发生雨水溢出现象
宁波职业技术学院数学教研室
数学建模讲座
借助数学软件,可以求得其数值解
0 t/秒 h/厘米 1.00 40 t /秒 h/厘米 4.61 5 10 15 20 2.39 3.11 3.58 3.92 45 50 55 60 4.69 4.76 4.81
由(1)可知,一个订货周期T内的总费用为
1 C c1 c 2 rT 2 2
(2)
宁波职业技术学院数学教研室
数学建模讲座
这个贮存模型的目标函数不能是一个周期的总费用 C
而应取作每天的平均费用,记作C(T),显然
C c1 1 C (T ) c 2 rT T T 2
(3)
模型分析
制订最优贮存策略归结为求订货周期T,使C(T)最小
宁波职业技术学院数学教研室
数学建模讲座
问题 首先假定需求是恒定的,并且不允许缺货现 分析 出现,如钢厂订购废钢以供炼钢用,因为炼钢生
产对原料的需求是一定的,而且一旦缺少了原料 将造成巨大的损失。 在不允许缺货的情况下,只考虑两种费用:
(1)、订货时需付的一次性订货费;
(2)、货物贮存费 至于货物本身的价格,下面将看到它与要讨论的 优化问题无关。 建立模型的目的是在单位时间内需求量为常数 的情况下,制订最优贮存策略。 即多长时间订一次货,每次订多少货,使总费用最小
模型假设
(1)、雨水垂直下落并且直接落在房顶上; (2)、所有落在房顶上的雨水全部迅速流入水槽中; (3)、直接落入水槽中的雨水可以忽略不计;
宁波职业技术学院数学教研室
数学建模讲座
(4)、落在房顶上的雨水没有溅到外面去; (5)、在排水的系统中不存在一些预料不到的障碍, 像落在房顶上的杂物、树叶等;
4.5 4 3.5 3 2.5
25 4.17 … …
30 35 4.35 4.50 120 5.00
4.86
0.05 1.5
0.1
0.15
0.2
0.25
0.3
宁波职业技术学院数学教研室
数学建模讲座
r 2、 (t )是周期函数,不妨设为正弦函数,即
t 1 sin( ), 0 t 40 r (t ) 20 40 0 , t 40
背景 知识 问 题 分 析
允许缺货的贮存数学模型
考察一个商店经理制订最优订货周期和是最优 订货指是经常碰到的问题。 设市场对某种商品的需求是确定的和已知的。仅是 允许缺货时因失去销售机会而使利润减少,减少的 利润可以视为因缺货而付出的费用。于是,这个模 型的第1、2条假设条件与不允许缺货的贮存模型相 同,而第3条改为: (3)´每隔T天订货Q吨,允许缺货,每天每吨货 物缺货费为c3
这表明下雨过程是在40秒内发生的一个短促的阵雨行为, 最大的降雨强度是0.05厘米/秒,那么就有如下微分方程:
宁波职业技术学院数学教研室
数学建模讲座
1 t 1.299 2 sin( 40 ) 0.00145 h , 0 t 40 dh 0.15 h h 2 dt 0.00145 h , t 40 0.15 h h 2 h(0) 0.01
2h(t )d 2ah h 2 (t ) r (t )bd cos sin A 2 gh(t )
即
dh r (t )bd cos sin A 2 gh(t ) dt 2d 2ah(t ) h 2 (t )
宁波职业技术学院数学教研室
数学建模讲座
模型求解与分析
一般地,为了求解微分方程的解,设初始条件h(0)=0,
于是总费用为
1 1 2 C c1 c2 QT1 c3 r (T T1 ) 2 2
(2)
模型的目标函数仍为每天的平均费用。
宁波职业技术学院数学教研室
数学建模讲座
模型分析
将(2)代入(1),可知平均费用是T和Q的二元函数 记作C(Q,T),且
c1 c 2 Q 2 c3 (rT Q) 2 C (Q, T ) T 2rT 2rT
宁波职业技术学院数学教研室
数学建模讲座
于是
Q rT1
(1)
T
1 ,其中积分等于图中三角形面积A,A QT1 ,缺货费 2
c3 | q(t ) | dt,其中积分等于三角形面积B,易知
T1 T
一个订货周期T内的总费用:订货费c1;贮存费c2 0 q(t )dt
B
1 r (T T1 ) 2 2
数学建模讲座
数学建模 之 微积分模型(二)
曹勃
宁波职业技术学院数学教研室
数学建模讲座
微分方程建模具体实例 实例一、椅子在地面上放稳的问题
实例二、咳嗽问题
实例四、储存销售模型 实例六、广告决策问题
实例三、减肥模型 实例五、屋檐水槽的模型
实例七、价格竞争模型 实例九、湖水污染模型
实例八、药物模型
实例十、群体遗传模型
符号说明
有关因素 降水速度 时 间 房顶的倾斜角 房顶的长度 房顶的宽度 水槽的半径 水槽中水的深度 水槽中水的容量
因素类型 输入变量 变 量 输入参数 输入参数 输入参数 输入参数 输出变量 变 量
符号
单位
r
d b a h V Q1 Q0 A g
宁波职业技术学院数学教研室
t
流入水槽的流速
流出水槽的流速 排水管的横截面积 重力加速度
宁波职业技术学院数学教研室
数学建模讲座
但是房管部门还在犹豫,考虑公司的承诺能否实
现,于是想请你用数学的方法给出一个详细的分析,
论证这个方案的可行性。
b
房顶
d
宁波职业技术学院数学教研室
数学建模讲座
问题分析
这实际上是一个水槽的容量能否足以排出雨水的问 题,它是诸如水箱、河流和水库类型的流入—流出的问 题的一种简化,在这里,从房顶上流下的雨水是流入量, 排水管排出的是流出量,问题的关键在于水槽能否在没 有溢出的情况下将全部雨水排出,或都换言之,我们需 要着重研究水槽中水的深度与时间的一种函数关系
2 a h (a h) 2ah h 2 a 2 d (cos1 ( ) ) 2 a a
h
A
C
宁波职业技术学院数学教研室
数学建模讲座
因此不难得出
V (t ) 2h(t )d 2ah h 2 (t )
根据能量守衡定律,可知流出速度为 2 gh(t ) 因此有 Q0 A 2 gh(t ) 这样就可以得到如下模型:
但是在本问题中会使方程出现奇异解,所以我们可 以设h(0)=0.01米,也就是开始计时时,已下了一段 时间的雨了,槽内有一定的积水。
将本题中的已知条件代入方程,有微分方程:
dh 1.299 r 0.00145 h 2 dt 0.15 h h h(0) 0.01
宁波职业技术学院数学教研室
宁波职业技术学院数学教研室