2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B

合集下载

三峡大学硕士研究生数值分析11年-12年秋考试试卷Word版

三峡大学硕士研究生数值分析11年-12年秋考试试卷Word版

阅卷负责人签名:.(5分)设 n n n I I e -=,则11---n n I I )(1n n I I n--=, ||11---n n I I |)(|1n n I I n -=,即n n e ne 11=-.每迭代一次误差均在减少,所以设计的递推算法是数值稳定的. (15分)二、(15分)设n n ij R a A ⨯∈=)(对称,顺序主子式),,2,1(0n i i =≠∆则T LDL A =分解存在,其中L 为单位下三角形矩阵,D 为对角阵,试写出求方程组b Ax =解的计算步骤(用矩阵表示), 此法称为改进平方根法. 试用它求解方程组.:⎩⎨⎧=+=+221669632121x x x x 解: 由T LDL A =可得b Ax =的方程为b x LDL T=,令y x DL T=,则b Ly =.计算步骤(1) 将A 直接分解T LDL A =,求出 D L , (2) 求解方程b Ly =(3) 求解方程y D x L T 1-= (5分)现有⎢⎣⎡63 ⎥⎦⎤166⎥⎦⎤⎢⎣⎡=10121l ⎥⎦⎤⎢⎣⎡2100d d ⎥⎦⎤⎢⎣⎡10121l 比较矩阵两边的元素,可得: ,221=l ,31=d .42=d由b Ly =可得⎥⎦⎤⎢⎣⎡1201⎥⎦⎤⎢⎣⎡21y y ⎥⎦⎤⎢⎣⎡=229 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒4921y y 由y D x L T1-=得⎥⎦⎤⎢⎣⎡1021⎥⎦⎤⎢⎣⎡21x x ⎥⎦⎤⎢⎣⎡=13 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒1112x x (15分)三、(15分)已知下列线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-14514103131021310321x x x 之精确解Tx )1,1,1(=.用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列问题: (1) 写出Jacobi 迭代和Gauss-Seidel 迭代两种迭代格式的分量迭代形式;(2) 求Jacobi 迭代格式的迭代矩阵及其-∞范数,并指出Jacobi 迭代法的收敛性. 解: (1) Jacobi 迭代法的分量形式:⎪⎪⎩⎪⎪⎨⎧--=----=--=+++10/)314()10/()325(10/)314()(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x ),1,0( =kGauss-Seidel 迭代法的分量形式:⎪⎪⎩⎪⎪⎨⎧--=----=--=++++++10/)314()10/()325(10/)314()1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x ),1,0( =k (10分)(2) Jacobi 迭代格式的迭代矩阵及其-∞范数分别为:⎪⎪⎪⎭⎫ ⎝⎛----=-=-010/310/110/3010/210/110/301A D I B J15.010/310/2||||<=+=∞J B Jacobi 迭代收敛. (15分)四、(10分)用最小二乘法解下列超定线性方程组:⎪⎪⎩⎪⎪⎨⎧=+=+=-=+7262353114221212121x x x x x x x x 解 +-+=221)1142(),(x x y x Q 221)353(--x x+-++221)62(x x 221)72(-+x x要使总残差达到最小,必有⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0021x Q x Q ⇒⎩⎨⎧-=-=-48463513182121x x x x⇒⎪⎪⎩⎪⎪⎨⎧==9111327383021x x 或⎩⎨⎧≈≈24.104.321x x (10分)五、(10分) 设23)()(a x x f -=.(1) 写出0)(=x f 解的Newton 迭代格式; (2) 证明此迭代格式是线性收敛的.解 (1) 因23)()(a x x f -=,故)(6)(32a x x x f -='.由Newton 迭代公式: ,1,0,)()(1='-=+k x f x f x x k k k k 得 ,1,0,665)(6)(232231=+=---=+k x ax a x x a x x x kk k k k k k .(5分)(2)迭代函数,665)(2x a x x +=ϕ而,365)(3--='x ax ϕ 又3*a x =, 则 =-='-333)(3165)(a a ϕ.0213165≠=-故此迭代格式是线性收敛的. (10分)六、(15分) 取节点21,010==x x ,12=x ,求函数xe x y -=)(在区间]1,0[上的二次插值多项式),(2x L 并估计插值误差.解 由Lagrange 插值公式得()()()2112142122112----⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--=e x x e x x x x x L . (10分)())1)(5.0)(0(!3)()()(22---'''=-=x x x y x L x y x R ξ )10(<<ξ ()1)5.0(max 6110--≤≤≤x x x x 令 ),1)(5.0()(--=x x x x h 由0)(='x h ,求得两个驻点得)311(211+=x , )311(212-=x于是 =≤≤|)(|max 10x h x 3121)}1(),(),(),0({max 2110=≤≤h x h x h h x所以,有())()(22x L x y x R -=)(max 6110x h x ≤≤≤008019.03721≈=(15分) 七、(10分)已知某河宽20m ,测得水深)(x f 如下表 (单位:m ):4.18.10.28.20.35.28.20.38.15.10.1)(20181614121086420k kx f x利用所有数据,用复合梯形公式和复合Simpson 公式计算河水的截面积dx x f ⎰20)(的近似值.解:用复合梯形公式,小区间数,10=n 步长.21020=-=h]4.1)8.10.28.20.35.28.20.38.15.1(20.1[22)(1020++++++++++=≈⎰T dx x f)(8.442m = (5分)用复合Simpson 公式. 小区间数5=n , 步长4)020(51=-⨯=h ]4.1)0.20.38.28.1(2)8.18.25.20.35.1(40.1[64)(520++++++++++=≈⎰S dx x f)(33.45)(313622m m ≈=(10分)八、(10分)设初值问题:⎩⎨⎧=≤≤-='0)0(10),1(10y x y x y ,(1) 写出用Euler 方法、取步长1.0=h 解上述初值问题数值解的公式; (2) 写出用改进Euler 方法、取步长1.0=h 解上述初值问题数值解的公式. 解: (1)取步长1.0=h 解上述初值问题数值解的Euler 公式为;9,,1,0),1(),(01==-+=+=+y n y x y y x hf y y n n n n n n n (5分)(2)取步长1.0=h 解上述初值问题数值解的改进Euler 公式为:)]1()1([21)1(01111=⎪⎩⎪⎨⎧-+-+=-+=++++y y x y x y y y x y y n n n n n n n n n n 9,,1,0 =n (10分)。

[考研类试卷]2008年工程硕士研究生学位课程(数值分析)真题试卷B.doc

[考研类试卷]2008年工程硕士研究生学位课程(数值分析)真题试卷B.doc

[考研类试卷]2008年工程硕士研究生学位课程(数值分析)真题试卷B一、填空题请完成下列各题,在各题的空处填入恰当的答案。

1 为了使计算y=11+的乘除法运算次数尽量地少,应将该表达式改为_____.2 求方程x-f(x)=0根的牛顿迭代格式是_____3 设A=则‖A‖∞=_______4 解方程组的Jacobi迭代格式为______5 设f(x)=8x4+3x3-98x+1,则差商f[2,4,8,16,32]=______6 记h=(b-a)/n,x i=a+ih,0≤i≤n,则计算I(f)=的复化Simpson公式为______,代数精度为______7 用简单迭代法求非线性方程x-lnx=2在(2,+∞)内的根,要求精确至6位有效数字,并说明所用迭代格式为什么是收敛的.8 给定线性方程组 1)写出Gauss-Seidel迭代格式; 2)分析此迭代格式的收敛性.9 1)给定如下数据表:求f(x)的2次插值多项式L(x);2)利用如下数据表:求f(x)的3次插值多项式H(x).10 求a,b,使得达到最小,并求出此最小值.11 求系数A1,A2,A3,使得求积公式≈A1f(-1)+A2f(-1/3)+A3f(2/3)的代数精度尽可能高,并指出所达到的代数精度的次数.12 给定常微分方程初值问题取正整数n,并记h=(b-a)/n,x i=a十ih,0≤i≤n.1)分析如下求解公式的局部截断误差y i+1=y i+[f(x i+1,y i+1)+f(x i,y i)](A)2)分析如下求解公式的局部截断误差y i+1=y i+[3f(x i,y i)-f(x i-1,y i-1)];(B)3)指出以上两个求解公式各是儿阶公式,并从局部截断误差的大小、显隐格式及单多步公式几方面作一个简单的比较.。

Ch1-Ch4(2009-2011级硕士研究生《数值分析》试卷)

Ch1-Ch4(2009-2011级硕士研究生《数值分析》试卷)

2009级一、判断题 (每题2分)3. 若n 阶方阵A 是严格对角占优的,则解方程组A =x b 的Jacobi 迭代法收敛。

( √ )4. 设是方程的根,则求的Newton 迭代法至少是平方收敛的。

( ) *x 0)(=x f *x二、填空题 (每空2分)1. 近似数关于准确值* 3.120x = 3.12065x =有 位有效数字,相对误差是 . 4. 设2543A −⎡⎤=⎢⎥−⎣⎦,则1A = ,A ∞= ,1Cond()A = .五(本题满分10分) 对于下列方程组1231231234222633245x x x x x x x x x ,,,−+=⎧⎪++=⎨⎪++=⎩ 建立Gauss–Seidel 迭代公式,写出相应的迭代矩阵,并用迭代矩阵的范数判断所建立的Gauss–Seidel 迭代公式是否收敛。

七(本题满分10分) 已知方程在10x xe −=00.5x =附近有一个实根.*x (1) 取初值00.5x =,用Newton 迭代法求(只迭代两次)。

*x (2) 取初值010.5,0.6x x ==,用弦截法求(只迭代两次)。

*x2010级一、填空题 (每空2分,共20分)1. 近似数关于准确值*2.315x = 2.31565x =有 位有效数字,相对误差是 .4. 设2345A −⎡⎤=⎢⎥−⎣⎦,则1A = ,Cond()A ∞= .5. 设是方程的3重实根,则求的改进的Newton 迭代公式为 *x 0)(=x f *x .二 (本题满分8分) 对下列方程组1231231232633245,422x x x x x x x x x ,++=⎧⎪++=⎨⎪−+=⎩ 建立收敛的Jacobi 迭代公式和收敛的Gauss–Seidel 迭代公式,并说明理由。

五(本题满分10分) 已知方程在3210x x −−=0 1.5x =附近有一个实根.*x (1) 取初值0 1.5x =,用Newton 迭代法求(只迭代两次)。

数值分析试题10A

数值分析试题10A

《数值分析》A 卷 第 1 页 共 2 页 华南理工大学研究生课程考试 《数值分析》试卷A 2011年1月7日 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在试卷上; 课程代码:S0003004 考试形式:闭卷 考生类别:硕士研究生 本试卷共八大题,满分100分,考试时间为150分钟。

一.选择、判断、填空题(10小题,每小题2分,共20分): *** 第1--2小题: 选择A 、B 、C 、D 四个答案之一, 填在括号内,使命题成立 *** .求解线性代数方程组的追赶法适用于求解( )方程组。

A . 上三角 B . 下三角 C . 三对角 D . 对称正定 求解一阶常微分方程初值问题的经典4阶Runge-Kutta 公式( )。

A. 是隐式公式 B. 是单步法 C. 是多步法 D. 局部截断误差为O (h 4) *** 第3--6小题: 判断正误,正确写"√ ",错误写"× ",填在括号内 *** .设近似数x *=2.5368具有5位有效数字,则其相对误差限为0.25×10-4 。

( x ) .矩阵A 的条件数越小,A 的病态程度越严重。

( x ) .解线性方程组 Ax=b 时,J 迭代法和GS 迭代法对任意的x (0) 收敛的充要条件是A 严格对角占优。

( x ) .n 个求积节点的插值型求积公式至少具有n -1次代数精度。

( v ) *** 第7--10小题: 填空题,将答案填在横线上 *** .为避免两相近数相减的运算,应将11310-变换为 。

.方程组 Ax=b ,其中⎥⎦⎤⎢⎣⎡-=5.1112A ,则求解此方程组的J 迭代法的迭代矩阵 为 ,而GS 迭代法的迭代矩阵为_ _ 。

.设i x i =),,2,1,0(n i =, )(x l i 是相应的n 次Lagrange 插值基函数,则∑==n i i n i x l x 0)( 。

武汉大学2011工程硕士数值分析考试复习题

武汉大学2011工程硕士数值分析考试复习题

武汉大学2011工程硕士数值分析考试复习题预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制1、设()0f x =有根,且'0(),m f x M x <≤≤-∞<<+∞,试证明由1()k k k x x f x λ+=-产生的序列{}k x 对任意的0x 和02M λ<<均收敛。

2、对3*(),0()x x x x x φφ=+=为的一个不动点,验证10()0k k x x x φ+=≠对不收敛,但改用steffen 方法却收敛。

3、设*x 是()0f x =的根,且()()'''*0,f x f x x ≠在领域上连续,试证明:Newton 迭代序列{}n x 满足''*12'*12()lim ()2()k k k k k x x f x x x f x -→∞---=-4、给定方程组的雅可比迭代矩阵为022101220J B =----??,试证明雅可比迭代收敛而高斯迭代不收敛。

5、设二阶方程组为12630321x x = ? ? ?-????,取(0)00x ??= (1)用最快速下降法迭代两次求近似解(2)x ;(2)用共轭梯度法迭代两次求近似解(2)x ;(3)与精确解进行比较分析。

6、设方程组AX=B 系数矩阵A 非奇异,条件数cond (A ),设A 有扰动A δ,且11A A δ-<,分析解的扰动X δ的相对变化XX δ。

7、设2()[,],()()0f x c a b f a f b ?==且,试证明:2''()max ()max ()8a xb a x b b a f x f x ≤≤≤≤-≤8、试证明两点三次Hermite 插值余项(4)2231()()()()4!k k f R x x x x x ξ+=--,并求此分段三次Hermite 插值的误差限。

2010-2011学年北京理工大学硕士研究生数值分析期末试卷

2010-2011学年北京理工大学硕士研究生数值分析期末试卷
h
20102011学年北京理工大学硕士研究生数值分析期末试卷20102011学年北京理工大学硕士研究生数值分析期末试卷1一20分考虑线性方程组axb其中a111t1222123312b4321341
2010-2011 学年北京理工大学硕士研究生数值分析期末试卷 1 一(20 分)考虑线性方程组 Ax=b,其中 A= 1 1 1
π 2 0
1−
3 cos x 4
2
dx,
用数值积分的方法求其近似值(要求计算结果具有四位有效数字) 。 2 四(15 分)用迭代法求 x +10x-18=0 在[1,2]内的根,取初值为 1.5 1. 构造一个收敛的迭算 2 步,然后采用 Aitken 加速算法再计算一步是否能得 到更精确的近似值?计算过程中小数点后保留 4 位。 五(10 分)求函数 ex 在区间[0,1]上的一次最佳平方逼近多项式。 y ′ + y = 0, xϵ[0,1] 六(20 分)对初值问题 y 0 =1 1. 求此微分方程的精确解。 2. 证明:用格式yn+1 = yn + 2 (−yn − yn+1 )所求得的近似解在步长 h0 时收敛 于精确解。 3. 写出上述格式的 Matlab 程序源代码, 要求: 输出近似解曲线图和误差曲线图。
T
1 2 2 2
1 2 3 3
1 2 ,b=(4,3,2,1) 3 4
1. 用平方根法解线性方程组。 2. 对上述方程组构造收敛的迭代格式,说明其收敛原因,取初始值 X(0)=(0,0,0,0)T 用所给的迭代格式计算迭代序列的前两项(用分数表示) 。 二(15 分)已知sin (0.32)=0.314567,sin (0.34)=0.333487 均具有 6 位有效 数字。 1. 请用线性插值求sin (0.33)的近似值。 2. 证明在区间[0.32,0.34]上用线性插值求sin x的近似值时至少有 4 位有效数字。 三(20 分)长半轴为 2,短半轴为 1 的椭圆的周长 s 为 s=8

2011年秋研究生数值分析试题A卷答案

2011年秋研究生数值分析试题A卷答案

2011年秋研究生数值分析期末考试试题答案一、单选题(4*5=20分)1、B;2、D ;3、D ;4、B ;5、C 。

二、填空题(4*5=20)1、2;2、()()1k k k k f x x x f x +=-',平方收敛;3、8,8;4、9; 5、a <。

三、(10分)解:构造3次Lagrange 插值多项式3001001201()()(,)()(,,)()()L x f x f x x x x f x x x x x x x =+-+--0123012(,,,)()()()f x x x x x x x x x x +--- 3’利用待定系数法,令430123()()()()()()H x L x A x x x x x x x x =+----, 5’同时, '''14131101213()()()()()()f x H x L x A x x x x x x ==+--- 7’解出A 即可。

8’ 考虑余项4()()()E x f x H x =-,如果5()[,],,0,1,2,3i f x C a b a x b i ∈≤≤=,那么,当a x b ≤≤时()()5240123()()()()()()()5!f E x f x H x x x x x x x x x ξ=-=----. 0 10’ 四、(10分)解:设所求多项式为23202)(x C x C C x P ++=,10=ϕ,x =1ϕ,22x =ϕ,11),(10++==⎰+k j dx e k j k j ϕϕ,1),(100-==⎰e dx e f x ϕ, 1),(101==⎰dx xe f xϕ,2),(1022-==⎰e dx e x f x ϕ 5’ 所以有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡21151413141312131211210e e C C C ,求解得到 8’ ⎪⎩⎪⎨⎧===83917.085114.001299.1321C C C ,所求最佳平方逼近多项式为:2283917.085114.001299.1)(x x x P ++=。

硕士课程—数值分析题集(附答案).docx

硕士课程—数值分析题集(附答案).docx

2009-2010数值分析第一章绪论 (1)第二章函数插值 (2)第三章函数逼近 (5)第四章数值积分与数值微分 (10)第五章解线性方程组的直接解法 (12)第六章解线性方程组的迭代解法 (16)第七章非线性方程求根 (19)第九章常微分方程初值问题的数值解法 (21)第一章绪论1.1要使胸的相对误差不超过0.1%,应取几位有效数字?解:面的首位数字%=4。

设/有n位有效数字,由定理知相对误差限k(.r*)|<—xlO1^ =-xl0^1 r 1 2x4 84-xio1-" <0.1%, 8解得〃Z3.097,即需取四位有效数字.1.2 序列{/}满足关系式y,,=10y,_]-l(n = l,2,...),若y0=V2«1.41,计算到M。

,误差有多大?这个算法稳定吗?解:y0 = V2,y* =1.41,|y0 -y*| <^-xl0-2=5 ,于是|/i 一川=|1。

》0 —IT。

〉;+1| = 1。

|光 - 司 < 1。

5卜2-》;| = |10》1一1一10》;+1| = 10卜1一酣〈10逆, 一般地|儿一司<103 因此计算到Mo其误差限为1010^,可见这个计算过程是不稳定的。

1. 3计算球的体积,要使相对误差限为1%,问测量半径R时允许的相对误差限是多少?解:5,、九兀K ~-7tK R_R* R2+R*R + R*2R_R* 37?2R_R*。

,“ ,(v)= _2 ---------- 2 «■«.____________ = _____ 3 = 1% ' 4 f RR- R R 2 R-7lR 3》=一' ,即测量半径R 时允许的相对误差限是一、。

R 300300第二章函数插值2.1、利用如下函数值表构造差商表,并写出牛顿插值多项式。

进而得牛顿多项式为 地⑴=f (.%) + /■氏次』吼⑴+ /[.r (p x 1,.r 2]<»2(.r) + /[.r (p x 1,.r 2,.r 3]<»3(.r)1 1 33A^3 (x) = 3 + — (x -1) + — (x -1)(尤)-2(x- l)(x )x2. 2、已知f(-2) = 2, f(-1) = 1, f (0) = 2, f (0.5) = 3试选用合适的插值节点利用Lagrange 二次插值多项式计算f (-o.5)的近似值,使之精度 尽可能高。

2011数值分析试题及答案

2011数值分析试题及答案
122446
由于f(x)二si nx的4阶导数在[0,二]上的最大值为:M4=1,所以
5
误差为:|I-S2|::——44=0.006641
2880x24
6.求解初值问题」y=sin(x+2y),0兰x兰2的改进Euler方法是否收敛?为什
.y(0) = 1
么?
解:由于|sin(x 2y)-sin(x 2y)|二| 2cos(x 2 )(y-y) 2 | y-y |
5.设f(x) = 4x33x-5,求差商f[0,1], f[1,2,3,4]和f[1,2,3,4,5]。
f(D…f(0)
解:f[0,1]==2-(-5) = 7
1-0
f [1,2,3,4^4,f[1,2,3,4,5]=0
3.解线性方程组丿X1-2忑=2的Jacobi迭代法是否收敛,为什么?
+9x2=3
即,函数f(x, y)二sin(x•2y)连续,且关于变量y满足Lipschitz条件,所以,改 进Euler方法收敛。
所以,a=0, b=5/6,拟合曲线为:y=5/6x2
3.求满足条件f(0)=1,f(1)=2,f(2) =0,f(1)=0的三次插值多项式Ha(x)
的表达式。
解:设H3(x)二(^2)(ax2bx c),则有:
1213
所以,H3(x) (x-2)(x2x 1) (x-3x-2)。
22
11
4.确定求积公式Jf(x)dx痒三f(-1)+Af(0)+A2f(1)中的待定系数,使其代数精 度尽可能高,并问此公式是不是插值型求积公式.
解:令公式对f(x) = 1,x都精确成立,得:A,・A2= 3/2, A2= 1/2,
o
• • •

硕士生数值分析试卷答案2011

硕士生数值分析试卷答案2011
(1)证明用雅可比迭代法和高斯-赛德尔迭代法解此方程组要么同时收敛,要么同时发散.
(2)当同时收敛时试比较其收敛速度.
证所给线性方程组系数矩阵为 记
(1)雅可ቤተ መጻሕፍቲ ባይዱ迭代矩阵J为
特征方程为
即 .
因而谱半径
高斯-赛德尔迭代矩阵G为
特征方程为
即 .
因而谱半径
当 时, 雅可比迭代法和高斯-赛德尔迭代法解此方程组都收敛;
当 时, 雅可比迭代法和高斯-赛德尔迭代法解此方程组都发散.
(2)当 时,雅可比迭代法和高斯-赛德尔迭代法解此方程组同时收敛.当 时,有 所以高斯-赛德尔迭代法比雅可比迭代法收敛快.
若已知 的一个近似值 ,则实际计算得到的 的近似值 为
将以上两式相减得
两边取绝对值得
这说明 的误差将放大n倍传到 .因而正向递推时误差传播逐步放大.
逆向递推时,由 来计算 :
若已知 的一个近似值 ,则实际计算得到的 的近似值 为
将以上两式相减得
两边取绝对值得
这说明 的误差将缩小n倍传到 .逆向递推时误差传播逐步衰减.
(3)设 是n次拉格朗日插值多项式的插值基函数,则
; 1.
(4) 个求积节点的插值型求积公式的代数精确度至少为n-1次.
(5)梯形求积公式具有1次代数精度,辛普生求积公式具有3次代数精度.
(6)用二分法求方程 在区间[0,1]内的根,进行一步后根所在区间为 ,进行二步后根所在区间为 .
(7)设 ,则 =___1.1_____ =___0.8_____, =_0.825___.
证(1)梯形公式为
解出 ,得到
递推得
(2)方程的精确解为 注意到 于是
(洛必达)
即当 时, 收敛于精确解.

2010年秋季工学硕士研究生学位课程数值分析真题试卷C_真题-无答案

2010年秋季工学硕士研究生学位课程数值分析真题试卷C_真题-无答案

2010年秋季工学硕士研究生学位课程(数值分析)真题试卷C(总分20,考试时间90分钟)1. 计算题1. 设序列{yn}满足递推关系若y0是具有4位有效数字的近似值,试估计y10的绝对误差限和相对误差限.2. 用简单迭代法求方程sinx-x2+2=0的正根,精确到4位有效数字,并验证迭代法的收敛性.3. 用列主元Gauss消去法解方程组2. 综合题1. 给定线性方程组1)写出求解该方程组的Jacobi迭代格式;2)取初始向量x(0)=(1,1,1)T,用Jacobi迭代求方程组的解,精确到2位有效数字.2. 若g(x)是f(x)以x0,x1,…,xn-1为插值节点的(n-1)次插值多项式,h(x)是f(x)以x1,x2,…,xn为插值节点的(n-1)次插值多项式.证明函数是f(x)以x0,x1,…,xn为插值节点的n次插值多项式.3. 求a,b,使得取最小值,并求该最小值.4. 设f(x)∈C2[a,b],I(f)=I(f)的梯形公式.将[a,b]进行n等分,记h=(b-a)/n,xi=a+ih,0≤i≤n.1)写出计算积分I(f)的复化梯形公式Tn(f).2)已知I(f)-T(f)=证明:存在η∈(a,b),使得I(f)-Tn(f)=5. 给定常微分方程初值问题取正整数n,记h=(b—a)/n,xi=a+ih,i=0,1,2,…,n;yi≈y(xi),1≤i≤n,y0=η.试用数值积分方法导出Adams两步显式公式并写出局部截断误差的表达式.6. 给定常微分方程初值问题取正整数n,记h=(b—a)/n,xi=a+ih,i=0,1,2,…,n;yi≈y(xi),1≤i≤n,y0=η.试分析公式的局部截断误差,并指出该公式是一个几阶公式.7. 设抛物型方程初边值问题有光滑解u(x,t),其中ψ(0)=α(0),ψ(1)=β(0).取正整数M和N,并记h=1/M,τ=T/N;xi=a+ih,0≤i≤M;tk=kτ,0≤k≤N.1)写出求上述定解问题的古典隐格式;2)若f(x,t)=x+t,ψ(x)=x(1-x),α(t)=0,β(t)=0,h=1/3,τ=V3,求u11和u21.。

[考研类试卷]2011年工程硕士研究生学位课程(数值分析)真题试卷B.doc

[考研类试卷]2011年工程硕士研究生学位课程(数值分析)真题试卷B.doc

[考研类试卷]2011年工程硕士研究生学位课程(数值分析)真题试卷B
1 设x=1.231,y=0.5122是由四舍五入法得到的近似值,试计算函数e xy的绝对误差限和相对误差限.
2 给定方程x3+2x-1=0,判别该方程有几个实根,并用迭代法求出方程所有实根,精确到4位有效数字.
3 用列主元Gauss 消去法求下面线性方程组的解:
4 给定线性方程组写出求解上述方程组的Gauss-Seidel 迭代格式,并分析收敛性.
5 已知f(x)=xe x,求一个3次多项式H(x),使之满足H(0)=f(0),H(1)=f(1),
H'(0)=f'(0),H"(1)=f"(1).
6 求a,b ,使得积分取最小值.
7 试用Simpson 公式计算积分的近似值,精确到4位有效数字.
8 给定常微分方程初值问题取正整数n,记h=(b—a)/n,
x i=a+ih,i=0,1,2,…,n;y i≈y(x i),1≤i≤n,y0=η.求常数A,B,使数值求解公
式y i+1=y i十h[A,(x i+1,y i+1)+f(x i,y i)+Bf(x i-1,y i-1)],1≤i≤n-1的阶数尽可能高,并
求出公式的阶数和局部截断误差表达式.
答案见麦多课文库。

2011级硕士研究生《数值分析》试卷(A)

2011级硕士研究生《数值分析》试卷(A)

合肥工业大学2011级硕士研究生《数值分析》试卷(A)班级 姓名 学号 成绩一、判断题 (下列各题,你认为正确的,请在题后的括号内打“√ ”,错误的打“×”,每题2分,共10分) 1. 设函数f 具有5阶导数,则(5)[0,1,2,3,4,5]()f f ξ=,其中ξ介于0,1,2,3,4,5之间,[0,1,2,3,4,5]f 是()f x 关于节点0,1,2,3,4,5的5阶差商。

( )2. 若方阵A 是严格对角占优的,则可用Gauss 消去法直接求解方程组=Ax b ,无须选主元素。

( )3. 若()()0f a f b <,则方程()0f x =在区间(,)a b 内至少有一个根。

( )4. 若函数()f x 是多项式,则它的Lagrange 插值多项式()()p x f x ≡. ( )5. 解常微分方程初值问题的四阶Runge-Kutta 方法的局部截断误差是5()O h ,其中h 是步长。

( )二、填空题 (每空2分,共10分)1. 近似数*3.200x =关于准确值 3.200678x =有 位有效数字。

2. 设2435A =⎡⎤⎢⎥⎣⎦,则1Cond()A = . 3. 设函数(2.6)13.4673,(2.7)14.8797,(2.8)16.4446f f f ===, 用三点数值微分公式计算(2.7)f '= 14.8865 .4. 设函数sin 2()x f x =, 2()p x 是()f x 的以1,2,3为节点的二次Lagrange 插值多项式,则余项2()()f x p x -= .5. 二元函数(,)f x y 在区域D 上关于y 满足Lipschitz 条件是:.三 (本题满分12分) 对下列方程组1231231235212,4220,23103x x x x x x x x x ++=-⎧⎪-++=⎨⎪-+=⎩ 建立Jacobi 迭代格式(4分)和Gauss –Seidel 迭代格式(4分),写出Jacobi 迭代格式的迭代矩阵,并用迭代矩阵的范数判断所建立的Jacobi 迭代格式是否收敛(4分)。

数值分析(2011年12月)B卷

数值分析(2011年12月)B卷

湖南大学研究生课程考试命题专用纸考试科目: 数值分析 (B 卷) 专业年级:2011级各专业 考试形式: 闭 卷(可用计算器) 考试时间:120分钟……………………………………………………………………………………………………………………… 注:答题(包括填空题、选择题)必须答在专用答卷纸上,否则无效。

一、填空题(每空3分,共30分)(1)利用4位浮点数计算,319.7-(2.457+0.1352)=( )。

(2) 设1||<<x ,为了提高计算精度,应将计算公式xx x y 211121--+-=等价转化为( )。

(3)用二分法求1)(3-+=x x x f 在区间[0,1]内的唯一根,迭代二步后根所在的区间为( )。

(4)求1)(23--=x x x f 在区间(1,2)内的根,用迭代格式111-=+k k x x ,该迭代格式是收敛还是发散? ( )。

(5)用高斯消元法求解n 阶线性方程组的乘除运算量为( )。

(6)T x )2,2,22(-=,则向量x 的1-范数1||||x =( )。

(7)设⎪⎪⎪⎭⎫ ⎝⎛----=81032423222A ,则矩阵A 的无穷范数∞||||A =( )。

(8)设x 为n 维列向量,B 为n 阶矩阵,则迭代格式f Bx xk k +=+)()1(收敛的充分必要条件为( )。

(9)已知2)1(1)(x x f +=在 1.2 1.1, ,0.1 三点的函数值分别为0.2066 0.2268, ,25.0,利用三点数值微分公式近似计算f(x) 在1.1处的导数值)1.1('f ≈( )。

(10) 设9876)(257-+-=x x x x f ,则差商=]2,,,2,2[821 f ( )。

二、(10分) 当2,1,0,1-=x 时,函数值分别为15,4,1,6)(-=x f 求f(x)的三次插值多项式。

三、(10分) 求函数x x f sin )(=在区间]2,0[π的最佳平方逼近一次多项式。

数值分析试卷(工程硕士)

数值分析试卷(工程硕士)

内蒙古科技大学工程硕士2011/2012学年 《数值分析》考试试题 课程号: 考试方式:开卷 使用专业、年级:2010工科硕士 任课教师:曹富军,丁立刚 考试时间: 备 注: 一、计算题(共7题,共100分) 1. (15分) 什么是数值分析?结合自己的专业谈谈数值分析在以后工作学习中的应用,并说明使用数值方法进行计算时需要注意哪些问题? 2. (20分) 使用牛顿插值法,构造下列已知函数点上的插值函数。

并求出x=0.7的值。

已知函数在下列各点的值为:3.(10分) 观测物体的直线运动,得出以下数据:求运动方程. 4.(15分) 利用一种复合求积公式计算下列积分,并说明所选择方法的精度? 120,84x dx n x =+⎰ 5.(15分) 设线性方程组:………………装订线………装订线………装订线…………试卷须与答题纸一并交监考教师…………装订线………装订线………装订线………………1231231235212422023103x x x x x x x x x ++=-⎧⎪-++=⎨⎪-+=⎩取初始值(0)(0,0,0)x =,求使用高斯-赛德尔迭代法计算5步(3)x 的结果。

6.(15分) 使用牛顿迭代方法求3()310f x x x =-+=在02x =附近的根,根的准确值* 1.87938524x =,要求计算结果准确到四位有效数字。

7.(10分) 选择一种数值方法,求解常微分方程初值问题:2',(0)0y x x y y =+-=取步长0.1h =,计算到0.5x =,并与精确解21x y e x x -=-+-+相比。

内蒙古科技大学研究生考试试卷考试科目:阅卷人:专业:学号:姓名:1、考前研究生将上述项目填写清楚;2、字迹要清晰;3、教师将试卷、答案一起送研究生学院归档。

年月日答卷要求:1.打印该试卷和考试封面,即文档1-3页。

2.认真填写封面,将阅卷人和成绩留空3.用A3白纸进行答卷4.试卷要求手写,保持卷面整洁5.将本试卷及答案于本周六(5月19日)集体交到学校,如有其它原因不能到来,允许同学带过来。

研究生《数值分析》试卷(带答案)

研究生《数值分析》试卷(带答案)

一.(6分) 已知描述某实际问题的数学模型为xy y x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x ,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.解:)(23)(6)(),()(),()(222y x y x x x y xy y y y x u x x y x u u εεεεε⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=∂∂+∂∂≈6.016.044.001.0)412(01.0)448(=+=⨯++⨯-=0.010714566.03)()(22=≈+=xy y x u u r εε 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .解:21142512)1()2(]2,1[,311401)0()1(]1,0[=-=--==-=--=f f f f f f9232102]1,0[]2,1[]2,1,0[=-=--=f f f0!4)(]4,3,2,1,0[)4(==ξf f三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(10f f f f dx x f -++≈⎰的代数精度. 解:记⎰=10)(dx x f I )]1(')0('[121)]1()0([21f f f f I n -++=1)(=x f 时:1110==⎰dx I 1]00[121]2[21=-+=n Ix x f =)(时:2110==⎰xdx I 21]11[121]1[21=-+=n I2)(x x f =时:31102==⎰dx x I 31]20[121]1[21=-+=n I3)(x x f =时:41103==⎰dx x I 41]30[121]1[21=-+=n I4)(x x f =时:51104==⎰dx x I 61]40[121]1[21=-+=n I求积公式)]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰具有3次代数精度. 四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ. 解:0))(),(())(),((21))(),((1101101100=====⎰⎰--dx x x x x x dx x x ϕϕϕϕϕϕ32))(),(())(),(())(),((112110220====⎰-dx x x x x x x x ϕϕϕϕϕϕ0))(),(())(),((1131221===⎰-dx x x x x x ϕϕϕϕ52))(),((11422==⎰-dx x x x ϕϕ解方程组⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1541532345203203203202210a a a 得⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛15161210a a a 则)(x f 的最佳平方逼近多项式为:1516)(2-+=x x x p 五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表((2) 分别求出满足条件22k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示.解:12)12)(02()1)(0()20)(10()2)(1()(22+-=----+----=x x x x x x x L12)1)(0(1)0)(1(1)(22+-=--+--+=x x x x x x N 令)2)(1()(12)(24--+++-=x x x b ax x x x H则)2()()2)(1)(()2)(1(22)('4-++--++--+-=x x b ax x x b ax x x ax x x H)1()(-++x x b ax由 ⎩⎨⎧-=+=+⇒⎩⎨⎧=-++-=-=-++-=1220)12(2)2(24)2('2)21)((22)1('44b a b a b a H b a H 解得 5,3=-=b a因此1820143)2)(1()53(12)(23424++-+-=--+-++-=x x x x x x x x x x x H 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈11)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .解:过点(1,-1)和点(3,1)作直线得 y t x +=所以积分⎰⎰-+=11312dt t dx x由三次Legendre 多项式 )35(21)(33x x x p -= 得得Gauss 点:,515,0,515210==-=x x x再由代数精度得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==+-==++⎰⎰⎰---32535305155152111220112011210dt x A A dt x A A dt A A A即 ⎪⎩⎪⎨⎧=+=-=++9/10022020210A A A A A A A解得 ,95,98,95210===A A A所以三点Gauss-Legendre 求积公式为:()⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-≈⎰-5159509851595)(11f f f dx x f 因此 79746.2515295298515295211=+++-≈+=⎰-dx t I 七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ). 解:令 2ln )(--=x x x f),1(,011)('∞∈>-=x xx f > 即)(x f 在区间 ),1(∞ 单调增 又 04)(,02ln )2(22>-=<-=e e f f 所以 02ln =--x x 在区间 ),1(∞有一单根 ),1(20e x ∈Newton 迭代公式为1ln 112ln 1-+=----=+k kk k kk k k k x x x x x x x x x 令 20=x 计算得八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解.解: 由计算公式 ⎪⎩⎪⎨⎧-===+====-1,,2,,,2,,111111n i c n i b a c b i i ii i i i i i βααβγγβαα得 ,2,1,1,21,1,24321111======γγγββαα25211322212=⨯-=⇒=+ααβγb 52222222==⇒=αββαc c 53521133323=⨯-=⇒=+ααβγb 35333333==⇒=αββαc c 37352144434-=⨯-=⇒=+ααβγb因此 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛135152121137253125121211113112 即 LU A = 令 b Ly = 解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-022137253125124321y y y y 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛23753214321y y y y令 y Ux =解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛237532113515212114321x x x x 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛21104321x x x x九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .(注:原题中)(2h o 错误)解:)],(),([111--+++=n n n n n n y x bf y x af h y y )](')('[)(1-++=n n n x by x ay h x y])('''21)('')('[)(')(2++-++=n n n n n x y h x hy x y hb x hay x y ++-++=)('''21)('')(')()(32n n n n x by h x by h x y b a h x y 对比 ++++=+)('''61)(''21)(')()(321n n n n n x y h x y h x hy x y x y 得 ⎩⎨⎧==+2/11b b a , 即 2/1==b a 时该计算格式具有二阶精度.。

数值分析(2011)试题A卷

数值分析(2011)试题A卷

装 订 线 年 级学 号姓 名专 业一、填空题(本题40分, 每空4分) 1.设),,1,0()(n j x l j =为节点n x x x ,,,10 的n 次基函数,则=)(i j x l 。

2.已知函数1)(2++=x x x f ,则三阶差商]4,3,2,1[f = 。

3.当n=3时,牛顿-柯特斯系数83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。

4.用迭代法解线性方程组Ax=b 时,迭代格式 ,2,1,0,)()1(=+=+k f Bx x k k 收敛的充分必要条件是 。

5.设矩阵⎥⎦⎤⎢⎣⎡=1221A ,则A 的条件数2)(A Cond = 。

6.正方形的边长约为100cm ,则正方形的边长误差限不超过 cm 才能使其面积误差不超过12cm 。

(结果保留小数) 7.要使求积公式)()0(41)(1110x f A f dx x f +≈⎰具有2次代数精确度,则 =1x , =1A 。

8. 用杜利特尔(Doolittle )分解法分解LU A =,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=135 9 45- 279 126 0 945- 0 45 1827- 9 18 9A 其中,则=L =U 。

二、计算题(10分)已知由数据(0,0),(0.5,y ),(1,3)和(2,2)构造出的三次插值多项式)(3x P 的3x 的系数是6,试确定数据y 。

2011级数值分析 试题 A 卷 2011 ~ 2012学年,第 1 学期 一 二 三 四 五 六 七 八 九 十 总分 年 级2011级研究生份 数拟题人 王吉波审核人装 订 线 年 级学 号姓 名专 业三、计算题(15分)试导出计算)0(1>a a 的Newton 迭代格式,使公式中(对n x )既无开方,又无除法运算,并讨论其收敛性。

四、计算题(15分)已知43,21,41210===x x x 。

(1)推导出以这3个点作为求积节点在[0,1]上的插值型求积公式; (2)指明求积公式所具有的代数精确度;(3)用所求公式计算⎰102dx x 。

2011年工程硕士研究生学位课程(数值分析)真题试卷B

2011年工程硕士研究生学位课程(数值分析)真题试卷B

2011年工程硕士研究生学位课程(数值分析)真题试卷B(总分:16.00,做题时间:90分钟)一、计算题(总题数:3,分数:6.00)1.设x=1.231,y=0.5122是由四舍五入法得到的近似值,试计算函数e xy的绝对误差限和相对误差限.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:根据题意,可知|e(x)|≤ ×10 -3,|e(y)|≤ ×10 -4,|e(e xy)|≈|ye xy e(x)+xe xy e(y)|≤e xy (y|e(x)|+x|e(y)|)≤0.5967×10 -3,)解析:2.给定方程x 3 +2x-1=0,判别该方程有几个实根,并用迭代法求出方程所有实根,精确到4位有效数字.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:改写方程为x 3 =-2x+1,作函数y=x 3和y=-2x+1的图像(见下图),由图像知方程有一个实根x *∈ 构造Newton迭代格式:x k+1=x k k=0,1,2,…,取初值x 0=0.25,计算得x 1 =0.47143,x 2 =0.45357,x 3 =0.45340,x 4 =0)解析:3.用列主元Gauss(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:求得x 1 =1,x 2 =1,x 3 =-1,x 4 =-1.)解析:二、综合题(总题数:5,分数:10.00)4.Gauss-Seidel迭代格式,并分析收敛性.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:Gauss-Seidel迭代格式为Gauss—Seidel迭代矩阵的特征方程为展开得4λ3—4λ2—2λ+8λ2 +2λ2—2λ2 =0,即λ(2λ2 +2λ-1)=0,求得λ1 =0,因为所以Gauss-Seidel迭代发散.)解析:5.已知f(x)=xe x,求一个3次多项式H(x),使之满足H(0)=f(0),H(1)=f(1),H"(0)=f"(0),H"(1)=f"(1).(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:作2次插值多项式p(x),满足p(0)=f(0) p(1)=f(1),P"(0)=f"(0),则p(x)=f(0)+f[0,0]x+y[0,0,1]x 2.列表求差商:可得p(x)=x+(e-1)x 2.由插值条件易知H(x)=p(x)+Ax 2 (x-1),其中A为待定系数.由条件H"(1)=f"(1)得2(e-1)+4A=3e,求得A= 所以H(X)=x+(e-1)x 2x 2 ()解析:6.求a,b(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:取φ0 (x)=1,φ1 (x)=x 2,则(φ0,φ0)=∫ -11 1dx=2,(φ0,φ1)=∫-11 x 2,(φ1,φ0)=∫ -11 x 2)解析:7.试用Simpson4位有效数字.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:由复化Simpson公式得S 1(f)= [f(1)+4f(1.5)+f(2)]= (e -1+4e -1.52+e -22)=0.13463,S 2(f)= [f(1)+4f(1.25)+2f(1.5)+4f(1.75)+f(2)]=0.13521,因为|S 2 (f)-S 1 (f)|=0.38675×10)解析:8.给定常微分方程初值问题取正整数n,记h=(b—a)/n,x i=a+ih,i=0,1,2,…,n;y i≈y(xi ),1≤i≤n,y 0 =η.求常数A,B,使数值求解公式y i+1 =y i十h[A,(x i+1 ,y i+1f(x i,y i )+Bf(x i-1 ,y i-1 )],1≤i≤n-1的阶数尽可能高,并求出公式的阶数和局部截断误差表达式.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:求解公式的局部截断误差为 R i+1 =y(x i+1 )-y(x i )-Ahf(x i+1,y(x i+1 ))-hy(x i,y(x i ))-Bhf(x i-1,y(x i-1 ))=y(x i+1 )-y(x i )-Ahy"(x i+1hy"(x )解析:。

数值分析A卷(2011年秋)

数值分析A卷(2011年秋)

三、 (10 分)设 f ( x) 在 [ x0 , x3 ] 上有 5 阶连续导数,且 x0 x1 x2 x3 , (1)试作一个次数不高于 4 次的多项式 H 4 ( x) ,满足条件
H 4 ( x j ) f ( x j ) , j 0,1, 2,3, ' ' H 4 ( x1 ) f ( x1 ) ;
(D)、它不是插值型求积公式。
y f x, y 1、求解常微分方程初值问题 的改进的欧拉法是 y x0 y0
阶方法。 ,其 收 敛 阶
2 、 解 非 线性方程 f x 0 的单根 的牛顿法 格 式为 为 。
4 1 2 2 , x 1 , 则 Ax 3 2 1 1 3 3、设矩阵 A 1 2
(2)写出 E( x) f ( x) H 4 ( x) 的表达式。
四、 (10 分)求 f ( x) e x 在 [0,1] 上的二次最佳平方逼近,权为 1。
3
五、 (10 分)用 n 2, 3 的高斯-勒让德公式计算积分 e x sin xdx
1
六、 (10 分)已知
0 1 2 1 , b , 2 5 8 1 请用 Doolittle 三角分解法求解线性方程组 Ax b 。 1 3 7 7 1 3 9 9
,对于其产生的数列 k 0 , 1, 2 , xk ,下列说法正确的是
(A)、若数列 xk 收敛,则迭代函数 x 唯一; (B)、若对于 x a, b , x 1 ,则 xk 收敛; (C)、若对于 x a, b , x 1 ,则 xk 收敛; (D)、若对于 x a, b , x L 1 ,则 xk 收敛。 3、对矩阵 A 采用幂法迭代,如果该方法收敛,则其收敛速度取决于( (A)、模最大特征值和模次最大特征值的比值; (B)、模最大特征值和模次最大特征值的模的比值; (C)、模次最大特征值和模最大特征值的比值; (D)、模次最大特征值和模最大特征值的模的比值。 ) 。

2011年下学期数值分析考试试卷答案(A)

2011年下学期数值分析考试试卷答案(A)

2011年下学期数值分析考试试卷答案(A)D222223221()()(1)(2)(1)21(45)2P x H x Ax x x x x x x x x =+-=-+-=-+余项为 R(x)=(5)22()(1)(2)5!f x x x ξ-- ……………………………12分解法2:构造带重节点的Newton 差商表 0 0 0 0 0 1 1 1 1 1 1 1 0 -1 2211/2 ………………………8分2222221()00(0)1(0)1(0)(1)(0)(1)21(45)2N x x x x x x x x x x =+-+----+--=-+…………………12分三、 (12分) 求()xf x e -= 在区间[-1,1]上的最佳平方逼近2次多项式. (用勒让德正交多项式2121{(),(),()}{1,,(31)}2P x P x P x x x =-) 解:用勒让德多项式20121{(),(),()}{1,,(31)}2P x P x P x x x =-,2(,)21iiP P i =+ …………………………………………………………………………………..3分计算:11101(,)( 2.3504)x f P e dx e e ---==-≈⎰,1111(,)20.7358x f P xe dx e---==-≈-⎰121211(,)(31)70.143132x f P x e dx e e ---=-=-≈⎰…………………………………………………………………………………..8分111101010011(,)(,)2* 1.1752,*3 1.1036(,)2(,)2/3 f P f P e e e a a e P P P P ----==≈==-=-≈-12222(,)7*0.3578(,)2/5f P e e a P P --==≈故最优平方逼近函数为:11112225351()3(31)22211.1752 1.10360.3758(31)20.5367 1.10360.9963e e e e p x e x x x x x x -----=-+⋅-≈-+⋅-=-+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B
(总分:28.00,做题时间:90分钟)
一、填空题(总题数:6,分数:12.00)
1.填空题请完成下列各题,在各题的空处填入恰当的答案。

(分数:
2.00)
__________________________________________________________________________________________ 解析:
2.设|x|>>1______
(分数:2.00)
__________________________________________________________________________________________
正确答案:()
解析:
3.求积分∫ a b f(x)dx的两点Gauss公式为______
(分数:2.00)
__________________________________________________________________________________________
正确答案:()
解析:
4.设∞ =______,‖A‖ 2 =______.
(分数:2.00)
__________________________________________________________________________________________
正确答案:()
解析:
5.给定f(x)=x 4,以0为三重节点,2为二重节点的f(x)的Hermite插值多项式为______.
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:x 4)
解析:
6.己知差分格式r≤______时,该差分格式在L ∞范数下是稳定的.
(分数:2.00)
__________________________________________________________________________________________
正确答案:()
解析:
二、计算题(总题数:2,分数:4.00)
7.给定方程lnx-x 2+4=0,分析该方程存在几个根,并用迭代法求此方程的最大根,精确至3位有效数字.(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:令f(x)=lnx-x 2 +4,则f"(x)= -2x,当x= 时,f"(x)=0. 注意到
f(0.01)=-0.6053<0,f(1)=3>0,f(3)=-3.9014<0,而当时,f"(x)>0,当时,f"(x)<
0,所以方程f(x)=0有两个实根,分别在(0.01,1)和(1,3)内.方程的最大根必在(1,3)内,用Newton
迭代格式取x 0 =2,计算得x 1 =2.1980,x 2 =2.1)
解析:
8.用列主元Gauss
(分数:2.00)
__________________________________________________________________________________________
正确答案:(正确答案:求得x 1 =3,x 2 =1,x 3 =5.)
解析:
三、综合题(总题数:6,分数:12.00)
9.设α,β表示求解方程组.Ax=b的Jacobi迭代法与Gauss-Seidel迭代法收敛的充分必要条件.
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:Jacobi迭代格式的迭代矩阵特征方程为展开得500λ3—15αβλ=0或者λ(500λ2—15αβ)=0,解得λ=0或λ2 = 则Jacobi格式收敛的充要条件为|αβ|<
Gauss-Seidel格式迭代矩阵的特征方程为展开得500λ3—15αβλ2 =0或者λ2
(500λ-15αβ)=0,解得λ=0或λ则Gauss-Seidel格式收敛的充)
解析:
10.设x 0,x 1,x 2为互异节点,a,b,m为已知实数.试确定x 0,x 1,x 2的关系,使满足如下三个条件p(x 0 )=a, p"(x 1 )=m,p(x 2 )=b的二次多项式p(x)存在且唯一,并求出这个插值多项式p(x).(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:由条件p(x 0 )=a,p(x 2 )=b确定一次多项式p 1 (x),有所以p(x)-P 1
(x)=A(x—x 0 )(x—x 2 ),p"(x)=p" 1 (x)+A(x—x 0 +x—x 2 ),p"(x 1+A(2x 1 -x 0 -x 2) 解析:
11.求y=|x|在[-1,1]上形如c 0 +c 1 x 2的最佳平方逼近多项式.
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:取φ0 (x)=1,φ1 (x)=x 2,则(φ0,φ0)=∫ -11 =2,(φ0,φ1)=∫ -1
1 x 2)
1 x 2,(φ
1,φ1)=∫ -1
解析:
12.已知函数f(x)∈C 3 [0,3],试确定参数A,B,C,使下面的求积公式
数精度尽可能高,并给出此时求积公式的截断误差表达式.
(分数:2.00)
__________________________________________________________________________________________
正确答案:(正确答案:当f(x)=1时左=∫ 03 1dx=3,右=A+B+C,当f(x)=x时左=∫ 03 xdx= ,
右=B+2C 当f(x)=x 2时左=∫ 03 x 2 dx=9,右=B+4C.要使公式具有尽可能高的代数精度,则而当f(x)=x 3时,左=∫ 03 x 3)
解析:
13.给定常微分方程初值问题取正整数n,并记h=a/n,x i =a+ih,0≤i≤n.证明:用梯形公式
求解该初值问题所得的数值解为且当h→0时,y n收敛于y(a).
(分数:2.00)
__________________________________________________________________________________________
正确答案:(正确答案:梯形公式应用于方程有y i+1=y i+ (-y i—y i+1),即有所以
i=1,2,….当h→0时,n→∞我们有而由方程知解析解y=e -x则y(a)=e -a,所以)
解析:
14.Ω={0<x<3,0<y<3).试用五点差分格式求u(1,1),u(1,2),u(2,1),u(2,2)的近似值.
(分数:2.00)
__________________________________________________________________________________________
正确答案:(正确答案:五点差分格式为根据要求,可取h= ,将(1,1),(2,1),(1,2),
(2,2)处的差分格式列成方程组有或者解得u 11=15.8750,u 21=22.6250,u 12=15.8750,u 22 =22.6250.)
解析:。

相关文档
最新文档