正态分布论文

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正态分布

【摘要】正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要

的概率分布,在统计学的许多方面有着重大的影响力。它概率论中最重要的一种分布,也是自然界最常见的一种分布。该分布由两个参数——平均值和方差决定。它是一种最常见的连续性随机变量的概率分布,其概率密度函数曲线以均值为对称中线,方差越小,分布越集中在均值附近。其曲线呈钟形,因此人们又经常称之为钟形曲线。【关键字】高斯分布、概率分布、平均值、方差、钟形曲线、连续性随机变量

【正文】

大二下学期所学的概率论是一门研究随机现象数量规律的科学。随机现象在自然界和人类生活中无处不在,因而概率论在现实中的应用也非常广泛,而在概率论中正态分布是其主要的分支,正态分布不仅在概率统计中发挥着重大作用而且在医学、物理学、生物学等领域中都发挥着重大作用。

【一】正态分布的由来

正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。高斯是一个伟大的数学家,重要的贡献不胜枚举。但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。这要到20世纪正态小样本理论充分发展起来以后。拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(G.Hagen)在一篇论文中正式提出了这个学说。

其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差” 之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛的中心极限定理,立即就得出误差(近似地)服从正态分布。拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性) 为出发点。但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。拉普拉斯的理论把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义。

【二】正态分布的定义

正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

【三】正太分布的特征

(1)正太分布的曲线特征

正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。

1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。

2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。

5、u变换:为了便于描述和应用,常将正态变量作数据转换。

(2)正态曲线下面积分布

1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同范围内正态曲线下的面积可用公式计算。

2.几个重要的面积比例轴与正态曲线之间的面积恒等于1。正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.268949%,横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%,横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%。

(3)正态分布函数特征

若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号~。其中μ、σ2 是两个不确定常数,是正态分布的参数,不同的μ、不同的σ2对应不同的正态分布。

(1)μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X=μ为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。

(2)σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

(4)标准正态曲线

1.标准正态分布是一种特殊的正态分布,标准正态分布的μ和σ2为0和1,

通常用ξ(或Z)表示服从标准正态分布的变量,记为 Z~N(0,1)。

2.标准化变换:此变换有特性:若原分布服从正态分布,则Z=(x-μ)/σ~

N(0,1) 就服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的

概率值。故该变换被称为标准化变换。

3. 标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。

(5)一般正态分布与标准正态分布的转化

由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一

点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率

事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。

【四】正太分布的应用

正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压

强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;

测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气

体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响

的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正

态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。其主要应用如下:1估计频数分布一个服从正态分布的变量只要知道其均数与标准差就可根据公

式即可估计任意取值范围内频数比例。

2.制定参考值范围

(1)正态分布法适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。

(2)百分位数法常用于偏态分布的指标。表3-1中两种方法的单双侧界值都应

熟练掌握。

3. 质量控制:为了控制实验中的测量(或实验)误差,常以作为上、下警戒值,以作为上、下控制值。这样做的依据是:正常情况下测量(或实验)误差服从正态分布。

相关文档
最新文档