单极性转换成双极性电路图
单极性(unipolar)和双极性(bipolar)步进电机
单极性 (unipolar) 和双极性 (bipolar) 步进电机
2007-03-10 12:12
单极性 (unipolar) 和双极性 (bipolar) 是步进电机最常采用的两种驱动架构。
单极性驱动电路使用四颗晶体管来驱动步进电机的两组相位,电机结构则如图1所示包含两组带有中间抽头的线圈,整个电机共有六条线与外界连接。
这类电机有时又称为四相电机,但这种称呼容易令人混淆又不正确,因为它其实只有两个相位,精确的说法应是双相位六线式步进电机。
六线式步进电机虽又称为单极性步进电机,实际上却能同时使用单极性或双极性驱动电路。
图1:单极性步进电机驱动电路
双极性步进电机的驱动电路则如图2所示,它会使用八颗晶体管来驱动两组相位。
双极性驱动电路可以同时驱动四线式或六线式步进电机,虽然四线式电机只能使用双极性驱动电路,它却能大幅降低量产型应用的成本。
双极性步进电机驱动电路的晶体管数目是单极性驱动电路的两倍,其中四颗下端晶体管通常是由微控制器直接驱动,上端晶体管则需要成本较高的上端驱动电路。
双极性驱动电路的晶体管只需承受电机电压,所以它不像单极性驱动电路一样需要箝位电路。
图2:双极性步进电机驱动电路。
单极性ADC采样双极性波形
图极性变换电路 如图所示,首先使用三个电阻分压使信号缩放和平移,然后通过同向信号放大器可以 使用运放对信号进行微调, 从而将双极性信号转变为单极性信号。 由叠加原理进行分析电路 过程如下:
=
∗
//
//
+ )
∗
// //
= (1 +
将(3.3)代入至(3.4)中,然后实际电路中数据代入,可以得到= ∗+ Nhomakorabea=
+
按照以上公式选取对应参数即可将双极性信号转换为单极性信号
电路二:
R9
R6 in + U2 R7
OPAMP R8 OUT OPAMP OUT + U3 Vref out
0
如图所示,首先使用两个电阻分压使信号缩放,接着利用运放电压跟随器,隔离输入 干扰,然后通过运放进行平移,从而将双极性信号转变为单极性信号。由电路原理进行分 析电路过程如下: VI = Vin VI 与 Vout 的关系式可以通过叠加定理: VI 输入为零,该部分电路为同向放大电路 = 1+ Vref 为零时,该部分电路为反向放大电路 =− 汇总可得: R R R V − V R R (R + R ) 按照以上公式选取对应参数即可将双极性信号转换为单极性信号 = 1+ +
开关电路原理图
开关电路原理图开关电路是电子电路中常见的一种电路类型,它可以控制电流的通断,实现对电器的开关控制。
在现代电子设备中,开关电路被广泛应用于各种电路中,如数码产品、通信设备、家用电器等。
本文将介绍开关电路的原理图,帮助读者了解开关电路的工作原理和应用。
1. 开关电路的基本原理。
开关电路由开关元件和负载组成,开关元件可以是普通的机械开关,也可以是电子元件,如晶体管、场效应管等。
当开关处于闭合状态时,电流可以流通,负载得到电源供电;当开关处于断开状态时,电流中断,负载断电。
开关电路的基本原理就是通过控制开关状态来实现对电流的通断控制。
2. 常见的开关电路类型。
(1)单极性开关电路。
单极性开关电路是最简单的一种开关电路,它由电源、开关和负载组成。
当开关闭合时,电流从电源流向负载,负载工作;当开关断开时,电流中断,负载停止工作。
这种电路常用于家用电器、照明设备等领域。
(2)双极性开关电路。
双极性开关电路是由两个开关控制同一个负载的电路,常用于实现正反转控制。
通过控制两个开关的状态,可以实现对负载的正转、反转和停止。
这种电路常用于电动机控制、机械设备控制等领域。
(3)多路开关电路。
多路开关电路是由多个开关控制同一个负载的电路,通过组合不同的开关状态,可以实现多种控制功能。
例如,可以通过多路开关实现对灯光的亮度调节、颜色切换等功能。
这种电路常用于舞台灯光控制、装饰灯控制等领域。
3. 开关电路的原理图。
开关电路的原理图是用符号和线条表示电路连接关系和工作原理的图示。
在原理图中,开关元件用特定的符号表示,电源、负载、连接线等也有相应的表示方法。
通过原理图,可以清晰地了解电路的连接方式、工作原理和控制逻辑。
4. 开关电路的应用。
开关电路在电子电路中有着广泛的应用,例如在数字电子产品中用于电源控制、信号选择等功能;在通信设备中用于信号切换、通断控制等功能;在家用电器中用于开关控制、定时控制等功能。
开关电路的应用领域非常广泛,几乎涵盖了所有需要电流控制的领域。
单、三相双极性SPWM逆变电路
计算机仿真实验报告专业:电气工程及其自动化班级:11电牵4班姓名:江流在班编号:26指导老师:叶满园实验日期:2014年5月22日一、实验名称:单、三相双极性SPWM逆变电路MATLAB仿真二、目的及要求了解并掌握单、三相双极性SPWM逆变电路的工作原理; 2.进一步熟悉MATLAB中对Simulink的使用及模块封装、参数设置等技能; 3.进一步熟悉掌握用MA TLAB绘图的技巧。
三、实验原理1.单相双极性SPWM逆变的电路原理2、单相双极性SPWM逆变电路工作方式单相桥式逆变电路双极性PWM控制方式:在Ur的半个周期内,三角波载波有正有负,所得PWM波也有正有负,其幅值只有±Ud两种电平。
同样在调制信号Ur和载波信号Uc 的交点时刻控制器件的通断。
Ur正负半周,对各开关器件的控制规律相同。
当Ur>Uc时,给V1和V4导通信号,给V2和V3关断信号。
如I0>0,V1和V4通,如I0<0,VD1和VD4通,U0=Ud 。
当Ur<Uc时,给V2和V3导通信号,给V1和V4关断信号。
如I0<0,V2和V3通,如I0>0,VD2和VD3通,U0=-Ud 。
这样就得到如下所示的双极性的SPWM波双极性SPWM控制方式波形3.三相双极性SPWM逆变的电路原理图三相SPWM逆变电路4、三相双极性SPWM逆变电路工作方式为:四、实验步骤及电路图1、建立单相双极性SPWM逆变电路MA TLAB仿真模型。
以下分别是主电路和控制电路(触发电路)模型:2、单相双极性SPWM逆变电路参数设置本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。
设置正弦波周期为0.02s,幅值为1。
直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须依次交替输出正三角波和负三角波,这可以通过让三角载波同与之周期相同的、依次交替输出1和-1的矩形波相乘实现。
双极性模式PWM逆变电路
电力电子系统计算机仿真题目:双极性模式PWM逆变电路班级:姓名:学号:指导老师:日期:摘要PWM控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。
PWM控制技术在逆变电路中的应用最为广泛,现在大量应用的逆变电路中绝大部分都是PWM型逆变电路。
本设计为双极性PWM方式下的单相全桥逆变电路,主要包括双极性SPWM控制信号的发生电路和带反并联二极管的IGBT作为开关器件的单相全桥电路。
设计的重点在于运用MATLAB中的SIMULINK建立电路模型,对电路进行仿真,并对仿真结果进行分析,得出系统参数对输出的影响规律。
关键字:双极性PWM控制逆变电路 SIMULINK仿真目录一、主电路工作原理 (3)1.1 PWM控制技术及SPWM波的生成 (3)1.1.1 PWM控制的基本原理 (3)1.1.2 SPWM法的基本原理 (4)1.1.3规则采样法 (4)1.2 单极性和双极性PWM控制逆变电路分析 (5)1.2.1 单极性PWM控制方式 (6)1.2.2 双极性PWM控制方式 (6)二、MATLAB仿真及结论分析 (7)2.1 建立仿真模型 (7)2.1.1 双极性SPWM控制信号的仿真模型 (7)2.1.2 双极性模式PWM逆变电路仿真模型 (10)2.2 双极性模式PWM逆变电路仿真结果及分析 (13)三、PSIM仿真及结论分析 (20)3.1 建立仿真模型 (20)3.2 仿真结果及分析 (21)四、总结与体会 (26)五、参考文献 (27)一、主电路工作原理1.1 PWM控制技术及SPWM波的生成1.1.1 PWM控制的基本原理PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。
PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。
单双极性转换电路
极性转换电路
单极性转换成双极性电路图:
1、说明:
在信号的处理过程中往往我们需要将单级性的信号转换成双极
性的型号如:
(正弦信号)将0~2.5V 的型号转换成-2.5V~2.5V的信号。
则可用如下电路图:
其中:R2=R3=2R1
2、相关计算:
3、注意:在选择运放芯片时要考虑信号频率是否在运放的同
频带中。
双极性转换成单级性电路图:
1、在信号的处理过程中往往我们需要将双极性信号转换成单级性的信号的型号如:
将 -2.5V~2.5V 的型号转换成 0~2.5V 的信号。
(正弦信号)
则可用如下电路图:
其中:RN=RP,RN=R1//R3,RP=R4//R2
计算公式为:
则有Vo=R3Ui
R2+Vref
R4
3、注意:在选择运放芯片时要考虑所处理的信号频率是否在运放的同频带中。
单极性DAC双极性输出的规范连接与调试
Abstract: Seven kinds of bipolar digital to analog converter circuits with a unipolar DAC are investigated. By adding a balance ad2 justing potentiometer, the adjustment of canonical unipolar to bipolar converter can be made easily. The 62step adjusting p rocess and the corresponding C language p rogram are p resented. Key words:DAC; unipolar output; bipolar output; canonical model
1. 3 电压转换型 [5 ]
图 1 ( c)电路利用 DAC0830内部的反馈电阻 Rfb作为 2. 56 V稳压管的限流电阻 ,由 T形电阻网络分压给 Uop0的同相端提
供激励 ,经二倍同相放大后
VL SB
= 2. 56V 256
×R0 + R1 R1
= 20 mV。即
运放同相端单独产生的输出电压为
Vo1 = D ×VLSB 由 Iout产生的输出电压
Vo2 = - ( 1023 - D ) ×VLSB 故
Vo = Vo1 + Vo2 = ( 2D - 1023) ×VLSB 当 D 为 0时 , Vo为 - 10. 23 V; D 为 512 时 , Vo为 0. 01 V; D 为 1 023时 , Vo为 10. 23 V。需要时可通过调整 Rfb改变 Vo的大 小。
基于单片机信号采集与回放系统的设计与实现_吴宁
基于单片机信号采集与回放系统的设计与实现*吴宁1,李斌2,柴世文3(1.兰州工业高等专科学校电气工程系,甘肃兰州730050;2.兰州石化公司研究院,甘肃兰州730060)摘要:重点介绍了一种基于89C52单片机为控制核心的信号采集与回放控制系统。
该系统结合ADC0809、DAC0832数据采集模块,实现对两路外部信号进行采集、存储及回放。
系统模拟部分主要包括信号调节电路和A/D模块等:软件部分主要由主程序和子程序模块组成,主要实现了A/D转换器的启动与及对采样数据的存储,频率及幅值的计算,按键及显示屏的控制。
该系统经过测试实验,能耗低,性价比高,具有较高的实际应用价值。
关键词:信号采集与存储;信号复现;信号调节;回放系统中图分类号:TM13文献标识码:A文章编号:1007-4414(2011)06-0121-03The design and implementation of signal acquisition and playbacksystem based on microcontrollerWu Ning1,Li Bin2,Chai Shi-wen3(1.Electrical engineering department,Lanzhou polytechnic college,Lanzhou730050,China;2.Research institute of Lanzhou petrochemical corporation,Lanzhou730060,China;3.Gansu academy of mechanical science,Lanzhou Gansu730030,China)Abstract:This paper proposed a signal acquisition and playback control system based on89C52as the control unit.The sys-tem associated with ADC0809and DAC0832to achieve the two external signal acquisition,storage and playback.The analog section of the system included signal adjusting circuit and A/D module.The function of software modules consisted of main program and subroutine.It realized the start of the A/D converter,the sampling data storage,the calculation of the frequency and amplitude,the control of the buttons and display.The system has been tested to prove low energy consumption,cost-ef-fective and high practical value.Key words:signal capture and storage;signal reproduction;signal conditioning;playback system1引言很多工业现场中的电气设备在发生故障时,由于环境限制或是故障原因复杂,无法有效对系统故障进行在线的分析和判别,如果能够记录下故障设备产生的信号,再通过网络进行专家判别,将更利于系统的快速恢复与故障排除。
斩波电路
图24 升压斩波器
采用电压反馈控制使得该升压斩波器能 够输出较稳定的直流电压,调节电阻R8 可以在一定范围内调节输出电压值,这 些都使本电路具有很强的实用性。注意, 输出电压的最大值受限于导通比和 MOSFET、 二 极 管 D2 和 电 容 C2 的 击 穿 电压。
5.3 带反电势负载的降压斩波电路
(3) 电流临界连续时io下降段的数
eTon / 1 E eTs / 1 U d
I max(ton )
Ud R
E
(1 e ton / )
学表达式
E [1 e(tton ) / ] U d
E
(1 eton /
)e (tton ) /
(三)电感电流断续时的工作情况
R
R
(1)断流时刻
在上述临界连续条件下,每周期的初始时 刻,电流都是从零开始的。在电路参数不 变的情况下,若保持临界时ton不变,仅增 加斩波周期Ts,电流将出现断流,且这时 电流在流通期内的波形与上述临界连续时 的波形是完全一致的,所以可以利用电流 临界连续时io下降段的数学表达式来求取断
直流斩波电路
1 概述 用斩波器斩切直流的基本思想是:如 果改变开关的动作频率,或改变直流电 流接通和断开的时间比例,就可以改变 加到负载上的电压、电流平均值。
逆变-整流型DC-DC变换器由逆变和整流两 个功率变换环节共同构成
1.1 DC-DC功率变换电路
将一个直流电压变换成为另一个直 流电压,被称为DC-DC的功率变 换。
图13 单极性PWM信号的产生
(a) 信号产生电路 (b)、(c)波形
图13产生的PWM信号是一种单一极性的脉 冲信号,当被用来控制一个单极性的斩波器 时,斩波器的输出电压将与这个PWM信号
单电源--双电源
TDA2030是一种高效率的运算放大器。
利用它的互补输出级,可以将单极性电源一分为二,转换成某些小功率电路所需要的双极性电源。
电路如上图所示,阻值相等的R1、R2形成一个分压器,使上、下两部分电压相等。
分压器的中点接到运算放大器的同相输入端,运放接成电压跟随器,使O’端与O端电位相等。
O’端又是虚地点,它与输入电源的地必须隔离。
如果双极性电源直接从R1、R2上取出,则电源内阻较大,负载能力差,实用价值不大。
使用运算放大器后,两组输出电源具有很低的内阻,负载能力加强。
方案二单输出绕组的变压器能够比相同体积、相同线径、带中间抽头的变压器输出更大的电流。
但是,变压器单输出绕组一般只能构成单电源回路,如果电路中因涉及到运放或某些A/D器件而需要使用双电源时,电路结构就变得复杂了。
将两只阻值相等的电阻串联分压即可获得最简单的双电源,但这种结构存在着明显的缺陷:若双电源正、负两路负载存在明显的不对称,则正、负电压之间就会出现较大的偏差,将可能影响到放大器的精度。
在VCD解码板等某些专业电路中,多采用AP34063或其他专用的电压极性变换芯片来获得平衡的双电源。
这种解决方案的性能很好,输出正、负电压稳定且驱动负载的能力也非常强;但芯片价格较贵、电路结构复杂的弱点在一定程度上又限制了其应用。
此外,利用LC振荡器产生负脉冲后再经整流滤波得到双电源的方法在某些小型电子产品制作中应用较为普遍,但该种电路结构需要高频变压器,既存在较强电磁干扰,同时体积也比较大。
这里介绍的3种单电源--双电源变换电路均是由常见的普通元件构成,电路结构简单、成本低廉、正、负两路的输出电压都具有较好的稳压特性,尤其适用于电池供电的场合。
图1所示极性变换电路的核心器件为普通的非门。
由于输入端与输出端被短接在一起,故非门的输出电压与输入电压相等(Vi=VO);这样,非门被强制工作在转移特性曲线的中心点处,因此输出电压被限定为门电路的阈值电平,其大小等于电源电压的一半,如果我们将非门的输出端作为直流接地端,就可以把电源电压VCC转换为±VCC/2的双电源电压;此时的非门起到了一个存储电流的稳压器的作用,电路的输出阻抗较低、因而输出电压也比较稳定。
单双极性SPWM单相桥电压型逆变电路课程设计单极性
单双极性SPWM单相桥电压型逆变电路课程设计单极性单极性PWM控制方式调制信号ur为正弦波,载波uc在ur的正半周为正极性的三角波,在ur的负半周为负极性的三角波。
在ur的正半周,V1保持通态,V2保持断态。
当ur>uc时使V4导通,V3关断,uo=Ud。
当ur<uc时使V4关断,V3导通,uo=0。
在ur的负半周,V1保持断态,V2保持通态。
当ur<uc时使V3导通,V4关断uo=-Ud。
当ur>uc时使V3关断,V4导通,uo=0。
主电路在每个开关周期内输出电压在正和零(或负和零)间跳变,正、负两种电平不会同时出现在一个开关周期内,故称为单极性SPWM。
七、单极性SPWM调制分析载波比和调制深度的定义与双极性SPWM相同。
它不适于半桥电路,而双极性SPWM在半桥、全桥电路中都可以使用。
与双极性SPWM相同,在m<=1和fc>>f的条件下,单极性SPWM逆变电路输出的基波电压u1的幅值U1m满足如下关系:U1m=mUd即输出电压的基波幅值随调制深度m线性变化,故其直流电压利用率与双极性时也相同。
就基波性能而言,单极性SPWM和双极性SPWM完全一致,但在线性调制情况下它的谐波性能优于双极性调制:开关次整数倍谐波消除,值得考虑的最低次谐波幅值较双极性调制时小得多,所需滤波器也较小。
八、建立单极性SPWM仿真模型单极性SPWM触发信号产生图:为[101]。
对脉冲电路进行封装:触发电路中三角载波(Triangle)参数设置:“TimeValue”为[01/fc/21/fc],“OutputValue”单极性SPWM主电路:触发电路参数设置:Ud=300v,R=1欧,L=2mH九、进行单极性SPWM仿真1、仿真时间设为0.06键入MATLAB语言命令:>>ubplot(4,1,1)>>ubplot(4,1,2)仿真结果如下:单极性SPWM单相逆变器m=0.8,N=15时的仿真波形图仿真结果分析:输出电压为单极性SPWM型电压,脉冲宽度符合正弦变化规律。
tda2030功放电路图电压
TDA2030功放电路图电压±6-18V功率14W喇叭4欧带音调板TDA2030功放电路图左手665收藏:时间:2015-4-15日9:14TDA2030引脚图与应用电路参数TDA2030是最常用到的音频功率放大电路,模拟电路的课本的一般都有介绍,这里我给大家介绍一下各种TDA2030参数TDA2030管脚功能:1脚是正相输入端2脚是反向输入端3脚是负电源输入端4脚是功率输出端5脚是正电源输入端。
<TDA2030引脚图>TDA2030特点:1.开机冲击极小。
2.外接元件非常少。
3.TDA2030输出功率大,Po=18W(RL=4Ω)。
4.采用超小型封装(TO-220),可提高组装密度。
5.TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。
6.内含各种保护电路,因此工作安全可靠。
主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。
功放中的前置放大器,一般都采用双电源供电,即对称的正负电源供电。
业余制作时,又会碰到手头无双电源,这就给制作带来困难。
本文介绍利用TDA2030将单电源转换双电源给前置放大器NE5532供电,电路如附图所示。
用TDA2030做双电源供电电路TDA2030 (IC1)是一种高效的运算放大器。
利用它的互补输出,就可将单极性电源转换成所需出的双极性电源。
在图中,阴值相等的Rl、R2形成一个分压器,分压器的中点接到IC1运算放大器的同相输入端,且IC1接成电压跟随器,使O’端和0端电位相等。
O’端又是虚地点,它与输入电源的接地端完全隔离。
C2、C3分别为正、负电源的滤波电容。
正电源从C2的“+”端输出,加到IC2 NE5532的⑧脚,负电源从C3的“一”端输出,加到IC2 NE5532的④脚.O’端为IC2的接地端。
TDA2030功放电路图电压±6
TDA2030功放电路图电压±6时间:2015-4-15日 9:14TDA2030引脚图与应用电路参数TDA2030是最常用到的音频功率放大电路,模拟电路的课本的一般都有介绍,这里我给大家介绍一下各种TDA2030参数TDA2030管脚功能:1脚是正相输入端2脚是反向输入端3脚是负电源输入端4脚是功率输出端5脚是正电源输入端。
<TDA2030引脚图>TDA2030特点:1.开机冲击极小。
2.外接元件非常少。
3.TDA2030输出功率大,Po=18W(RL=4Ω)。
4.采用超小型封装(TO-220),可提高组装密度。
5.TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。
6.内含各种保护电路,因此工作安全可靠。
主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。
功放中的前置放大器,一般都采用双电源供电,即对称的正负电源供电。
业余制作时,又会碰到手头无双电源,这就给制作带来困难。
本文介绍利用TDA2030将单电源转换双电源给前置放大器NE5532供电,电路如附图所示。
用TDA2030做双电源供电电路TDA2030 (IC1)是一种高效的运算放大器。
利用它的互补输出,就可将单极性电源转换成所需出的双极性电源。
在图中,阴值相等的Rl、 R2形成一个分压器,分压器的中点接到IC1运算放大器的同相输入端,且IC1接成电压跟随器,使O’端和0端电位相等。
O’端又是虚地点,它与输入电源的接地端完全隔离。
C2、C3分别为正、负电源的滤波电容。
正电源从C2的“+”端输出,加到IC2 NE5532的⑧脚,负电源从C3的“一”端输出,加到IC2 NE5532的④脚.O’端为IC2的接地端。
由于NE5532在以往的文章中介绍较多,这里不再赘述。
在电路图中均标明了元件数值,只要按图制作,一般无需调试均可正常工作。
HDB3编译码
目录一、设计总体思路 (1)1.1数字基带通信系统 (1)1.2 HDB3编译码 (1)二、单元电路的设计 (4)2.1编译码器功能模块电路 (4)2.2双/单极性变换电路 (5)2.3位同步信号的提取 (6)三、系统仿真 (8)3.1 HDB3编译码模块仿真 (8)3.3位同步单元电路仿真 (9)四、调试结果 (11)五、设计体会与心得 (13)六、附录(总原理图) (15)七、参考文献 (16)一、设计总体思路1.1数字基带通信系统数字基带传输系统的输入信号是由终端设备或编码设备产生的二进制脉冲序列,通常使用的是单极性的矩形脉冲信号(NRZ 码)。
为了使这种信号适合于信道的传输,一般要经过码型变换器,把单极性的二进制脉冲变成双极性脉冲(如AMI或HDB3码)。
发送滤波器对码脉冲进行波形转换,以减小信号在基带传输系统中传输时产生的码间串扰。
码间串扰和信道噪声是影响基带信号进行可靠传输的主要因素,而它们都与基带传输系统的传输特性有密切的关系,为了使基带系统的总传输特性能够把码间串扰和信道噪声的影响减少到尽量小的程度,是基带传输系统的设计目的。
信号在传输过程中,由于信道特性不理想及加性噪声的影响,会使接收到的信号波形产生失真,为了减小失真对信号的影响,接收信号首先进入接收滤波器滤波,然后再经均衡器对失真信号进行校正,最后由抽样判决器恢复数字基带脉冲序列。
1.2 HDB3编译码在生活中,我们得到的大多是低频信号或直流信号,但是,在含有直流分量和较丰富低频分量的单极性基带信号波形不适合在普通的信道中传输,因为一般的信道的低频传输特性差容易受噪声的干扰,可能造成信号严重畸变,甚至可能被噪声完全淹没而分不出信号,因此有必要对传输的信号进行编码,而经过信道编码后的传输码却具有较强的波形抗干扰性。
我们比较常用的编码规则有HDB3和AMI编码。
HDB3码的全称是3阶高密度双极性码,它是AMI码的一种改进型,其目的是为了保持AMI码的优点而克服其缺点,使连“0”个数不超过3个。
单极性 双极性PWM
单极性调制方式的特点是在一个开关周期内两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压:另两只功率管以较低的输出电压基波频率工作,从而在很大程度上减小了开关损耗。
但又不是固定其中一个桥臂始终为低频(输出基频),另一个桥臂始终为高频[载波频率),而是每半个输出电压周期切换工作,即同一个桥臂在前半个周期工作在低频,而在后半周则工作在高频,这样可以使两个桥臂的功率管工作状态均衡,对于选用同样的功率管时,使其使用寿命均衡,对增加可靠性有利。
双极性调制方式的特点是4个功率管都工作在较高频率(载波频率),虽然能得到正弦输出电压波形,但其代价是产生了较大的开关损耗。
u o的基波分量。
波形见图6-5。
图6-5 单极性PWM控制方式波形双极性PWM控制方式(单相桥逆变):在u r半个周期内,三角波载波有正有负,所得PWM波也有正有负。
在u r一周期内,输出PWM波只有±U d两种电平,仍在调制信号u r和载波信号u c的交点控制器件通断。
u r正负半周,对各开关器件的控制规律相同,当u r >u c时,给V1和V4导通信号,给V2和V3关断信号,如i o>0,V1和V4通,如i o<0,V D1和V D4通,u o=U d,当u r<u c时,给V2和V3导通信号,给V1和V4关断信号,如i o<0,V2和V3通,如i o>0,V D2和V D3通,u o=-U d。
波形见图6-6。
单相桥式电路既可采取单极性调制,也可采用双极性调制。
图6-6 双极性PWM控制方式波形双极性PWM控制方式(三相桥逆变):见图6-7。
三相PWM控制公用u c,三相的调制信号u rU、u rV和u rW依次相差120°。
U相的控制规律:当u rU>u c时,给V1导通信号,给V4关断信号,u UN´=U d/2,当u rU<u c时,给V4导通信号,给V1关断信号,u UN´=-U d/2;当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是V D1(V D4)导通。
直流-交流变换电路
二、三相电压型逆变电路
三个单相逆变电路可组合成一个三相逆变电路 应用最广的是三相桥式逆变电路 可看成由三个半桥逆变电路组成
+
V1
V3
Ud 2
VD 1
N'
U
V
Ud 2
VD 4
V5 VD3
VD5
W VD6
VD2
-
V4
V6
V2
图5-2-3 三相电压型桥式逆变电路 图5-9
N
23
三相电压型逆变电路
N c)
O
u UV
t
-
V4
V6
V2
Ud
d)
O
t
➢ 桥臂1、3、图55-的9 电流相加
u NN'
e)
O
可得直流侧电流id的波形, id每 60°脉动一次,直流 电压基本无脉动,因此逆
u UN
f)
O
iU
g)
O
变器从交流侧向直流侧传
送的功率是脉动的,电压
id
h)
O
型逆变电路的一个特点 .
2U d 3
U d 6
➢ 输出电压定量分析
uo成傅里叶级数
uo
4U d
(sint
1 sin 3t
3
1 sin 5t
5
)
基波幅值 基波有效值
U o1m
4U d
1.27U d
2 U o1
2U d
0.9U d
uo为正负各180°时,要改变输出电压有效值只能改变 Ud来实现 阻感负载时可采用移相调压
21
电压型逆变电路的主要特点
二、三相电压型逆变电路
13
十种经典的全波整流电路
十种经典的全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的.将单电源转换双电源电路图TDA2030是一种高效率的运算放大器。
实验单相逆变器单极性和双极性SPWM调制技术的仿真
单相逆变器单极性和双极性SPWM 调制技术的仿真1.PWM 控制的基本原理PWM (Pulse Width Modulation )控制就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。
PWM 控制技术的重要理论基础是面积等效原理,即:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
下面分析如何用一系列等幅不等宽的脉冲来代替一个正弦半波。
把正弦半波分成N 等分,就可以把正弦半波看成由N 个彼此相连的脉冲序列所组成的波形。
如果把这些脉冲序列用相同数量的等幅不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就可得到图1所示的脉冲序列,这就是PWM 波形。
像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM 波形,也称为SPWM 波。
图1 单极性SPWM 控制方式波形上图所示的波形称为单极性SPWM 波形,根据面积等效原理,正弦波还可等效为图2中所示的PWM 波,这种波形称为双极性SPWM 波形,而且这种方式在实际应用中更为广泛。
图2 双极性SPWM 控制方式波形2.PWM 逆变电路及其控制方法PWM 逆变电路可分为电压型和电流型两种,目前实际应用的几乎都是电压型电路,因此本节主要分析电压型逆变电路的控制方法。
要得到需要的PWM 波U d -U Oω t Ud - U d形有两种方法,分别是计算法和调制法。
根据正弦波频率、幅值和半周期脉冲数,准确计算PWM 波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM 波形,这种方法称为计算法。
由于计算法较繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化。
与计算法相对应的是调制法,即把希望调制的波形作为调制信号,把接受调制的信号作为载波,通过信号波的调制得到所期望的PWM 波形。
通常采用等腰三角波作为载波,在调制信号波为正弦波时,所得到的就是SPWM 波形。
单极性ADC采样双极性波形
图极性变换电路 如图所示,首先使用三个电阻分压使信号缩放和平移,然后通过同向信号放大器可以 使用运放对信号进行微调, 从而将双极性信号转变为单极性信号。 由叠加原理进行分析电路 过程如下:
=
∗
//
//
ჷ
将(3.3)代入至(3.4)中,然后实际电路中数据代入,可以得到
= ∗
+
=
+
按照以上公式选取对应参数即可将双极性信号转换为单极性信号
电路二:
R9
R6 in + U2 R7
OPAMP R8 OUT OPAMP OUT + U3 Vref out
0
如图所示,首先使用两个电阻分压使信号缩放,接着利用运放电压跟随器,隔离输入 干扰,然后通过运放进行平移,从而将双极性信号转变为单极性信号。由电路原理进行分 析电路过程如下: VI = Vin VI 与 Vout 的关系式可以通过叠加定理: VI 输入为零,该部分电路为同向放大电路 = 1+ Vref 为零时,该部分电路为反向放大电路 =− 汇总可得: R R R V − V R R (R + R ) 按照以上公式选取对应参数即可将双极性信号转换为单极性信号 = 1+ +
图极性变换电路如图所示首先使用三个电阻分压使信号缩放和平移然后通过同向信号放大器可以使用运放对信号进行微调从而将双极性信号转变为单极性信号
市面上大部分为单极性 ADC,双极性 ADC 成本相对于比较高,但大部分信号为双极性的, 此时单极性 ADC 采样双极性信号,需要信号转换电路,本文档提供两个解决电路 电路一: