初中数学中考几何巧妙做辅助线大全

合集下载

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。

以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。

例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。

2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。

例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。

3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。

例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。

4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。

例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。

总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。

需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。

初中几何添辅助线方法

初中几何添辅助线方法

初中几何添辅助线方法初中几何学中,添辅助线是解题的常用方法之一。

通过巧妙地引入辅助线,可以简化问题,帮助我们更好地理解和解决几何问题。

本文将介绍几种常见的初中几何添辅助线方法。

一、三角形的辅助线方法1. 垂心和垂足当我们遇到一个三角形,需要证明某条线段平行于另一条线段时,可以考虑引入垂心和垂足。

通过引入垂心和垂足,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

2. 中位线中位线是连接三角形两个顶点和中点的线段。

在解决三角形问题时,可以考虑引入中位线。

中位线将三角形分成两个全等的三角形,从而简化问题。

3. 角平分线角平分线将一个角分成两个相等的角。

在解决三角形问题时,可以考虑引入角平分线。

通过引入角平分线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

二、四边形的辅助线方法1. 对角线对角线是四边形两个非相邻顶点之间的线段。

在解决四边形问题时,可以考虑引入对角线。

通过引入对角线,我们可以将四边形分成两个全等的三角形,从而简化问题。

2. 中线中线是连接四边形两个相邻顶点中点的线段。

在解决四边形问题时,可以考虑引入中线。

中线将四边形分成两个全等的三角形,从而简化问题。

三、圆的辅助线方法1. 半径和切线在解决圆的问题时,可以考虑引入半径和切线。

通过引入半径和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

2. 弦和切线在解决圆的问题时,可以考虑引入弦和切线。

通过引入弦和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

四、其他几何图形的辅助线方法1. 高和底边在解决梯形或三角形问题时,可以考虑引入高和底边。

通过引入高和底边,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

2. 中线在解决平行四边形问题时,可以考虑引入中线。

中线将平行四边形分成两个全等的三角形,从而简化问题。

初中几何学中的添辅助线方法是解题的重要手段之一。

通过巧妙地引入辅助线,我们可以简化问题,帮助我们更好地理解和解决几何问题。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法1.绘制直线段:在所给的两个点上画辅助线,连接两点即可获得直线段。

2.绘制垂直线:在给定直线上选取一点,作与该点不共线的直线,通过该点引垂直线即可。

3.绘制平行线:在给定直线上选取一点作线段,然后以该线段为半径作圆,在另一点处画一条线段,两条线段平行。

4.绘制等分线:在直线上选择两个点,作圆使其与直线交于两点,连接两点画线段。

5.绘制三等分线:在直线上选择三个不共线的点,分别与直线上的点相连接,形成三个等腰三角形的底面,在三个对应顶点之间画线段。

6.绘制中位线:在三角形的两边上选择两点,使其各自与一个端点形成中位线,在两点之间画线段。

7.绘制角平分线:在给定角的两边上选择两个点,以该点为圆心作圆相交于两点,然后连接两点即可。

8.绘制垂直平分线:对于给定线段,以其中一点为圆心作大于一半长度的圆,在另一端点处画线段,连接两点即可。

9.绘制等腰三角形的高:在一个顶角上选择一点,然后与两边的端点相连,两条线段相交的点就是等腰三角形的高。

10.绘制正方形的对角线:在正方形的两个对角线上选择相对的两点,连接两点即可。

11.绘制圆:以给定的圆心为圆心,以圆上两个点的距离作半径画圆。

12.绘制圆的切线:以切点为圆心,在圆上选择两个点,连接两点即可。

13.绘制圆的弦:在圆上选择两个点,连接两点即可。

14.绘制正多边形的对角线:在正多边形的两个对角线上选择相对的两点,连接两点即可。

15.绘制垂直于圆的切线:以圆心为圆心,在圆上选择两个点,作圆与圆外一点的连线,得到的直线即为切线。

16.绘制等边三角形的高:在等边三角形的一个顶点上选择一点,然后与底边上两个相对的顶点相连,两条线段相交的点即为高所在位置。

17.绘制与给定角相等的角:在给定角的两边上选择两个点,分别以这两个点为圆心与给定角的两边相交,连接两个交点即可。

18.绘制与给定线段等长的线段:在给定线段上选择一点,以该点为圆心作圆的交点即为与给定线段等长的线段的两端点。

初中数学中考几何如何巧妙做辅助线大全

初中数学中考几何如何巧妙做辅助线大全

人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初中数学14种方法教会你给三角形加辅助线!

初中数学14种方法教会你给三角形加辅助线!

初中数学14种方法教会你给三角形加辅助线!1.垂线:对于任意三角形ABC,可以从顶点A引一条垂线AD,垂足D位于BC边上。

通过垂线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。

2.中线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。

通过中线可以将三角形分成三个等边三角形,进而使用等边三角形的性质解决问题。

3.角平分线:对于任意三角形ABC,可以从顶点A引一条角平分线AD,使得∠CAD=∠BAD。

通过角平分线可以将一个角平分成两个相等的角,从而使用相等角的性质解决问题。

4.内切圆:对于任意三角形ABC,可以画出其内切圆,该圆与三角形的三条边都相切。

通过内切圆可以获得三个切点,进而使用切点的性质解决问题。

5.外切圆:对于任意三角形ABC,可以画出其外切圆,该圆与三角形的三条边都相切。

通过外切圆可以获得三个切点,进而使用切点的性质解决问题。

6.高线:对于任意三角形ABC,可以从顶点A引一条高线AH,垂足H位于BC边上。

通过高线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。

7.中位线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中位线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。

通过中位线可以将三角形分成三个面积相等的三角形,进而使用面积相等的性质解决问题。

8.三角形的对称性:对于任意三角形ABC,可以观察到三个顶点关于其中一条边的对称性,根据这种对称性可以找到一些相等的角或边,从而简化问题的解决。

9.倒错:对于任意三角形ABC,可以考虑将这个三角形倒转或翻转,从而改变三角形的位置和形态,进而简化问题的解决。

10.几何图形的组合:对于给定的三角形ABC,可以考虑将它与其他几何图形进行组合,例如,与一个正方形、矩形或平行四边形组合,从而改变问题的形式,解决新问题。

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如 AB=AC+BD....这类的就是想办法作出另一条 AB 等长的线段,再证全等说明 AC+BD=另一条A B,就好了。

还有一些关于平方的考虑勾股,A 字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

中考初中数学几何辅助线大全(很详细版本57页)

中考初中数学几何辅助线大全(很详细版本57页)

中考初中数学几何辅助线大全(很详细版本57页)祝同学们中考取得好成绩,为中华民族的伟大复兴奉献自己的力量〕中考初中几何辅助线—克胜秘籍祝同学们中考取得好成绩,为中华民族的伟大复兴奉献自己的力量〕等腰三角形祝同学们中考取得好成绩,为中华民族的伟大复兴奉献自己的力量〕1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;祝同学们中考取得好成绩,为中华民族的伟大复兴奉献自己的力量〕3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边祝同学们中考取得好成绩,为中华民族的伟大复兴奉献自己的力量〕2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形 1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线祝同学们中考取得好成绩,为中华民族的伟大复兴奉献自己的力量〕很简单。

无论什么题目,第一位应该考虑到题目要求,比方AB=AC+BD....这类的就是想方法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形祝同学们中考取得好成绩,为中华民族的伟大复兴奉献自己的力量〕祝同学们中考取得好成绩,为中华民族的伟大复兴奉献自己的力量〕图中有角平分线,可向两边作垂线〔垂线段相等〕。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接那么成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

初中数学做辅助线方法

初中数学做辅助线方法

初中数学做辅助线方法在初中数学中,使用辅助线是一种常见的解题方法,它可以帮助我们更好地理解问题和解题思路。

以下是一些常见的辅助线方法以及它们的应用。

1. 分割线法:当我们需要求一个几何图形的面积或长度时,有时可以使用一条或多条辅助线将图形分割成几个简单的几何图形,然后再计算每个简单图形的面积或长度,最后相加得到所求解。

2. 割线法:当我们需要找到一个几何图形内部的一些特殊点时,可以通过引入一条辅助线,将该点和图形的某些已知点连接起来,然后利用几何性质来得出所求点的位置。

3. 三角形连接线法:在三角形的题目中,如果我们需要求解三角形的面积、周长或者证明某些三角形特性时,可以引入一条或多条辅助线,将三角形分割成一些已知的几何图形,然后再进行计算或证明。

4. 外接圆法:当我们需要证明一个几何图形的性质时,有时可以通过引入一个外接圆,将几何图形与圆相切或相交,利用圆的性质来进行推导和证明。

5. 成比例辅助线法:在一些比例相关的问题中,可以通过引入成比例的辅助线来简化计算或证明的过程。

6. 平行线法:当我们需要证明两条线段平行或两个角相等时,可以通过引入一条或多条辅助线,建立起平行关系或等角关系,再利用几何性质进行证明。

除了以上的常见方法,还有许多其他的辅助线方法可以用来解决初中数学中的问题。

在使用辅助线方法时,我们需要注意以下几点:1. 想清楚目的:在引入辅助线之前,我们需要明确引入辅助线的目的是什么,是为了简化计算、证明一个定理,还是找到问题的关键点。

2. 利用已知条件:在选择引入辅助线的位置时,我们要利用已知的条件和题目中给出的信息,选择合适的辅助线,这样可以更好地利用已知条件进行计算或证明。

3. 注意合理性:在引入辅助线时,需要注意辅助线与已知条件的联系,辅助线的引入应该是自然合理的,避免引入没有必要的辅助线,以免使问题复杂化。

4. 利用几何性质:在引入辅助线后,我们需要灵活运用几何性质,结合已知条件和辅助线的位置,进行计算或证明。

中考数学24题辅助线大全

中考数学24题辅助线大全

中考数学24题辅助线大全
1. 连接中点
题目给出一条线段的中点,可以考虑连接中点。

这种方法常用于构造中位线,利用中位线的性质来解题。

2. 延长线段
有时候题目给出的条件不够,可以考虑延长线段。

这种方法常用于构造相似三角形或全等三角形,利用相似或全等的性质来解题。

3. 作垂线
在直角三角形中,作垂线是一种常见的辅助线方法。

通过作垂线,可以构造出直角三角形,利用勾股定理或三角函数来解题。

4. 作平行线
通过作平行线,可以构造出平行四边形或相似三角形,利用平行四边形或相似三角形的性质来解题。

5. 作高
在三角形中,作高是一种常见的辅助线方法。

通过作高,可以构造出直角三角形,利用三角函数的性质来解题。

6. 构造中心对称图形
有时候题目给出的图形比较复杂,可以考虑构造中心对称图形。

通过构造中心对称图形,可以将复杂图形简化,利用中心对称的性质来解题。

7. 补全图形
有时候题目给出的图形不完整,可以考虑补全图形。

通过补全图形,可以将不完整图形变为完整图形,利用完整图形的性质来解题。

8. 连接两点
有时候题目给出两个点的位置关系,可以考虑连接两点。

通过连接两点,可以构造出新的图形或线段,利用新图形的性质来解题。

初中数学几何巧画辅助线的技巧,附例题演示,建议收藏!

初中数学几何巧画辅助线的技巧,附例题演示,建议收藏!

初中数学几何巧画辅助线的技巧,附例题演示,建议收藏!'河北中考' 必胜!在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松又快速!辅助线画不对,可能就是解题绕弯又出错!如何快速添加利于解题的辅助线?诀窍都在下面了!几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径联。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

例题演示一由角平分线想到的辅助线1、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自己证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

初中几何辅助线大全(很详细哦)巩固基础

初中几何辅助线大全(很详细哦)巩固基础

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结初中数学中,辅助线是解题的一种重要方法,可以帮助我们清晰地理解题意和问题,并找到解题的思路。

下面是关于初中数学做辅助线的方法总结。

一、直线法1.作垂线:当题目中出现垂直关系时,我们可以通过作垂线来解决问题。

例如,求两个直线的垂直平分线、两个线段的中垂线等。

2.作平行线:当需要证明两条直线平行时,可以通过作一条与已知直线平行的辅助线,再应用平行线的性质进行证明。

二、角度法1.作角平分线:当需要求一个角平分线时,可以通过作一个角的辅助线将该角分成两个相等的角,进而求出角平分线。

2.作等角:当题目中需要证明两个角相等时,可以通过作一条等角的辅助线,将两个角变成等角,然后再应用等角的性质进行证明。

三、三角形法1.作高:当需要求一个三角形的高时,可以通过作条辅助线,形成一个矩形或直角三角形,从而利用高的性质求解。

2.作中线:当需要求一个三角形的中线时,可以通过作条辅助线,形成一个平行四边形或直角三角形,从而利用中线的性质求解。

3.作角平分线:当需要求一个三角形的角平分线时,可以通过作条辅助线,将该角分成两个相等的角,进而求出角平分线。

四、平行四边形法1.作对角线:当题目中出现平行四边形时,可以通过作对角线来将该平行四边形分成两个相等的三角形,进而利用三角形的性质进行求解。

五、轴对称法1.关于对称轴作对称点:当题目中出现轴对称图形时,可以通过作关于对称轴的对称点,将原图形和对称点所成的线段连结起来,形成对称图形,从而利用对称性进行求解。

六、相似三角形法1.作比例:当需要求解两个三角形相似的比例时,可以通过作条辅助线,形成相似三角形,并利用相似三角形的性质求解。

七、图形拓展法1.分割图形:当需要对一个复杂的图形进行分析时,可以通过作一些辅助线,将复杂图形分割成若干个简单的图形,进而分别求解。

总之,在初中数学中,辅助线是解题的有力工具,可以帮助我们合理分析题目,找到解题的思路,解决数学问题。

初中几何辅助线大全

初中几何辅助线大全

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 三、有和角平分线垂直的线段时,通常把这条线段延长;ABCDE17-图O分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE四、取线段中点构造全等三有形;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有19-图DCBA E F12△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;巧求三角形中线段的比值例1. 如图1,在△ABC 中,BD :DC =1:3,AE :ED =2:3,求AF :FC;解:过点D 作DG 如图2,BC =CD,AF =FC,求EF :FD解:过点C 作CG如图3,BD :DC =1:3,AE :EB =2:3,求AF :FD;111-图DCBAM N解:过点B 作BG如图4,BD :DC =1:3,AF =FD,求EF :FC;解:过点D 作DG如图5,BD =DC,AE :ED =1:5,求AF :FB;2. 如图6,AD :DB =1:3,AE :EC =3:1,求BF :FC;答案:1、1:10; 2. 9:1二 由角平分线想到的辅助线图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等例1. 如图1-2,AB 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;图1-3ABCDE 图1-4A BC DE图2-1ABCD E F图2-2ABCDE 图2-3P AB CM ND F 图示3-1AB CDH E例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,连结FC 并延长交AE 于M;求证:AM=ME;分析:由AD 、AE 是∠BAC 内外角平分线,可得EA ⊥AF,从而有BF 212121∠∠21图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧, BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE四 由中点想到的辅助线三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;一、由中点应想到利用三角形的中位线例2.如图3,在四边形ABCD 中,AB=CD,E 、F 分别是BC 、AD 的中点,BA 、CD 的延长线分别交EF 的延长线G 、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD 的中点为M,连结ME 、MF, ∵ME 是ΔBCD 的中位线, ∴MECD,∴∠MEF=∠CHE,∵MF 是ΔABD 的中位线, ∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE, 从而∠BGE=∠CHE;二、由中线应想到延长中线例3.图4,已知ΔABC 中,AB=5,AC=3,连BC 上的中线AD=2,求BC 的长; 解:延长AD 到E,使DE=AD,则AE=2AD=2×2=4; 在ΔACD 和ΔEBD 中,D AE C BD C BAMBD C AE D CB A图3-3DBEF N ACM图3-4nEBADCM FDCB AE D FCB A ∵AD=ED,∠ADC=∠EDB,CD=BD, ∴ΔACD≌ΔEBD ,∴AC=BE, 从而BE=AC=3;在ΔABE 中,因AE 2+BE 2=42+32=25=AB 2,故∠E=90°, ∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC 中,AD 是∠BAC 的平分线,AD 又是BC 边上的中线;求证:ΔABC 是等腰三角形;证明:延长AD 到E,使DE=AD; 仿例3可证: ΔBED≌ΔCAD , 故EB=AC,∠E=∠2, 又∠1=∠2, ∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC 是等腰三角形;三、直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB 2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.中考应用例题:以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;DMCEA BB ECD AA BDC E FAD CBA2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变并说明理由.二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC 2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD 3:如图,已知在ABC 内,60BAC ∠=分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD 平分ABC ∠,求证:0180=∠+∠C A5三、借助角平分线造全等1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD 平分∠且平分BC,DE ⊥AB 于E,DF ⊥AC 于F. 1说明BE=CF AB=a ,AC=b ,求AE 、BE 的长.3.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;E DGFCBAAFEDCBA2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由;四、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为C D 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;(1) 当MDN ∠绕点D 转动时,求证(2)若AB=2,求四边形DECF 的面积;3.如图,ABC ∆是边长为3的等边三角形,BDC∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆4.已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系请写出你的猜想,不需证明.5.以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1,求AB 及PD 的长;2且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.第23题图OP AMN EB C D F ACEF BD图① 图② 图③图1 图2 图36.在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3I 如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时=LQ; II 如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想I 问的两个结论还成立吗写出你的猜想并加以证明;III 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q= 用x 、L 表示.梯形中的辅助线1、平移一腰:例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长.解:过点D 作DE ∥BC 交AB 于点E. 又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得 AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围; 解:过点B作B M)(2121CH BG BC GH EF --==512=⨯=BE ED BD DH ABDCEH A BCDABCDE6251252DH BC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+DCEACD ABD S S S ∆∆∆==DBEABCDS S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形.证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA.∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB. 又AD 不平行于BC,∴四边形ABCD 是等腰梯形.三、作对角线即通过作对角线,使梯形转化为三角形; 例9如图6,在直角梯形ABCD中,ADcmBE AE 33==2342)(cmAE BC AD S ABCD=⨯+=梯形21AD OE 21=)(21AD BC EF -=A BCD ABCDEABCDE FBG EF 21=AD BC CG BC BG -=-=)(21AD BC -=如图所示,已知等腰梯形ABCD 中,AD ∥BC,∠B =60°,AD =2,BC =8,则此等腰梯形的周长为A. 19B. 20C. 21D. 228. 如图所示,梯形ABCD 中,AD ∥BC,1若E 是AB 的中点,且AD +BC =CD,则DE 与CE 有何位置关系2E 是∠ADC 与∠BCD 的角平分线的交点,则DE 与CE 有何位置关系 A B DC E FAB CD EF MN.圆中作辅助线的常用方法:例题1:如图2,在圆O 中,B 为的中点,BD 为AB 的延长线,∠OAB=500,求∠CBD 的度数; 解:如图,连结OB 、OC 的圆O 的半径,已知∠OAB=500∵B 是弧AC 的中点∴弧AB=弧BC∴AB==BC又∵OA=OB=OC∴△AOB ≌△BOC 图2∴∠OBC=∠ABO=500∵∠ABO+∠OBC+∠CBD=1800∴∠CBD=1800 - 500- 500∴∠CBD=800答:∠CBD 的度数是800.例题2:如图3,在圆O 中,弦AB 、CD 相交于点P,求证:∠APD的度数=21弧AD+弧BC 的度数; 证明:连接AC,则∠DPA=∠C+∠A∴∠C 的度数=21弧AD 的度数 ∠A 的度数=21弧BC 的度数 ∴∠APD=21弧AD+弧BC 的度数; 图3 一、造直角三角形法1.构成Rt △,常连接半径例1. 过⊙O 内一点M ,最长弦AB = 26cm,最短弦CD = 10cm ,求AM 长;2.遇有直径,常作直径上的圆周角例2. AB 是⊙O 的直径,AC 切⊙O 于A,CB 交⊙O 于D,过D 作⊙O 的切线,交AC 于E.求证:CE = AE;3.遇有切线,常作过切点的半径例3 .割线AB 交⊙O 于C 、D,且AC=BD,AE 切⊙O 于E,BF 切⊙O 于F.求证:∠OAE = ∠OBF;4.遇有公切线,常构造Rt △斜边长为圆心距,一直角边为两半径的差,另一直角边为公切线长例4 .小 ⊙O 1与大⊙O 2外切于点A,外公切线BC 、DE 分别和⊙O 1、⊙O 2切于点B 、C和D 、E,并相交于P,∠P = 60°;求证:⊙O 1与⊙O 2的半径之比为1:3;5.正多边形相关计算常构造Rt △例5.⊙O 的半径为6,求其内接正方形ABCD 与内接正六边形AEFCGH 的公共部分的面积.二、欲用垂径定理常作弦的垂线段例6. AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E,BF ⊥CD 于F.1求证:EC = DF; 2若AE = 2,CD=BF=6,求⊙O 的面积;三、转换割线与弦相交的角,常构成圆的内接四边形例7. AB 是⊙O 直径,弦CD ⊥AB,M 是AC 上一点,AM 延长线交DC 延长线于F. 求证: ∠F = ∠ACM;四、切线的综合运用 1.已知过圆上的点,常_________________例8.如图, 已知:⊙O 1与⊙O 2外切于P,AC 是过P 点的割线交⊙O 1于A,交⊙O 2于C,过点O 1的直线AB ⊥BC 于B.求证: BC 与⊙O 2相切. 六、开放性题目 例17.已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE 平分边BC .1BC 与O 是否相切请说明理由;2当ABC △满足什么条件时,以点O ,B,E ,D 明理由.第23题。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法1. 为什么需要辅助线?在学习数学的过程中,初中生常常会遇到一些几何问题,如作图、求证等。

这些问题可能会涉及到各种角度、长度和形状的关系。

为了更好地解决这些问题,使用辅助线是非常有帮助的。

辅助线可以帮助我们发现并利用图形的特点,从而更好地理解和解决问题。

通过引入合适的辅助线,我们可以将复杂的几何问题转化为简单且易于理解的形式。

2. 常见的辅助线方法2.1. 连接中点当我们需要证明一个四边形是平行四边形时,可以通过连接两对对角线的中点来引入辅助线。

这样可以将原来复杂的四边形转化为两个相似三角形。

2.2. 连接垂直当我们需要证明一个角是直角时,可以通过连接该角的两条边上某个点与另一条边上某个点,并证明所得的两条直线垂直。

这样可以将原来复杂的问题转化为一个直角三角形。

2.3. 分割等分当我们需要将一个线段分割成若干等分时,可以通过引入一条平行于该线段的辅助线,并利用相似三角形的性质来实现。

2.4. 构造相似当我们需要证明两个三角形相似时,可以通过引入一条平行于某边的辅助线,并利用平行线分割比例的性质来实现。

2.5. 引入圆当我们遇到关于圆的问题时,可以通过引入圆来简化问题。

例如,在证明两条直线垂直时,可以通过构造一个与这两条直线相切的圆,并利用切线与半径垂直的性质来证明。

3. 常见问题及解决方法3.1. 如何作图?作图是初中数学中非常重要的一部分。

在作图过程中,使用辅助线可以帮助我们更好地理解和解决问题。

首先,我们需要仔细阅读题目,理解所给条件和要求。

然后,根据题目中提到的几何关系,在纸上画出基本图形。

接下来,我们可以根据需要选择合适的辅助线方法,并在图形上进行标记和计算。

最后,检查所画图形是否满足题目要求,并进行必要的修正和调整。

3.2. 如何证明一个三角形相似?证明两个三角形相似时,可以通过引入辅助线来简化问题。

例如,我们可以通过连接两个三角形的顶点与对应边上的某个点,并利用相似三角形的性质来证明它们相似。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法初中数学中,辅助线是解题的重要方法之一、通过合理地引入辅助线,能够简化问题,帮助学生更好地理解和解决数学问题。

下面是一些常见的辅助线方法,总结了102种用辅助线解题的方法。

一、平行四边形和三角形(12种方法)1、分许由对角线2、分许由平行边3、形状做法4、补全四边形5、平行线判定6、直角判定7、等腰判定8、矩形判定9、菱形判定10、全等判定11、相似判定12、中点延长线二、倍数关系(6种方法)1、倍数关系长方形2、被圆分割成n个三角形3、被弦分割成n个扇形4、内切正多边形5、圆切割三角形6、两个相似图形三、角的平分线和垂线(8种方法)1、垂直外角2、垂直内角3、垂直交角4、等角判定5、三角形内角和6、两侧和等于第三侧7、外角和等于第四角的补角8、两个相似三角形四、四边形(8种方法)1、等角判定2、平行线判定3、等腰判定4、全等判定5、相似判定6、斜线等分线段7、低线两边相等8、对角线平分四边形五、边和边平行关系(6种方法)1、等角判定2、平行线判断3、合同判定4、全等判定5、相似判定6、横截线段相等六、圆和直线关系(14种方法)1、相切公切线2、点在圆上3、相交的弦等分圆4、是否平行5、是否垂直6、是否相似7、是否全等8、是否合同9、切线垂直半径10、相似三角形11、距离公式12、两个平行线13、切线与弦的垂直关系14、切线两点之间的线段相等七、平行线关系(12种方法)1、内部角和2、外部角和3、迭代序列4、两个相似形状5、形状判定6、三个平行关系7、三角形内角和8、三角形外角和9、三角形相似10、勾股定理11、水平线距离12、角平分线八、相似三角形(10种方法)1、内切椭圆2、相似判定3、垂直交角4、对称判定5、角平分判定6、高线比例关系7、内角和定理8、充分条件9、相似比例关系10、线段比例关系九、勾股定理(10种方法)1、勾股定理判定2、勾股定理特殊情况3、勾股定理特点4、勾股定理形式类比5、勾股定理直角判断6、勾股定理相似关系7、勾股定理扇形等分8、勾股定理四边形判定9、勾股定理和比例关系10、勾股定理和角平分线十、全等三角形(8种方法)1、全等三角形定理2、全等三角形的性质3、等腰三角形4、直角三角形5、相似三角形6、全等三角形的斜线相等7、全等三角形的线段比例关系8、全等三角形的勾股定理十一、正多边形(6种方法)1、内切圆2、相似判定3、垂直交角4、直径5、内角和定理6、线段比例以上就是102种初中数学中常用的辅助线方法。

初中几何辅助线作法大全

初中几何辅助线作法大全

线,角,相交线,平行线规律1.假如平面上有n (n ≥2)个点,其中任何三点都不在同一直线上,那么每两点画一款直线,一共可以画出12n (n -1)款.规律2.平面上地n 款直线最多可把平面分成〔12n (n +1)+1〕个部分.规律3.假如一款直线上有n 个点,那么在这个图形中共有线段地款数为12n (n -1)款.规律4.线段(或延长线)上任一点分线段为两段,这两款线段地中点地距离等于线段长地一半.例:如图,B 在线段AC 上,M 是AB 地中点,N 是BC 地中点.求证:MN =12AC 证明:∵M 是AB 地中点,N 是BC 地中点∴AM = BM =12AB ,BN = CN = 12BC ∴MN = MB +BN = 12AB + 12BC = 12(AB + BC )∴MN =12AC练习:1.如图,点C 是线段AB 上地一点,M 是线段BC 地中点.求证:AM =12(AB + BC ) 2.如图,点B 在线段AC 上,M 是AB 地中点,N 是AC 地中点.求证:MN =12BC 3.如图,点B 在线段AC 上,N 是AC 地中点,M 是BC 地中点.求证:MN =12AB 规律5.有公共端点地n 款射线所构成地交点地个数一共有12n (n -1)个.规律6.假如平面内有n 款直线都经过同一点,则可构成小于平角地角共有2n (n -1)个.规律7. 假如平面内有n 款直线都经过同一点,则可构成n (n -1)对对顶角.规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出16n (n -1)(n -2)个.规律9.互为邻补角地两个角平分线所成地角地度数为90o .规律10.平面上有n 款直线相交,最多交点地个数为12n (n -1)个.规律11.互为补角中较小角地余角等于这两个互为补角地角地差地一半.N M CB A MC BA N M CB A N MCB A规律12.当两直线平行时,同位角地角平分线互相平行,内错角地角平分线互相平行,同旁内角地角平分线互相垂直.例:如图,以下三种情况请同学们自己证明.规律13.已知AB ∥DE ,如图⑴~⑹,规律如下:规律14.成“8”字形地两个三角形地一对内角平分线相交所成地角等于另两个内角和地一半.例:已知,BE ,DE 分别平分∠ABC 和∠ADC ,若∠A = 45o ,∠C = 55o ,求∠E 地度数.解:∠A +∠ABE =∠E +∠ADE ①∠C +∠CDE =∠E +∠CBE ②①+②得∠A +∠ABE +∠C +∠CDE =∠E +∠ADE +∠E +∠CBE ∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠ABE =∠CBE ,∠CDE =∠ADE ∴2∠E =∠A +∠C∴∠E =12(∠A +∠C )1()∠ABC+∠BCD+∠CDE=360︒E D C BA +=∠CDE∠ABC ∠BCD 2()E DCBA-=∠CDE ∠ABC∠BCD 3()E DC BA-=∠CDE∠ABC ∠BCD 4()E D CBA +=∠CDE ∠ABC∠BCD 5()EDCB A +=∠CDE∠ABC ∠BCD 6()EDCBANME DBCAH GFE D BCAHGFED BCAH GFEDBCA∵∠A =45o,∠C =55o,∴∠E =50o三角形部分规律15.在利用三角形三边关系证明线段不等关系时,假如直接证不出来,可连结两点或延长某边构造三角形,使结论中出现地线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.例:如图,已知D,E为△ABC内两点,求证:AB+AC>BD+DE+CE.证法(一):将DE向两边延长,分别交AB,AC于M,N在△AMN中, AM+AN>MD+DE+NE①在△BDM中,MB+MD>BD②在△CEN中,CN+NE>CE③①+②+③得AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+CE证法(二)延长BD交AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有,①AB+AF>BD+DG+GF②GF+FC>GE+CE③DG+GE>DE∴①+②+③有AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+CE注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证地量(或与求证相关地量)移到同一个或几个三角形中去然后再证题.练习:已知:如图P为△ABC内任一点,求证:12(AB+BC+AC)<PA+PB+PC<AB+BC+AC规律16.三角形地一个内角平分线与一个外角平分线相交所成地锐角,等于第三个内角地一半.例:如图,已知BD为△ABC地角平分线,CD为△ABC地外角∠ACE地平分线,它与BD地延长线交于D.求证:∠A = 2∠D证明:∵BD,CD分别是∠ABC,∠ACE地平分线∴∠ACE =2∠1, ∠ABC =2∠2∵∠A = ∠ACE-∠ABC∴∠A = 2∠1-2∠2又∵∠D =∠1-∠2∴∠A =2∠D规律17. 三角形地两个内角平分线相交所成地钝角等于90o加上第三个内角地一半.例:如图,BD,CD分别平分∠ABC,∠ACB, 求证:∠BDC = 90o+12∠A证明:∵BD,CD分别平分∠ABC,∠ACBFGNMEDBA21C EDBA∴∠A+2∠1+2∠2 = 180o∴2(∠1+∠2)= 180o-∠A①∵∠BDC = 180o-(∠1+∠2)∴(∠1+∠2) = 180o-∠BDC②把②式代入①式得2(180o-∠BDC)= 180o-∠A 即:360o-2∠BDC =180o-∠A ∴2∠BDC = 180o+∠A∴∠BDC = 90o+12∠A规律18. 三角形地两个外角平分线相交所成地锐角等于90o减去第三个内角地一半.例:如图,BD,CD分别平分∠EBC,∠FCB, 求证:∠BDC = 90o-12∠A证明:∵BD,CD分别平分∠EBC,∠FCB∴∠EBC = 2∠1,∠FCB = 2∠2∴2∠1 =∠A+∠ACB①2∠2 =∠A+∠ABC②①+②得2(∠1+∠2)= ∠A+∠ABC+∠ACB+∠A2(∠1+∠2)= 180o+∠A∴(∠1+∠2)= 90o+12∠A∵∠BDC = 180o-(∠1+∠2)∴∠BDC = 180o-(90o+12∠A)∴∠BDC = 90o-12∠A规律19. 从三角形地一个顶点作高线和角平分线,它们所夹地角等于三角形另外两个角差(地绝对值)地一半.例:已知,如图,在△ABC中,∠C>∠B, AD⊥BC于D, AE平分∠BAC.求证:∠EAD = 12(∠C-∠B)证明:∵AE平分∠BAC∴∠BAE =∠CAE =12∠BAC∵∠BAC =180o-(∠B+∠C)∴∠EAC = 12〔180o-(∠B+∠C)〕∵AD⊥BC∴∠DAC = 90o-∠C∵∠EAD = ∠EAC-∠DACDCBA2121FEDCBAE D CBA∴∠EAD = 12〔180o -(∠B +∠C )〕-(90o -∠C ) = 90o -12(∠B +∠C )-90o +∠C= 12(∠C -∠B )假如把AD 平移可以得到如下两图,FD ⊥BC 其它款件不变,结论为∠EFD =12(∠C -∠B ).注意:同学们在学习几何时,可以把自己证完地题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三,灵活应变地能力.规律20.在利用三角形地外角大于任何和它不相邻地内角证明角地不等关系时,假如直接证不出来,可连结两点或延长某边,构造三角形,使求证地大角在某个三角形外角地位置上,小角处在内角地位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 地外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F∵∠BDF 是△ABD 地外角,∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC规律21.有角平分线时常在角两边截取相等地线段,构造全等三角形. 例:已知,如图,AD 为△ABC 地中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE ,NF ,则DN = DC 在△BDE 和△NDE 中,DN = DB∠1 = ∠2ED = ED∴△BDE ≌△NDE ∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF规律22. 有以线段中点为端点地线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 地中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM ,FMABCDEF FE DCBA FABC DE D C B A 4321NFEDCBABD = CD ∠1 = ∠5ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180o ∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o △EDF 和△MDF 中ED = MD ∠FDM = ∠EDF DF = DF∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 地中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 地中线∴BD = CD在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD规律24.截长补短作辅助线地方式截长法:在较长地线段上截取一款线段等于较短线段。

初中几何15中添加辅助线的方法

初中几何15中添加辅助线的方法

初中几何15中添加辅助线的方法在初中几何中,辅助线是解题时常常会使用的一种方法。

辅助线能够帮助我们理清思路,找到问题的关键,从而更容易解决问题。

在这里,我将介绍15种常见的添加辅助线的方法。

1.平行线辅助法:在平行的直线上添加一条辅助线,以便能够利用平行线的性质解题。

2.垂直线辅助法:在垂直的直线上添加一条辅助线,以便能够利用垂直线的性质解题。

3.切线辅助法:在圆和直线的切点处添加一条切线作为辅助线,以便能够利用切线的性质解题。

4.相等辅助法:在等长的线段上添加相等辅助线,以便能够利用线段相等的性质解题。

5.相似辅助法:在相似的图形中添加相似辅助线,以便能够利用相似图形的性质解题。

6.对称辅助法:在对称的图形中添加对称辅助线,以便能够利用对称图形的性质解题。

7.中垂线辅助法:在三角形的顶点处添加中垂线作为辅助线,以便能够利用中垂线的性质解题。

8.重心辅助法:在三角形的顶点处添加重心作为辅助线,以便能够利用重心的性质解题。

9.垂心辅助法:在三角形的顶点处添加垂心作为辅助线,以便能够利用垂心的性质解题。

10.外心辅助法:在三角形的顶点处添加外心作为辅助线,以便能够利用外心的性质解题。

11.内心辅助法:在三角形的顶点处添加内心作为辅助线,以便能够利用内心的性质解题。

12.中位线辅助法:在三角形的边上添加中位线作为辅助线,以便能够利用中位线的性质解题。

13.角平分线辅助法:在角的两边上添加角平分线作为辅助线,以便能够利用角平分线的性质解题。

14.高线辅助法:在三角形的一个顶点上添加高线作为辅助线,以便能够利用高线的性质解题。

15.弦辅助法:在圆上添加弦作为辅助线,以便能够利用弦的性质解题。

这些辅助线添加的方法,有助于我们在初中几何中更好地理解和解决问题。

当我们遇到几何问题时,可以灵活运用这些辅助线的方法,寻找问题的关键点,从而更轻松地解题。

通过多练习和实践,我们可以在初中几何中熟练地运用这些方法,从而提高解题的效率和准确性。

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀
初中几何辅助线大全及口诀可以帮助同学们在解题时更高效地添加辅助线,解决几何问题。

下面是一些常见的辅助线和口诀:
一、常见辅助线:
1. 过中点作中位线;
2. 见中线延长一倍;
3. 见中点,引中位线;
4. 遇比例线段,常作平行线;
5. 梯形问题,常作垂线;
6. 遇切线问题,常连结过切点的半径;
7. 遇弦的问题,常作弦心距。

二、常见定理:
1. 三角形内角和定理;
2. 平行线的性质定理;
3. 中位线定理;
4. 命题等价性定理;
5. 相似三角形判定定理;
6. 直角三角形判定定理。

三、口诀:
1. 直角三角形直角边平方等于斜边平方加直角边平方;
2. 三角形两边之和大于第三边;
3. 三角形三边长度比等于斜边夹角角度比;
4. 梯形问题,常作垂线;
5. 遇切线问题,常连结过切点的半径;
6. 遇弦的问题,常作弦心距。

这些辅助线和口诀可以帮助同学们更好地解决几何问题,提高解题效率。

同时,辅助线添加的技巧也需要同学们在实际解题中不断练习和总结,才能更好地掌握和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学中考几何如何巧妙做辅助线大全————————————————————————————————作者:————————————————————————————————日期:人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。

(8)特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明(9)半圆上的圆周角出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。

二.基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。

辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。

(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。

(8)过一腰的中点作另一腰的平行线。

(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。

通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。

4.圆中常用辅助线的添法在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。

(1)见弦作弦心距有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。

(2)见直径作圆周角在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。

(3)见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。

(4)两圆相切作公切线对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。

(5)两圆相交作公共弦对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。

作辅助线的方法一:中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。

如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。

有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线。

九:面积找底高,多边变三边。

如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。

如遇多边形,想法割补成三角形;反之,亦成立。

另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。

三角形中作辅助线的常用方法举例一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N ,在△AMN 中,AM +AN > MD +DE +NE;(1) 在△BDM 中,MB +MD >BD ; (2) 在△CEN 中,CN +NE >CE ; (3) 由(1)+(2)+(3)得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC(法二:)如图1-2, 延长BD 交 AC 于F ,延长CE 交BF 于G ,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF (三角形两边之和大于第三边)(1) GF +FC >GE +CE (同上)………………………………(2) DG +GE >DE (同上)……………………………………(3) 由(1)+(2)+(3)得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE∴AB +AC >BD +DE +EC 。

二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:A BCDEN M 11-图ABCDEF G21-图例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC 。

相关文档
最新文档