[初一数学]从算式到方程
从算式到方程课件人教版七年级数学上册
![从算式到方程课件人教版七年级数学上册](https://img.taocdn.com/s3/m/2b4d629a6037ee06eff9aef8941ea76e58fa4acf.png)
(2)大围山国家森林公园被称为“湘东绿色明珠”, 门票90元/人,14岁以下儿童和65岁以上的老人免费。最 近一次和家人一起去,共花费270元,平均每人花费54元
你知道我们一行人中有几个人可以免门票吗?
(不需要计算出结果,只要列出算式和方程即可)
小组讨论: 1. 怎样将一个实际问题转化为方程问题? 2. 列方程的关键是什么?
× 错因:分母中含有未知数,
不是整式.
题型 一元一次方程中求字母的值
例1 若关于x的方程 2x n 1 9 0 是一元一次方程,则 n 的值为 2或-2 .
【变式题】加了限制条件,需进行取舍 方程 (m 1)x m 1 0是关于x的一元一次方程,则 m= 1 .
反思
未知数的次数为1时,未知数的系数不为0.
3.1 从算式到方程(1)
七上 第三章《一元一次方程》
一 方程与列方程
在小学,我们已经见过像2x=50,3x+1=4,5x-7=8 这样简单的方程,其中字母x表示未知数.
方程是含有未知数的等式,它是应用广泛的数学工 具.研究许多数学问题时,人们经常用字母表示其中的 未知数,通过分析数量关系,列出方程表示相等关系, 然后解方程求出未知数.
实际问题 抓关键句子找等量关系 一元一次方程 设未知数列方程
方程是为了求出未知数而在未知数和已知数 之间建立起来的等式关系.
列方程的关键是找到相等关系,并将其“翻译” 成数学表达式.
思考:列算式和列方程各有什么特点?
名家观点:列算式经常要反着想,而列方程 是顺着想. 算式中只含有已知数而不含未 知数,方程是比算式更有力的数学工具, 它打破了列算式时只能使用已知数的限制. 这样的突破使得列方程一般比列算式更直 接、更自然、更宽松,从而给解决问题带 来了更大的便利.
从算式到方程:初一数学教案的常见难点与解决方案
![从算式到方程:初一数学教案的常见难点与解决方案](https://img.taocdn.com/s3/m/2775dd193d1ec5da50e2524de518964bcf84d29e.png)
在初一的数学教学中,从算式到方程是一个比较重要的话题,也是初步理解代数的关键。
但是,由于很多学生还没有形成系统的代数思维,这一话题往往会给学生带来不少的困惑。
本文将探讨初一数学教案中从算式到方程的常见难点以及解决方案。
一、难点一:从算式到方程的概念转变初中数学的代数是从算式开始的,而方程是通过将算式中一些未知数替换为字母来表示其普遍性,让学生从算式的层面提升到方程的层面,这对于很多学生来说是较难的。
解决方案:1、教师需要仔细讲解从算式到方程的概念转变,使用具体的例子阐述算式中未知数的含义及如何用字母表示未知数,为学生打下基础。
2、在课堂中设定回顾并强化这个概念的环节,如提供一个有关算式转化为方程的问题,并在学生的数学考试中发现其合适的方法和协助学生将它们应用到题目之中。
3、教师应该在课堂上以及作业中强调概念的重要性,并告诉学生他们必须充分理解这些概念,以便能够在学习代数方程的时候更加容易。
二、难点二:理解方程的解法和步骤不足在解决方程题目的过程中,很多学生会陷入僵局,不知道从哪个方面入手,继而导致解题时间过长,甚至可能不能解决问题,也不能寻找出合适的帮助。
解决方案:1、通过班级内小组讲解或者小组互助与交流,开展合作议题、“为什么”思考等活动,这有助于将小组里的强助费合理地分配到各个群组中。
2、强调在整个解题过程中的步骤从而减轻校对学生操作和反复练习的压力,对于那些困惑的学生,在数学课上还可以提供分组讨论或者慢病论到同侪教学。
3、教师在课堂上可以提供一些次要或难以解决的题目,这些题目就应该尝试演示给学生听、让学生分析。
#-------------------------------------------------------------------------------。
5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册
![5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册](https://img.taocdn.com/s3/m/fd07070d3d1ec5da50e2524de518964bcf84d239.png)
4. 小明的年龄比小红大3岁,两人年龄之和为35岁。请问小明和小红各几岁?
5. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,同时一辆自行车从乙地出发,以每小时20公里的速度相向而行。问多少时间后两车相遇?
解答题:
6. 解方程4x - 9 = 3x + 5。
7. 小华买了3本书和2支笔花了54元,如果一支笔5元,求一本书的价格。
- 教学视频:收集一些专业的数学教学视频,如“方程的起源”、“一元一次方程的解法”等,帮助学生更直观地理解方程。
- 数学游戏:设计或推荐一些包含方程元素的数学游戏,如“方程求解大挑战”、“数学侦探”等,提高学生的学习兴趣。
- 网络资源:选取一些教育网站上的高质量教学资源,如方程相关课件、习题库等,丰富学生的学习材料。
1. 课前自主探索
- 教师活动:
发布预习任务:通过学校教学管理系统,发布预习资料(PPT、视频、文档),明确预习目标和要求。
设计预习问题:围绕“从算式到方程”课题,设计问题,如“算式和方程有什么区别?”、“方程是如何表示未知数的?”等,引导学生自主思考。
监控预习进度:通过系统跟踪和学生的反馈,确保预习效果。
针对以上问题,我制定了以下改进措施:
1. 在课前自主探索环节,我将明确预习任务的要求,并提供具体的指导,以提高学生的预习效果。
2. 在课中强化技能环节,我将设计更有趣的小组讨论题目,并加强对小组讨论的引导和监督,以提高学生的参与度。
3. 在课后拓展应用环节,我将更加重视拓展资源的提供,并鼓励学生充分利用这些资源进行深入学习。
2. 拓展建议:
- 鼓励学生阅读数学故事书和期刊文章,了解方程的背景知识,增强数学学习的兴趣和动力。
初中七年级上册数学《从算式到方程》教案
![初中七年级上册数学《从算式到方程》教案](https://img.taocdn.com/s3/m/806eda08ae45b307e87101f69e3143323968f561.png)
初中七年级上册数学《从算式到方程》教案五篇初中七年级上册数学《从算式到方程》教案一1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。
体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。
建立一元一次方程的概念。
问题与情境师生活动设计意图一、创设情境,展示问题:问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名时间王家庄10:00 青山13:00 秀水15:00 教师展示问题,要求用算术解法,让学生充分发表意见。
算术方法:(124+1)25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。
问题1的算术解法:(50+70)2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。
示意图有助于分析问题。
二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是`千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。
2、比一比:列算式与列方程有什么不同?哪一个更简便?3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。
学生思考回答:1、王家庄-青山(`50)千米,王家庄-秀水(`+70)千米。
七年级数学《从算式到方程》教案设计
![七年级数学《从算式到方程》教案设计](https://img.taocdn.com/s3/m/3db341f95122aaea998fcc22bcd126fff7055d79.png)
七年级数学《从算式到方程》教案设计方程是初等数学的基本学问,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。
接下来是我为大家整理的(七班级数学)《从算式到方程》教案设计,盼望大家喜爱!七班级数学《从算式到方程》教案设计一一、教材分析1.教学目标、重点、难点.教学目标:(1)了解方程的解的概念.(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.(3)渗透对应思想.重点:方程解的意义,会检验一个数是不是一个一元方程的解.难点:方程解的意义,会检验一个数是不是一个一元方程的解.2.例、习题的意图本节课重点是了解方程的解的意义. 通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.例1是通过实际问题列出方程,依据(1)题未知数的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使同学亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫. 对第(2)、(3)题再采纳(1)题(方法)寻求方程的解已不简单,这又为后边学习解方程奠定了乐观的心理储备.例2是依据方程的解的意义,使同学会检验一个数值是不是方程的解,这一点应切实使同学把握.3.认知难点与突破方法难点是方程解的意义和检验一个数是不是一个一元方程的解. 例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.二、新课引入复习:1.什么是一元一次方程?2.练习:当,,时,求式子的值.答案:,, .通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.三、例题讲解例1 教材P69 中例1分析:三个题目中的相等关系分别是:(1)计算机已使用的时间+连续使用的时间=规定的检修时间.(2)2(长+宽)=周长.(3)女生人数—男生人数= .问题:列方程是解决问题的重要方法,利用所列的方程我们可以得出未知数的值,你能估算方程中的的值吗?分析:方程中等号左边有未知数,估算的值代入方程应使等号左边的值等于等号右边的值2450,这样的值才适合方程. 由于表示月份,是正整数,不妨让,,……分别代入方程算一算.由计算结果可以看到,每一个的允许值都使代数式有一个确定的数值,为便利起见,可以列一个表格:1 2 3 4 5 6 7 … 1850 2000 2150 2300 2450 2600 2750 … 从表中发觉:当时,的值是,也就是,当时,方程中等号的左边: . 等号的右边:2450. 由此得到方程的左边=右边,就说叫做方程的解,也就是方程中,未知数的值为5. 所以,方程的解就是 .教材P71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解.从表中你还能发觉哪个方程的解?(引导同学得出)如方程的解是 ;方程的解是等等,使同学进一步体会方程解的概念.方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.教材P71的思索:你能估算方程和方程的解吗?通过估算这两个方程的解,你有什么想法?由于这两个方程估算其解有肯定的困难,数不整齐,或方程比较简单,消失冲突冲突,引导同学得出:学习解方程的方法非常必要.怎样检验一个数是否是方程的解呢?七班级数学《从算式到方程》教案设计二目标 1.使同学初步把握一元一次方程应用题的设未知数和列方程; 2.培育同学观看力量,提高他们分析问题和解决问题的力量; 3.使同学初步养成正确思索问题的良好习惯. 教重难点重点:从同学原有的认知结构提出问题在学校算术中,我们学习了用算术方法解决实际问题的有关学问,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?难点:师生共同分析、讨论利用等式的性质解一元一次方程和依据实际问题设未知数和列方程。
七年级上学期数学 3.1 从算式到方程
![七年级上学期数学 3.1 从算式到方程](https://img.taocdn.com/s3/m/af857a79abea998fcc22bcd126fff705cc175ce5.png)
七年级上学期数学中,第三章第一节“从算式到方程”主要介绍的是如何将实际问题抽象成数学算式,并进一步转化为方程的过程。
这一部分内容对于建立和理解方程的概念非常重要,是学习代数的基础。
核心内容包括:
1.算式与方程的概念:
●算式:表示数的运算过程,如(3+5)、(2\times4)等。
●方程:含有未知数的等式,目的是找到未知数的值,使等式成立,如
(x+5=10)。
2.方程的构成:
●方程通常包含未知数(如x、y)、常数、运算符(加、减、乘、除)以及等
号“=”。
3.建立方程:
●通过分析实际问题,确定未知数,根据问题中的条件关系,用代数表达式表示
这些关系,从而建立方程。
●例如,如果一个数加上3等于7,可以写成方程\(x+3=7\)。
4.解方程:
●学习基本的解方程方法,如加减法、乘除法,逐步求解未知数。
●对于简单的一元一次方程,目标是通过等式的性质,将未知数单独留在方程的
一边,求出其值。
5.应用题:
●结合生活实际,通过设定未知数,将文字问题转换为方程问题,解决诸如购物
找零、行程问题、工作量分配等问题。
学习重点:
●理解并区分算式与方程的含义。
●掌握将实际问题抽象成方程的能力。
●学会基本的方程解法,特别是解一元一次方程。
通过这部分的学习,学生能够初步掌握利用方程解决实际问题的方法,为后续更复杂的代数学习打下坚实的基础。
初一数学《从算式到方程》教案范文集锦
![初一数学《从算式到方程》教案范文集锦](https://img.taocdn.com/s3/m/b63cadc085254b35eefdc8d376eeaeaad1f31615.png)
初一数学《从算式到方程》教案范文集锦初一数学《从算式到方程》教案范文一教学目标1.知识与技能(1)通过观察,归纳一元一次方程的概念.(2)根据方程解的概念,会估算出简单的一元一次方程的解.2.过程与方法.通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.3.情感态度与价值观鼓励学生进行观察思考,开展合作交流的意识和能力.重、难点与关键1.重点:了解一元一次方程的有关概念,会根据条件,设未知数,•列出简单的一元一次方程,并会估计方程的解.2.难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解.3.关键:找出能表示实际问题的相等关系.教具准备:投影仪.教学过程一、复习提问在小学里,我们已学习了像2某=50,3某+1=4等简单方程,那么什么叫方程呢?什么叫方程的解和解方程呢?答:含有未知数的等式叫方程;能使方程等号两边相等的未知数的值叫方程的解,求方程解的过程叫解方程.方程是应用广泛的数学工具,把问题中未知数与数的联系用等式形式表示出来.在研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数.怎样根据问题中的数量关系列出方程?怎样解方程?这是本章研究的问题.通过本章中丰富多彩的问题,你将进一步感受到方程的作用,并学习利用一地一次方程解决问题的方法.二、新授1.怎样列方程?让学生观察章前图表,根据图表中给出的信息,答复以下问题.(1)根据图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间表,•你知道,汽车从王家庄行驶到青山用了多少时间?青山到秀水呢?(2)青山与翠湖、秀水到翠湖的距离分别是多少?(3)本问题要求什么?(4)你会用算术方法解决这个实际问题呢?不妨试试列算式.(5)如果设王家庄到翠湖的路程为某(千米),你能列出方程吗?解:(1)汽车从王家庄行驶到青山用了3小时,青山到秀水用了2小时.(2)青山与翠湖的距离为50 千米,秀水与翠湖的距离为70千米.(3)王家庄到翠湖的距离是多少千米?(4)分析:要求王家庄到翠湖的距离,只要求出王家庄到青山的距离,•而王家庄到青山的时间为3小时,所以必需求汽车的速度.如何求汽车的速度呢?这里青山到秀水的时间为2小时,路程为(50+70)千米,因此可求的汽车的平均速度为(50+70)÷2=60(千米/时)王家庄到青山的路程为:60某3=180(千米)所以王家庄到翠湖的路程为:180+50=230(千米)列综合算式为:某3+50(5)分析:先画出示意图,示意图往往有助于分析问题.从上图中可以用含某的式子表示关于路程的数量:王家庄距青山(某-50)千米,王家庄距秀水(某+70)千米.从章前图表中可以得出关于时间的数量:从王家庄到青山行车3小时,从王家庄到秀水行车5小时.由路程数量和行车时间的数量,可以得到行车速度的表达式.汽车从王家庄开往青山时的速度为千米/时,汽车从王家庄开往秀水的速度为千米/时.要列出方程,必需找出“相等关系〞,题目中还有哪些相等关系吗?根据汽车是匀速行驶的,可知各段路程的车速相等.于是列出方程:=以后我们将学习如何解这个方程,求出未知数某的值,•从而得出王家庄到翠湖的路程.思考:对于以上的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?根据汽车匀速行驶,可知各段路程的车速相等.所以还可以列方程:= 或 =(前者是汽车从王家庄到青山与从青山到秀水,这两段路程的车速相等,后者是汽车从王家庄到翠湖与从青山到秀水,这两段路程的车速相等) 比拟用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用数,对于较复杂的问题,列算式比拟困难;而方程是根据问题中的等量关系列出的等式,其中既含有数,又含有用字母表示的未知数,有了这个未知数,问题中的量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系〞列出方程.有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.列方程时,要先设字母表示未知数,通常用某、y、z等字母表示未知数,•然后根据问题中的相等关系,写出含有未知数的等式即方程.例1:根据以下问题,设未知数并列出方程.(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?分析:设正方形的边长为某(cm),那么周长为4某(cm),依题意,得4某=24.初一数学《从算式到方程》教案范文二教学目标:1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.3.培养学生获取信息、分析问题、处理问题的能力.教学重难点:从实际问题中寻找相等关系.教学过程:一、情境引入提出课本P78的问题,可用多媒体演示题目描述的行驶情境.1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.3.提出问题,如果用字母某表示A、B两地的路程,根据题意会得到一个什么样的式子?二、学习新知1.引导学生把题中的数量用表格形式反映题意:路程(km) 速度(km/h) 时间(h) 卡车某 60 客车某 702.学生回忆方程的概念,探讨、列出方程,并说出列得方程的依据.3.讨论列出方程表示的意义,并比照算术方法,体会列方程解决问题与列算式解决问题的优越性.4.反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.5.将题中的量和未知量用表格列出:路程(km) 速度(km/h) 时间(h) 卡车 60 y 客车 70 y-16.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.7.总结以上列出两个含不同未知数某、y的方程的方法:①以路程为未知数,那么根据两车行驶时间的关系列方程.②以行驶时间为未知数,那么从两车行驶路程的关系列方程.8.比拟列算式和列方程两种方法的特点:阅读课本P79.9.举一反三:分别列算式和设未知数列方程解决以下问题:(1)某数与它的的和是8,求这个数;(2)班上有女生32人,比男生多,求男生人数;(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?三、初步应用1.例1:课本P79例1.例2(补充):根据以下条件,列出关于某的方程:(1)某与18的和等于54;(2)27与某的差的一半等于某的4倍.列出方程后教师说明:“4某〞表示4与某的积,当乘数中有字母时,通常省略乘号“某〞,并把数字乘数写在字母乘数的前面.2.练习(补充)(1)列式表示:① 比a小9的数; ② 某的2倍与3的和;③ 5与y的差的一半; ④ a与b的7倍的和.(2)根据以下条件,列出关于某的方程:①12与某的差等于某的2倍;②某的三分之一与5的和等于6.四、课时小结1.本节课我们学了什么知识?2.你有什么收获?五、课堂作业小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入.第2课时一元一次方程教学目标:1.理解一元一次方程、方程的解等概念.2.掌握检验某个值是不是方程的解的方法.3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.4.体验用估算方法寻求方程的解的过程,培养学生求实的态度.教学重点:寻找相等关系,列出方程.教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要屡次的尝试,也需要一定的估计能力.教学过程:一、情境引入问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为某岁,你能用不同的方法表示小思的年龄吗?(25-某,2某-8)由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-某=2某-8,这样就得到了一个方程.二、自主尝试1.尝试:让学生尝试解答课本P79的例1.2.交流:在学生根本完成解答的根底上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生答复的根底上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?问题2:在第(3)题中,你还能设其它的未知数为某吗?5.建立概念(1)概念的建立:在学生观察上述方程的根底上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.“一元〞:一个未知数;“一次〞:未知数的指数是一次.判断以下方程是不是一元一次方程:①23-某=-7; ②2a-b=3;初一数学《从算式到方程》教案范文三教学目标 1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
七年级数学从算式到方程知识精讲
![七年级数学从算式到方程知识精讲](https://img.taocdn.com/s3/m/cfad2d25ce2f0066f43322a9.png)
七年级数学从算式到方程【本讲主要内容】从算式到方程(什么是方程、什么是一元一次方程、等式的性质)一、理解并掌握一元一次方程的定义;区别列方程与列算式解应用题的优劣;一次方程建模思想。
二、掌握一元一次方程的解的概念;会检验一个数是否是一个方程的解;会用列举法或估算法求一元一次方程的解。
三、掌握等式的两条性质,并会用它解决一些简单的问题。
四、了解方程的概念;巩固等式性质,会用等式性质解一元一次方程。
【知识掌握】【知识点精析】方程的定义及理解:◆方程:含有未知数的等式叫做方程。
如:2x -5=1, x+y=6等。
◆判断一个式子是不是方程,只需看两点:一是等式,二是含有未知数的等式。
二者缺一不可。
例:下列各式不是方程的是( ) A. 3y²+y -4=0 B. x=y+1 C. x²+2xy+y² D.21(x -1)+x=4 分析:含有未知数的等式就是方程 答案:C例:下列方程中一元一次方程的个数是( ) ①x=-1 ②2x -y=1 ③2(x -y)=1 ④x1=-1 A. 1个 B. 2个 C. 3个 D. 4个分析:扣住只含一个未知数,未知数指数是1。
②③中含有两个未知数。
④中x 的指数是1,但它不是整式。
答案:A 说明:不能认为x1+1=0或11 y -2=0是一元一次方程。
方程的解的定义、如何验证方程的解:◆方程的解:使方程左、右两边都相等的未知数的值,叫做方程的解。
例:方程12(x -3)-1=2x+3的解是( ) A. x=3 B. x= 354C. x=-4D. x=4 分析:把A 、B 、C 、D 四个x 的值代入方程中计算,使左右两边相等的x 的值即为方程的值。
答案:D 。
方法技巧:也可以把原方程的解求出来再选项。
◆根据方程的解的定义可知,只要将给出的数分别代入方程的左边和右边,看左、右两边的值是否相等。
如果左边=右边,则这个数就是方程的解,否则,左边≠右边,这个数就不是方程的解。
人教版七年数学上册第三章3.1从算式到方程(教案)
![人教版七年数学上册第三章3.1从算式到方程(教案)](https://img.taocdn.com/s3/m/a404586cb80d6c85ec3a87c24028915f804d8423.png)
1.分组讨论:学生们将分成若干小组,每组讨论一个与方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,演示如何求解方程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
五、教学反思
在今天的课堂上,我们学习了从算式到方程这一章节。回顾整个教学过程,我认为有几个方面值得反思。
首先,关于方程概念的引入。在导入新课环节,我通过提问的方式引导学生思考日常生活中遇到的未知数问题,希望能够激发他们的兴趣。从学生的反应来看,这种方法还是有效的,他们能够积极参与讨论,提出自己的看法。但在这一过程中,我也发现部分学生对未知数的概念还不是很清晰,需要在后续教学中加强巩固。
其次,在新课讲授环节,我对方程的基本概念、重要性和应用进行了详细讲解。通过案例分析,让学生了解如何将实际问题转化为方程。然而,我也注意到,在讲解过程中,部分学生对移项、合并同类项等操作还不是很熟练,这需要在接下来的教学中加以关注,进行针对性训练。
在实践活动环节,我让学生分组讨论与方程相关的实际问题,并进行实验操作。这一环节学生的参与度很高,讨论氛围浓厚。但同时,我也发现部分小组在讨论过程中存在偏离主题的现象,需要我在以后的教学中加强对学生的引导,确保讨论的有效性。
3.等式的性质:探讨等式两边同时加减、乘除同一个数时,等式仍然成立。
4.习题练习:完成教材第三章3.1节的练习题,巩固所学知识。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的逻辑思维能力:通过对方程概念的学习,使学生能够理解数量关系,提高逻辑推理能力。
七年级数学从算式到方程
![七年级数学从算式到方程](https://img.taocdn.com/s3/m/da7ce742f242336c1eb95e83.png)
七年级数学从算式到方程
注意:
1)单独的一个数或一个字母也是代数式
2)代数式中出现乘号,通常写作“•”或省略不写;
但数字与数字相乘,一般仍用“×”号
3)数字与字母相乘,数字写在字母前面
4)除法运算写成分数形式
5)分数线有括号的作用
从算式到方程
一、方程的概念:
含有未知数的等式叫做方程。
关键:①未知数②等式
判断下列各式是不是方程?××√×
二、方程的解的概念:
使方程左、右两边相等的未知数的值就叫做方程的解。
问:x=5 是不是方程x+10=3x 的解?
当x=5 时,方程的左边=___,右边=____1515
问:x=3 是不是方程3x -1=2x 的解?
当x=3 时,方程的左边=___,右边=____86 是不是二、方程的解的概念:
使方程左、右两边相等的未知数的值就叫做方程的解。
检验一个数是不是方程的解的步骤:
1.将数值代入方程左边进行计算,。
2023-2024学年七年级上学期数学:从算式到方程(附答案解析)
![2023-2024学年七年级上学期数学:从算式到方程(附答案解析)](https://img.taocdn.com/s3/m/b0800dd1710abb68a98271fe910ef12d2af9a9e1.png)
二、填空题 12.(2022 春•井研县期末)如果 x 1 是关于 x 的方程 3x 2m 9 的解,则 m 的值 为.
提升拓展
一、选择题
1.已知 x 1 是关于 x 的方程 2x 3a 7 的解,则 a 的值为 ( )
A. 5
B. 3
C.3
D.5
2.已知关于 x 的方程 ax b c 的解是 x 1 ,则 a b c 的值是 ( )
A. 2x 3 x
B. x y 2
C. x 1 1
x
D. x2 2x 0
8.(2022•桥西区校级模拟)已知 m n ,下列等式不成立的是 ( )
A. m n 2m
B. m n 0
C. m 2x n 2x D. 2m 3n 5n
9.(2022 春•朝阳区期中)下列运用等式性质进行的变形中,正确的是 ( )
3
2
漏乘了公分母 6,因而求得方程的解为 x 2 ,则方程正确的解是 ( )
A. x 12
B. x 8
C. x 8
5.已知 a b (a 0,b 0) ,下列变形正确的是 (
)
23
A. b 2
a3
B. a b
32
C. 2 3
ab
6.已知 (a 1)x|a| 3 10 是一元一次方程,则 a 的值为 (
)
74Leabharlann A.(1)(4) B.(1)(2)(4)
C.(1)(3)
D.(2)(4)
6.(2022•德宏州模拟)若 x 3 是一元一次方程 2(x k) 5(k 为实数)的解,则 k
的值是 ( ) A. 1
2
B. 1
2
C. 11
2
人教版七年级上数学《 从算式到方程 》课堂笔记
![人教版七年级上数学《 从算式到方程 》课堂笔记](https://img.taocdn.com/s3/m/9f7c46a86394dd88d0d233d4b14e852458fb39a2.png)
《从算式到方程》课堂笔记以下是《从算式到方程》的课堂笔记,供您参考:一、知识点梳理1.算式与方程的概念:算式:表示两个或多个数之间运算关系的式子。
方程:含有未知数的等式叫做方程。
2.方程的建立:根据实际问题,通过设未知数、列方程、解方程来求得未知数的值。
3.方程的特点:(1)有未知数;(2)含有已知数和未知数的等式;(3)通过解方程可以得到未知数的值。
二、知识点讲解1.算式与方程的区别与联系:区别:算式是表示两个或多个数之间的运算关系,而方程则是含有未知数的等式。
联系:方程可以看作是算式的扩展,其中未知数被看作是一个需要求解的变量。
2.建立方程的方法:(1)设未知数:根据实际问题,设定一个或多个未知数。
(2)列方程:根据实际问题中的等量关系,列出含有未知数的等式。
(3)解方程:通过数学方法,求解方程中的未知数的值。
3.方程的解法:(1)去分母:在方程的两边同时乘以各分母的最小公倍数,去掉分母。
(2)去括号:在方程的两边同时加上括号里各系数乘积的和,去掉括号。
(3)移项:把方程的右边变成0,左边变成未知数的系数相加的形式。
(4)合并同类项:把同类项的系数相加,字母和字母的指数不变。
(5)系数化为1:把未知数的系数变成1,求出x的值。
三、例题解析例1. 解下列方程:(1)2x+3=7;(2)5x-7=3x+9;(3)4(2x+3)=7(x-1)+10(2x+3)。
分析:(1)先去括号、移项、合并同类项、系数化为1,得到x=2;(2)先去括号、移项、合并同类项、系数化为1,得到x=7;(3)先去括号、移项、合并同类项、系数化为1,得到x=5。
通过解方程,求得未知数的值。
四、注意事项1.注意运算顺序和符号,避免出现错误的结果。
2.注意解方程的步骤要规范,不要省略必要的步骤。
2023-2024学年人教版七年级数学第三章3.1从算式到方程
![2023-2024学年人教版七年级数学第三章3.1从算式到方程](https://img.taocdn.com/s3/m/d1beef183a3567ec102de2bd960590c69fc3d869.png)
3.1从算式到方程1.理解和掌握一元一次方程的定义.2.能判断一个数是否为方程的解.3.明确方程和等式的关系.4.理解和掌握等式的基本性质.5.能应用等式的基本性质解简单的一元一次方程.1.能根据问题的数量关系列方程.2.培养学生分析问题、解决问题的能力.1.体会一元一次方程作为从实际问题中抽象出的数学模型所带来的方便.2.感受数学源于生活,又应用于生活.【重点】1.能根据实际问题列简单的方程.2.能利用等式的基本性质解简单的一元一次方程.【难点】从应用题中找相等关系列方程.3.1.1一元一次方程1.初步学会寻找问题中的相等关系,列出方程,了解方程的概念.2.理解一元一次方程、方程的解的概念.3.掌握检验某个值是不是方程的解的方法.4.培养学生获取信息的能力.1.通过处理实际问题,让学生体验从算术方法到代数方法的一种进步.2.培养学生根据问题寻找相等关系,根据相等关系列出方程的能力.1.培养学生热爱数学、热爱生活的乐观人生态度.2.培养学生求实的态度和良好的学习习惯.【重点】1.了解一元一次方程及相关概念.2.寻找相等关系,列出方程.【难点】寻找问题中的相等关系,正确地列出方程.【教师准备】多媒体课件(1,2,3,4,5).【学生准备】复习小学学过的方程.导入一:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?你会用算术方法解决这个问题吗?[设计意图]通过问题与生活情境的引入,激发学生的探究欲望与学习热情.导入二:变魔术好玩吗?那我们现在就来试一下:请同学们在练习本上写下一个数,不要说出来,按照老师说的继续做下去,将你刚才写出来的数乘2,再加上4,再除以2,再减去3.好了,现在将你的结果告诉我,我就能说出你开始的时候在练习本上写下的数,神奇吗?学习了本节课的内容之后,同学们一定就可以明白其中的奥秘了![设计意图]通过这个情境的设计,让学生感受到数学的神奇,从而激发学生的好奇心和求知欲,调节了课堂气氛.导入三:卡片显示,观察卡片上的式子,你能填上适当的数吗?卡片上式子分别为:3+□=8,○-2=7,5×?=1,△÷2=3,43=()6.学生先独立思考,然后同桌之间互相交流.[设计意图]由最简单的题目导入,消除学生的心理障碍,体现面向全体学生的课标意识,增加趣味性,调节课堂气氛.活动1:问题探究思路一【课件1】出示教材第78页问题,提出问题:【问题1】路程、时间、速度三者之间的关系如何?在匀速运动过程中,时间、速度、路程之间的关系是时间=路程速度.【问题2】用列表的方法找等量关系,如果设A,B两地间的路程为x km,请你完成下面的表格:路程/km速度/(km/h)时间/h客车卡车【问题3】请找出等量关系,列出方程.设A,B两地间的路程是x km根据客车比卡车早1 h经过B地,可得方程x60-x70=1.【教师说明】我们知道方程是含有未知数的等式.通过本章的学习,我们将能够从上述的方程解出未知数的值x=420,从而求出A,B两地间的路程是420 km.通常情况下,用x,y,z等字母表示未知数,法国数学家笛卡儿是最早这样做的人,我国古代用“天元、地元、人元、物元”等表示未知数.[知识拓展](1)方程中未知数的表示可以使用字母x,也可以使用其他一些字母,如y,z等.通常用字母a,b,c表示已知数.(2)方程中未知数可以有两个或两个以上,如x+y=12,2x-y=z+1等.(3)方程都是等式,但等式不一定是方程,如2+4=6.[设计意图]通过教师的引导和学生的讨论、交流,发现问题中的等量关系,培养学生分析问题、解决问题的能力.思路二1.定义方程,回顾举例.师:大家知道什么叫方程吗?生:含有未知数的等式叫做方程.师:你能举出一些方程的例子吗?学生举例,教师总结.【课件2】判断下列式子是不是方程.(1)1+2=3;(2)x+2>1;(3)1+2x=4; (4)x+y=2;(5)x2-1;(6)x2=x+2; (7) x+3-5; (8)x=8.2.根据题意列方程.【课件3】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h 经过B地.A,B两地间的路程是多少?【师生活动】学生分组活动,讨论看能否用算术方法解,交流后考虑用方程如何解决,最后小组内同学交流.教师可以参与到学生中去,要关注学生解决问题的思路.在用算术法解时,是否遇到了麻烦?用方程可以轻松解决吗?让学生感受方程在解决实际问题时的优势.解:设A,B两地间的路程是x km,根据客车比卡车早1 h经过B地,可得方程x60-x70=1.【建议】在这一过程中,教师还应当注意培养学生的发散思维和创新能力,可以让他们进行小组间的交流,也可以根据题意画一个表格讨论,看一看各小组所列的方程是否一致,以开拓学生的思路,从而掌握更多的解题方法.【设计意图】通过对列方程解决问题的学习,使学生感受方程方法和算术方法之间的差异,为进一步学习方程做准备.活动2:归纳列方程的步骤思路一学生先说一说,然后教师归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母表示);(2)根据问题中的相等关系,列出方程.【比较】比较列算式和列方程两种方式的特点,建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数表示计算程序,依据是问题中的数量关系;列方程:可用未知数表示相等关系,依据是问题中的等量关系.【思考】对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个等量关系?可考虑按以下的顺序进行:(1)学生独立思考;(2)小组合作交流;(3)全班交流.【试一试】【课件4】小雨、小思的年龄和是25岁.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?在学生回答的基础上,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示,由于这两个不同的式子表示的是同一个量,因此我们又可以得到25-x=2x-8.这样就得到了一个方程.[设计意图]通过对问题解决方法的学习,进一步使学生感受列方程的一般步骤,即先找等量关系,再列方程.思路二【问题1】你能谈谈列方程过程中的思路和方法吗?你是怎样一步步列出方程的?学生讨论交流,然后回答.【问题2】算术法和方程法有什么不同?你能谈谈你的认识吗?两种方法的比较:从形式上看:算术法与方程法有什么不同的情况出现?从思路上看:刚才做题的想法有什么不同?(教师根据学生口述列表,便于比较)用方程解用算术方法解形式上:未知数用字母表示,参加列式;思路上:根据题意找出数量间的相等关系,列出含有未知数的等式形式上:未知数不参加列式;思路上:根据题中已知数和未知数间的关系,确定解答步骤,再列式计算【强调】在两个方面的区别中,未知数能不能参加列式决定了怎样分析,并且决定了列式的不同特点.学生讨论交流后回答时,教师不必苛求学生回答得很全面,只要学生能谈出一两点体会,教师都应当加以鼓励.[设计意图]通过对思路的归纳、总结,使学生感受列方程的一般过程和思路,体验列方程的过程,培养学生分析、解决问题的能力.活动3:学习一元一次方程的概念【课件5】(教材例1)根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700 h,预计每月再使用150 h,经过多少月这台计算机的使用时间达到规定的检修时间2450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?对于基础比较差的学生,教师可以做如下提示:(1)选择一个未知数,设为x.(2)对于这三个问题,分别考虑:用含x的式子表示正方形的周长;用含x的式子表示这台计算机x个月的使用时间;用含x的式子分别表示男生和女生的人数.(3)找到问题中的相等关系列出方程.让学生观察并讨论所列方程等号两边式子的关系,教师归纳:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量.【问题1】以上各题,你能用两种不同的方法来表示另一个量,再列出方程吗?【师生活动】让学生小组讨论,然后分组汇报交流.解题过程略.[设计意图]通过学生的自主尝试,激发学生的学习热情和探究欲望,培养学生的创新能力和分析、解决问题的能力.【问题2】上述方程具有什么样的特点?【师生活动】在学生观察、讨论上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.“一元”:一个未知数.“一次”:未知数的次数是1.[知识拓展]在判断一个方程是不是一元一次方程时,要注意:△必须含有一个未知数;△未知数的次数是1;△分母中不含有未知数.如果方程不是最简形式,先变形,化成最简形式后再判断.【问题3】你认为该怎样进行估算?【师生活动】可以采用“尝试——发现——归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以用列表的方法进行尝试,也可以像下面那样按程序进行尝试.在此基础上给出概念:解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解.求方程解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边是否相等.[知识拓展](1)判断一个数是不是方程的解,可把这个数代入方程的两边,若方程的两边相等,则该数是方程的解;反之,则不是方程的解.(2)方程的解与解方程是两个不同的概念,方程的解是一个结果,是具体的数值,而解方程是一个变形的过程.[设计意图]通过学生的讨论、交流与归纳,得出一元一次方程的概念,使学生感受列方程的过程,树立建模思想.思路二【课件5】教师出示教材例1.【师生活动】学生分组交流讨论完成,教师巡视,教师在这一过程中应当关注学生能否恰当地设未知数,能否根据题意正确找出等量关系列出方程,必要时教师可参与到小组当中,和学生一起探讨交流,也可以给学生适当的提示与点拨.师:像上边这样的方程,你能给它起一个名字吗?你是从哪个角度给它命名的?学生阅读教材,体验方程的命名方式,并说一说什么是一元一次方程.教师进一步提出问题:想一想,以上几个问题你是怎样列出方程的?可以把你的思路过程表示出来吗?【归纳】分析实际问题中的等量关系,利用其中的相等关系列出方程是用数学知识解决实际问题的一种方法.实际问题一元一次方程对于问题(1),我们已经列出方程,可以发现当x=6时,4x的值是24,这时方程4x=24的两边相等,则x=6叫做方程4x=24的解.师:解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解.你能求出1700+150x= 2450的解吗?我们可以根据下面的流程图求解,给x一个值,代入方程,看一看方程两边是否相等,不相等再换一个试一试,依次进行下去,直到找到方程的解为止.【思考】这里是不是单纯盲目地去“碰”呢?师生讨论解决.[设计意图]通过对列方程的思路的进一步学习,使学生掌握列方程的一般步骤,培养学生分析、解决问题的能力,能够根据所列方程认识一元一次方程的有关概念.1.方程.准确把握方程的两个条件:一、必须含有未知数;二、必须是等式.两者缺一不可.2.一元一次方程.从三个方面理解一元一次方程的概念:一、一元一次方程首先属于整式方程,即方程两边不含分母,或虽含分母,但分母中不能有未知数.二、一元,即方程中只含有一个未知数,此未知数可以出现多次,但只能是同一未知数,同一个方程中不能出现两个不同的未知数.三、一次,未知数的次数是一次,指的是化为一般形式ax+b=0(a≠0)后,未知数的次数是一次.3.方程的解和解方程.这是两个不同的概念,方程的解是指使方程两边相等的未知数的值,具有名词性,而解方程是求方程解的过程,具有动词性.1.在下列式子:△2x -1;△2x +1=3x ;△|π-3|=π-3;△t +1=3中,等式有 ,方程有 .(填入式子的序号)解析:一元一次方程必须满足三个条件:(1)未知数的次数是1;(2)是整式方程;(3)只含有一个未知数.等式有△△△,方程有△△.答案:△△△ △△2.根据“x 的2倍与5的和比x 的12小10”可列方程为 . 解析:由题意列方程为2x +5=x2-10.故填2x +5=x2-10. 3.x =2是下列方程的解吗?(1)3x +(10-x )=20; (2)2x 2+6=7x.解析:把x =2代入上述方程,看等号左右两边是否相等. 解:(1)x =2不是3x +(10-x )=20的解. (2)x =2是方程2x 2+6=7x 的解.3.1.1 一元一次方程活动1:问题探究 方程的定义活动2:归纳列方程的步骤活动3:学习一元一次方程的概念 例1一元一次方程 一元一次方程的解一、教材作业 【必做题】教材第80页练习. 【选做题】教材第83页习题3.1第1,2,3题. 二、课后作业 【基础巩固】1.下列式子是方程的有 ( ) 35+24=59;3x -18>33;2x -5=0;2x +15=0.A .1个 B.2个 C.3个 D.4个2.小明准备为希望工程捐款,他现在有20元,以后每月打算存 10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是 ( ) A.10x +20=100 B.10x -20=100 C.20-10x =100D.20x+10=1003.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根据题意,下面所列方程正确的是()A.x+5(12-x)=48B.x+5(x-12)=48C.x+12(x-5)=48D.5x+(12-x)=484.检验下列各小题后面括号里的数是不是它前面方程的解.(1)3y-1=2y+1(y=2;y=4);(2)3(x+1)=2x-1(x=2;x=-4).【能力提升】5.希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中正确的是()A.2(x-1)+x=49B.2(x+1)+x=49C.x-1+2x=49D.x+1+2x=496.甲、乙两数的和为10,且甲数比乙数大2,求甲、乙两数,正确的方程是()A.设乙数为x,则(x+2)+x=10B.设乙数为x,则(x-2)+x=10C.设甲数为x,则(x+2)+x=10D.设甲数为x,则x-2=107.为创建园林城市,某城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.6(x+22)=7(x-1)B.6(x+22-1)=7(x-1)C.6(x+22-1)=7xD.6(x+22)=7x【拓展探究】8.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圈(1)中,属于一次方程的序号填入圈(2)中,既属于一元方程又属于一次方程的序号填入两个圈的公共部分.△3x+5=9;△x2+4x+4=0;△2x+3y=5;△x2+y=0;△x-y+z=8;△xy=-1.【答案与解析】1.B(解析:35+24=59,是等式但不含未知数,所以不是方程;3x-18>33,含未知数但不是等式,所以+15=0都是含有未知数的等式,所以都是方程.故选B.)不是方程;2x-5=0与2x2.A(解析:由题意知x月存10x元,又现在有20元,因此可列方程10x+20=100.故选A.)3.A(解析:1元纸币为x 张,那么5元纸币为(12-x )张,所以x +5(12-x )=48.故选A .)4.解析:把每个方程后面的两个数分别代入原方程,如果左右两边相等,那么这个数就是方程的解,反之则不是.解:(1)把y =2代入原方程的左、右两边,左边=3×2-1=5,右边=2×2+1=5,左边=右边,所以y =2是方程3y -1=2y +1的解;把y =4代入原方程的左、右两边,左边=3×4-1=11,右边=2×4+1=9,左边≠右边,所以y =4不是方程3y -1=2y +1的解. (2)把x =2代入原方程的左、右两边,左边=3×(2+1)=9,右边=2×2-1=3,左边≠右边,所以x =2不是方程3(x +1)=2x -1的解;把x = - 4代入原方程的左、右两边,左边=3×(- 4+1)=- 9,右边=2×(- 4) -1=- 9,左边=右边,所以x =- 4是方程3(x +1)=2x -1的解.5.A(解析:由题意得女生有2(x -1)人,根据题意得2(x -1)+x =49.故选A .)6.A(解析:设乙数为x ,根据甲数比乙数大2,则甲数为x +2,根据题意得出(x +2)+x =10.故选A .)7.B(解析:根据首、尾两端均栽上树,每间隔6米栽一棵,则缺少22棵,可知这一段公路长为6(x +22-1);若每隔7米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为7(x -1),根据公路的长度不变列出方程即可.)8.解析:一元方程指的是含有一个未知数的方程;一次方程指的是未知数的次数是1的方程;而一元一次方程指的是含有一个未知数,并且未知数的次数是1的方程.解:如图所示.这节课在设计上重点体现学生的自主探索.首先在引入时,问题设计体现出教师的教学活动是建立在学生认识发展水平和已有的知识经验的基础上,探究过程在对教材例题的处理上,让学生探索方程解法与算术解法的优劣,从而让学生在自主探索中进行比较,自己得出结论,较传统的教学活动而言,体现了学生的主体地位,着重于学生的探索活动,强调了学生的自我发现在方程的解的概念这部分的处理上的重要性.1.在教学的过程中,教师只局限于教材中的问题和例题,限制了学生的思维.2.对于一元一次方程的概念的分析和实际问题中的等量关系的确定,教师没有重点指导.3.在探索方程的解的过程中,没有让学生主动去探索尝试.教师要能灵活地运用教材,并加以创造.可以设计一些其他的应用问题,让学生寻找等量关系.一元一次方程的概念学生第一次接触到,可以让学生通过判断、辨析等手段加以强化.明确一元一次方程的“一元”和“一次”两个重要的特点.在探索方程解的时候,一定要让学生自己去想、小组合作去探究方程的解,教师一定要相信学生,给学生自主思考的空间和时间,让学生自己得到答案.练习(教材第80页)1.解:设沿跑道跑x 周可以跑3000 m,则400x =3000.2.解:设甲种铅笔买了x 支,则乙种铅笔买了(20-x )支,所以0.3x +0.6(20-x )=9.3.解:设上底为x cm,则下底为(x +2)cm,所以5(x+x+2)2=40,即5(2x+2)2=40.4.解:设小水杯的单价为x元,则大水杯的单价为(x+5)元,根据题意得10(x+5)=15x.下列各式中,是方程的为()A.3=5-2B.3+4xC.5a-6=3D.2x+3>4x-5〔解析〕本题考查方程的定义.A选项为一个等式,但等式中不含有未知数,故不是方程;B选项含有未知数,但不是一个等式,也不是方程;D选项含有未知数,但不是等式,故也不是方程.故选C.〔解题策略〕方程有两个条件:(1)式子中必须含有未知数;(2)式子必须是等式.检验0,1,2三个数是否为方程3(x+1)=2(2x+1)的解.〔解析〕判断一个数是不是原方程的解,必须用这个数替换方程中的未知数,并计算方程左、右两边的值是否相等.解:将x=2分别代入原方程左、右两边,左边=3×(2+1)=9,右边=2×(2×2+1)=10.左边≠右边,所以x=2不是原方程的解.将x=1分别代入原方程左、右两边,左边=3×(1+1)=6,右边=2×(2×1+1)=6.左边=右边,所以x=1是原方程的解.将x=0分别代入原方程左、右两边,左边=3×(0+1)=3,右边=2×(2×0+1)=2.左边≠右边,所以x=0不是原方程的解.〔解题策略〕使方程左、右两边相等的未知数的值称为方程的解.判断一个数是不是原方程的解,直接根据条件代入方程的两边进行计算即可.3.1.2等式的性质1.了解等式的两条性质.2.会用等式的性质解简单的一元一次方程.3.培养观察、分析、概括及逻辑思维能力.1.让学生经历知识的形成过程,培养学生自主探索和相互合作的能力.2.初步体验解方程的化归思想.1.感受数学与生活的联系,认识数学来源于生活,又应用于生活.2.激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯.【重点】理解和应用等式的性质.【难点】应用等式的性质解简单的一元一次方程.【教师准备】多媒体课件、天平、砝码、等质量木块若干.【学生准备】复习一元一次方程的定义,每小组准备天平、砝码、等质量木块若干.导入一:师:哪位同学能谈谈上节课我们学习了哪些内容?学生思考后回答.用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.23-0.13y=0.47y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,让学生进行简单尝试.师:通过估算的方法,我们可以求得方程的解,可是我们也看到,通过估算求解,需要通过多次尝试才能得到正确的答案,而且有的方程要利用这种方法求解很困难.有没有相对简单的方法,使我们可以获得方程的解呢?现在我们就来学习解方程.[设计意图]通过对上节课内容的回忆和教师提出的问题,引发学生的思考,激发学生的探究欲望,进而引出本节课的内容.导入二:小明和王力同学玩跷跷板,当他们位于跷跷板两端的时候,跷跷板恰好处于平衡的位置.这时,李强和小丽也来了,如果他们二人的体重相等,他们这时也分别坐到跷跷板两端,这时候是否仍然平衡?[设计意图]通过情境教学,让学生初步感受等式的性质,激发学生的学习兴趣,让学生产生求知欲望,从而进行下面的学习.活动1:等式的性质思路一1.实验演示.教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按如图所示的方法演示实验.(教师可以进行两次不同物体的实验,学生独立思考,小组交流,代表发言.)2.集体归纳.在学生叙述发现的规律后,教师进一步引导:等式就像平的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.提出问题1:你能用文字来叙述等式的这个性质吗?等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.提出问题2:等式一般可以用a=b来表示,等式的性质1怎样用式子来表示?如果a=b,那么a±c=b±c.字母a,b,c可以表示具体的数,也可以表示一个式子.3.巩固性质1.(教材例2)利用等式的性质解方程:(1)x+7=26.〔解析〕所谓“解方程”,就是要求出方程:的解“x=?”.因此我们需要把方程转化为x=a(a 为常数)的形式.怎样才能把方程x+7=26转化为x=a的形式呢?解:方程两边减7,得:x+7-7=26-7,于是x=19.【思考1】如果x-2=3,那么x-2+2=3+2,依据是,即x=;【思考2】如果x+3=-10,那么x=;依据是;【思考3】如果-2x-9=-12,那么-2x=,依据是;【思考4】如果2m+n=p+2m,那么n=,依据.4.观察下列实验,你又能发现什么规律?你能用实验加以验证吗?在学生观察上图时,必须注意图上两个方向的箭头所表示的含义,观察后再让学生用实验验证,然后让学生用两种语言表示等式的性质2.文字语言:等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.符号语言:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac =bc.(教材例2)利用等式的性质解方程:(2)-5x=20.解:方程两边同除以-5,得:-5x -5=20-5,于是x=-4.【思考1】如果3x=5,那么3x×(-2)=5×(-2),即-6x=;【思考2】如果-2x=6,那么x=;【思考3】已知x=3y,那么-5x=;【思考4】已知-13x=2,那么x=;。
七年级数学上册第三章一元一次方程《从算式到方程:一元一次方程》
![七年级数学上册第三章一元一次方程《从算式到方程:一元一次方程》](https://img.taocdn.com/s3/m/9d7bad5c02d8ce2f0066f5335a8102d277a26101.png)
听课记录:新2024秋季七年级人教版数学上册第三章一元一次方程《从算式到方程:一元一次方程》1. 教学目标(核心素养)教学目标:1.知识与技能:学生能够理解从算式到方程的自然过渡,掌握一元一次方程的基本概念和表示方法,能够识别并构建一元一次方程。
2.过程与方法:通过具体实例,引导学生经历从实际问题抽象出数学模型(即一元一次方程)的过程,培养学生的抽象思维能力和数学建模能力。
3.情感态度与价值观:激发学生对数学的兴趣,体会数学与实际生活的紧密联系,培养解决问题的信心和毅力。
核心素养:•数学抽象:从具体情境中抽象出一元一次方程的数学模型。
•数学建模:运用数学知识解决实际问题,建立一元一次方程。
•逻辑推理:理解一元一次方程的结构和性质,进行简单的逻辑推理。
2. 导入教师行为:•教师展示一个贴近学生生活的实际问题,如“小明买了5个苹果,每个苹果的价格是x元,他一共花了多少钱?”•引导学生用算式表示这个问题,即“5x元”。
•接着,教师提出:“如果我们知道小明一共花了10元,那么我们可以怎样表示这个问题呢?”引导学生思考并引出方程“5x = 10”。
学生活动:•学生积极思考,用算式“5x”表示苹果的总价。
•在教师的引导下,学生理解到当知道总价时,可以用“=”连接已知数和未知数,形成方程“5x = 10”。
过程点评:导入环节通过贴近生活的实例,有效地激发了学生的兴趣,自然地从算式过渡到方程,为学生理解一元一次方程的概念奠定了基础。
3. 教学过程3.1 一元一次方程的概念教师行为:•讲解一元一次方程的定义:只含有一个未知数,且未知数的次数都是1的方程叫做一元一次方程。
•举例说明,如“2x + 3 = 7”,“-5y = 10”等都是一元一次方程。
学生活动:•认真听讲,理解一元一次方程的定义。
•尝试自己判断给出的式子是否为一元一次方程。
过程点评:教师讲解清晰,通过举例帮助学生更好地理解一元一次方程的概念,学生参与度高,对概念有了初步的认识。
初中数学从算式到方程
![初中数学从算式到方程](https://img.taocdn.com/s3/m/5998b18384868762caaed5e8.png)
= ,= ,c≠0,则(只列方程,不必求解)分析:2004年度,英才中学具有本科学历的教师有120名,比五年前增加20%,因此2004年具有本科学历的教师人数,又是五年前具有本科学历的教师人数的(1+20%)倍.解:设五年前英才中学有 x名教师具有本科学历,列方程得:x(1+20%)=120例3、根据下列问题,列出方程,不必求解.(1)把若干本书发给学生,如果每人发4本,还剩下25本;如果每人发5本,还差5本,问学生有多少人?(2)某班50名学生准备集体去看电影,电影票中有1.5元的和2元的,买电影票共花88元,问这两种电影票应各买几张?分析:(1)如果每人发4本,还剩下25本,即书数=学生数×4+25;如果每人发5本,还差5本,即书数=学生数×5-5.(2)共50名学生,因此共买50张共花88元,即两种票的钱数之和为88元.解:(1)设学生x人,列方程:4x+25=5x-5(2)设买了1.5元的票x张,则2元的票买了(50-x)张.列方程:1.5x+2(50-x)=88例4、小明测量他家的客厅,长比宽多,已知长为6米,宽多少米?(只列方程,不必求解)错解一:设宽为 x米,列方程:错解二:设宽为 x米,列方程:剖析:这里未弄清“增加”的含义而出错.长比宽多的部分是宽的.正确解:设宽为 x米,列方程例5、根据等式的性质填空.(1)已知a=c,则2a-b=________(2)已知m=n,则5+m=_________分析:(1)比较两个等式左边的变化“a→2a-b”,是a的2倍减b,因此右边应为c的2倍减b.(2)m→5+m,相当于等式的左边加5,因此右边也应该加5.解:(1)因为a=c,所以2a=2c,所以2a-b=2c-b;(2)因为m=n,所以5+m=5+n.例6、利用等式的性质解方程(1)x+5=-2 (2)-2x-3=25 (3)分析:解方程就是求未知数 x的值,即写成“x=?”的形式,因此,利用等式的性质,使等式左边的常数能抵消,必须加左边常数的相反数;右边的未知数能抵消,就要加右边未知数的相反数.解:(1)方程两边都加-5(或都减去5)x+5-5=-2-5合并得:x=-7(2)方程两边都加3,得:-2x-3+3=25+3合并得:-2x=28方程两边都除以-2(或两边都乘以),得:约分得:x=-14(3)方程两边都加-2x,得:例7、判断下列变形是否正确(1)若ac=bc,则a=b(2)若a+x=b,则x=a+b(3)若(4)若m(a2+1)=n(a2+1),则m=n分析:初步看起来,好象都是正确的,但根据等式的性质不难发现,( 1)中的变形是两边都除以了c,当c=0时,显然不符合等式的性质2,是错误的;(2)中的变形,是要抵消左边的a,应两边都减去a,但右边却加上了a,也是错误的;想一想,(3)的变形过程符合等式的性质2吗?注意r=0时呢?由于a2是非负数,因为a2+1是正数,(4)的变形过程是等式两边都除以(a2+1),符合等式的性质2.解:(1)× (2)× (3)× (4)√- 返回 -。
七年级数学从算式到方程(wpa)
![七年级数学从算式到方程(wpa)](https://img.taocdn.com/s3/m/d766a901e418964bcf84b9d528ea81c758f52e80.png)
代入法解二元一次方程组
代入法的基本思想
通过代入的方式,将二元一次方 程组转化为一元一次方程进行求
解。
整体代入法
将某个未知数的表达式整体代入 另一个方程中,得到一个关于该 未知数的一元一次方程,解出该 未知数后,再代入原方程求出另
一个未知数的值。
部分代入法
将某个未知数的部分表达式代入 另一个方程中,得到一个关于该 未知数的一元一次方程,解出该 未知数后,再代入原方程求出另
消元法解二元一次方程组
01
消元法的基本思想
通过加减消元或代入消元,将二元一次方程组转化为一元一次方程进行
求解。
02 03
加减消元法
将两个方程相加或相减,消去其中一个未知数,得到一个关于另一个未 知数的一元一次方程,解出该未知数后,再代入原方程求出另一个未知 数的值。
代入消元法
将一个方程变形,用含有一个未知数的代数式表示另一个未知数,然后 代入另一个方程中,得到一个关于该未知数的一元一次方程,解出该未 知数后,再代入原方程求出另一个未知数的值。
2. 将常数项移到等式右边,得到 $ax^2 + bx = -c$。
配方法解一元二次方程
3. 等式两边同时除以 $a$($a neq 0$),得到 $x^2 + frac{b}{a}x = frac{c}{a}$。
5. 对等式两边直接开平方,解得 $x + frac{b}{2a} = pm sqrt{frac{b^2 4ac}{4a^2}}$。
THANKS FOR WATCHING
感谢您的观看
区别
算式不含有未知数,而方程含有未知数;算式表示一种运算 过程,而方程表示一种相等关系。
02 一元一次方程解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50 王家庄 10:00
解:
70 翠湖 秀水 15:00
青山 13:00
50 70 3 50 2 3 60 50 230 (千米)
答:王家庄到翠湖的路程是230千米.
X千米
50 王家庄 10:00 青山 13:00 翠湖 70 秀水 15:00
若设王家庄到翠湖的路程为X千米,那么: 王家庄距青山 (X-50) 千米,从王家庄到青山时间 速度 王家庄距秀水(x+70) 千米,从王家庄到秀水时间
50 70
王家庄 10:00
青山 13:00
翠湖
秀水 15:00
?
对于上面的问题,你还 能列出其他方程吗?如果能, 你依据的是哪个相等关系?
问题1 世界上最大的动物是蓝鲸.一只 蓝鲸重124吨,比一头大象体重的25倍 少1吨.问这头大象重几吨?
蓝鲸
问题1 世界上最大的动物是蓝鲸.一只 蓝鲸重124吨,比一头大象体重的25倍 少1吨.问这头大象重几吨?
若已知大象的重量为 x 吨,那么蓝鲸的重 (25x-1) 量为 吨。
25x-1=124
蓝鲸
25x-1=124
x 50 3
方程
=
x 50 5
含有未知数的等式.
方程
一元一 次方程
只含有一个未知数(元)x, 未知数x的 指数都是1次的方程.
判断下列各式是不是方程?
14 x 3 × 23 4 7 × 32x 1 3 × 4 2 3x √ 56a 8 3 √ 63a 2b √ x 1
15:00
70 秀水
问题 图中的汽车匀速行驶途经王家庄、 青山、秀水三地的时间如表所示。翠湖 在青山、秀水两地之间,距青山50千米, 距秀水70千米。王家庄到翠湖的路程有 多远?
地 名 王家庄 青 山 秀 水
50
时 间 10:00 13:00 15:00
70
王家庄 10:00
青山 13:00
翠湖
秀水 15:00
2、方程 3x 2 6 是一元一次方程,则 3 a=_____,3a-3= _____ 2 3、方程(a+6)x2 +3x-8=7是关于x的一元一次方 程,则a= _____ -6 。
a 1
1. 在 ① 2x+3y-1;②1+7=15-8+1;③1-x=x+1 x+2y=3中方程有( )个. A.1 B.2
2,某数y的25%与15的和等于它的45%,列方程为:_
3,爸爸今年37岁,是儿子年龄的3倍还多1岁,设儿 子为x岁,列方程为:______
数学应用
• 例1 根据下列条件列出方程: (1)某数比它大4倍小3; (2)某数的1/3与15的差的3倍等于2; (3)比某数的5倍大2 的数是17; (4)某数的3/4与它的1/2的和为5. • 提示:做上面的题时请注意怎样设未知数, 怎样建立等量关系,特别注意关键字“大、 小、多、少”,“和、差、倍、分”的含义.
练习1:判断下列方程是不是一元一次方程:
(1)2x+3y=0
(2) x2 –3x+2=0
(
(
)
)
(3)x+1=2x-5
(
)
)
(4)0.32m-(3+0.02m)=0.7 (
1.下列各式中,哪些是一元一次方程? (1) 5x=0 (2)1+3x
(3)y² =4+y
1 4X ( 5) X
(4)x+y=5 (6) 3m+2=1–m
a
④
C.3
D.4
2.若方程3 x - 4=5(a已知,x未知)是一元一次方 程,则a等于( ) A.任意有理数 B.0 C.1 D.0或1
3. 等式 (a-2)x2+ax+1=0 是关于 x 的一元一次方程, 求a的值。
一,判断题
1,含有未知数的式子,叫做方程
( )
)
2.未知数的次数都是一次的方程是一元一次方程.( 二,填空 1,某数x的½与3的差是7,列方程为:_______
从算式到方程
1、列式表示:
a +5 2x+10 1 -m-n (3)m的三分之一减去n的差; 3 (4)比a的3倍大5的数; 3a +5 1 (5)比b的一半小7的数。 - b -7 2
(1)比a大5的数; (2)x的2倍与10的和;
ห้องสมุดไป่ตู้ 名
王家庄 青 山
时 间
10:00 13:00
秀 水
50 王家庄 青山 翠湖
解:设某数为x,则 (1)4x-3=x (2)(1/3x-15)×3=2 (3)5x+2=17 (4)3/4x+1/2x=5
课堂作业: P84 习题3.1 第1题 (只列方程,不求解).
x 70 速度 千米/小时 5
3 5
x 50 3 千米/小时
小时, 小时,
根据汽车是匀速行使的,你可以得到一个什么样的等式呢?
x 50 3
=
x 70 5
问题2 图中的汽车匀速行驶途经王家庄、 青山、秀水三地的时间如表所示。翠湖 在青山、秀水两地之间,距青山50千米, 距秀水70千米。王家庄到翠湖的路程有 多远?