油层地层压力.
采油厂地质技术知识
一、地质基础知识:1、什么叫地静压力、原始地层压力、饱和压力、流动压力?答:地静压力:由于上覆地层重量造成的压力称为地静压力。
原始地层压力:在油层未开采前,从探井中测得的地层中部压力叫原始地层压力。
饱和压力:在地层条件下,当压力下降到使天然气开始从原油中分离出来时的压力叫饱和压力。
流动压力:油井在正常生产时测得的油层中部压力叫流动压力。
2、什么叫生产压差、地饱压差、流饱压差、注水压差、总压差?答:生产压差:静压(即目前地层压力)与油井生产时测得的井底流压的差值。
地饱压差:目前地层压力与原始饱和压力的差值叫地饱压差。
流饱压差:流动压力与饱和压力的差值叫流饱压差。
注水压差:注水井注水时的井底压力与地层压力的差值叫注水压差。
总压差:原始地层压力与目前地层压力的差值叫总压差。
3、什么叫采油速度、采出程度、含水上升率、含水上升速度、采油强度?答:采油速度:是指年产油量与其相应动用的地质储量比值的百分数。
采出程度:累积采油量与动用地质储量比值的百分数。
含水上升率:是指每采出1%地质储量的含水上升百分数。
含水上升速度:是指只与时间有关而与采油速度无关的含水上升数值。
采油强度:单位油层有效厚度的日产油量。
4、什么叫采油指数、比采油指数?答:采油指数:单位生产压差下的日产油量。
比采油指数:单位生产压差下每米有效厚度的日产油量。
5、什么叫水驱指数、平面突进系数?答:水驱指数是指每采出1吨油在地下的存水量单位为方/吨。
边水或注入水舌进时最大的水线推进距离与平均水线推进距离之比,叫平面突进系数。
6、什么叫注采比?答:注采比是指注入剂所占地下体积与采出物(油、气、水)所占地下体积之比值。
7、什么叫累积亏空体积?答:累积亏空体积是指累积注入量所占地下体积与采出物(油、气、水)所占地下体积之差。
8、什么叫层间、层内平面矛盾?答:层间矛盾:非均质多油层油田笼统注水后,由于高中低渗透层的差异,各层在吸水能力、水线推进速度、地层压力、采油速度和水淹状况等方面产生的差异叫层间矛盾。
第5章 地层压力和地层温度
ρ—流体密度,。
四、原始地层压力的来源
1. 静水压头:当油层有供水区时,原始地层压力与供水区水压头和 泄水区的高低有关;如果无供水区,则与油层含水部分所具有的 压头有关。
2. 地静压力:上覆岩层或沉积物重量所形成的压力。地静压力对地 层压力的影响大小,将视储层是否封闭的程度而定。
3. 天然气补给:油气藏形成之后,沉积物或岩层中的有机物会继续 转变成烃类或非烃类气体,当油气藏处于被隔绝状态时这些天然 气的聚集会提高地层压力。 4. 构造应力:地壳运动所产生的构造应力,会使孔隙缩小压力升高; 也可能因断层和裂缝的产生,为油、气的逸散构成通道,使已有 压力下降。 5. 地温:总的趋势是岩层埋藏深度越大,其温度越高。温度升高, 会使孔隙流体发生体积膨胀,也增高地层压力。
7、8与封闭性没有关系
(2)热力作用和生物化学作用
• 热力作用:世界钻探经验表明,异常高压地带总是伴随着 异常高温地带出现,温度对压力的影响是不容忽视的。在 一个封闭系统中,温度增加将引起岩石和岩石孔隙中流体 的膨胀,从而使该系统的压力增大。
• 温度增加还可以引起岩石中流体相态的变化,析出二氧化 碳等气相物质。高温能使油页岩中的干酪根热裂解,生成 烃类气体。在封闭的地质环境中,这些气体将大大提高该 系统的压力而促使该系统高异常地层压力的形成。
三、折算压力
在油气藏开发过程中,为了正确掌握油层压力 大小、分布及其变化规律,必须消除构造因素(即 油层埋藏深度对油层压力的影响)和流体密度不同 对地层压力的影响,以便于比较同层或不同层压力 的高低,因而提出折算地层压力的概念。
人们往往习惯地认为地下流体是由地层压力高 的地方流向地层压力低的地方,然而,实际情况是 怎样的呢?现在用一个例子来说明。
地层压力
地层压力(formation pressure)是指由于沉积物的压实作用,地层中孔隙流体(油、气、水)所承受的压力,又称之孔隙流体压力(pore fluid pressure)或孔隙压力(pore pressure)。
正常压实情况下,孔隙流体压力与静水压力一致,其大小取决于流体的密度和液柱的垂直高度,凡是偏离静水压力的流体压力即称之为异常地层压力(abnormal pres.sure),简称异常压力。
孔隙流体压力低于静水压力时称为异常低压或欠压,这种现象主要发现于某些致密气层砂岩和遭受较强烈剥蚀的盆地。
孔隙流体压力高于静水压力时称为异常高压或超压,其上限为地层破裂压力(相当于最小水平应力),可接近甚至达到上覆地层压力。
地层压力分类常用的指标是地层压力梯度(单位长度内随深度的地层压力增量,单位为MPa/km)和压力系数(实际地层压力与静水压力之比)。
本文来自: 博研石油论坛详细出处参考/thread-27166-1-5-1.html压力系数:指实测地层压力与同深度静水压力之比值。
压力系数是衡量地层压力是否正常的一个指标。
压力系数为0.8~1.2为正常压力,大于1.2称高压异常,低于0.8为低压异常。
摘自《油气田开发常用名词解释》压力梯度:首先理解什么是梯度:假设体系中某处的物理参数(如温度、速度、浓度等)为w,在与其垂直距离的dy处该参数为w+dw,则其变化称为该物理参数的梯度,也即该物理参数的变化率。
如果参数为速度、浓度或温度,则分别称为速度梯度、浓度梯度或温度梯度。
当涉及到压力的变化率时,即为压力梯度。
区别之处就在于,压力系数为衡量地层压力是否正常的一个指标,压力梯度为压力的变化率。
压力系数就是实际地层压力与同深度静水压力之比。
压力梯度即地层压力随深度的变化率。
地层的压力系数等于从地面算起,地层深度每增加10米时压力的增量。
压力梯度是指地层压力随地层深度的变化率。
储集层的基本特征是具孔隙性和渗透性,其孔隙渗透性的好坏、分布规律是控制地下油气分布状况、油气储量及产量的主要因素。
地层压力预测
t c ( z) t o e z
k
式中,t0为顶部泥岩层段的时差值,k为时差随深度的变化率, 根据最小平方拟合原理得到此区域的k和t0值,z为深度。 ⑵建立速度异常与地层压力之间的关系及预测地层压力 实际测量值与趋势线预测值之间的差可用来计算地层压力。 t t c z t 0 e z k
•低产
•泥浆漏失
6、油(气)藏压力 油(气)藏压力也称为油层压力或地 层压力 p R 是指油气层中,孔隙中流体所 承受的压力。油层压力的大小,表明了 地层内部潜在能量的大小。也称孔隙流 体压力。 在油气开采过程中,地层压力是驱油 动力。
油(气)藏压力也存在表压和绝对压力之分:
p p gauge pair
pair
p
w 1.0g/cm3
Gw 9.8MPa/km
D
pw
pw pair w gD
=0.101+1.09.81
=9.9MPa
2. 骨架应力
Skeleton
颗粒压力 基质压力
pf
D
固相压力
ps pair s gD
•s : 骨架密度
ps pair s gD
油(气)藏压力也存在表压和绝对压力之分:
p p gauge pair
油藏条件
油藏是指油在 单一圈闭中具 有同一压力系 统的基本聚集。 如果在一个圈 闭中只聚集了 石油,称为油 藏;只聚集了 天然气,称为 气藏。
Oil
储集层 构成要素 盖层
遮挡物
1.静水压力
静水压力或者静水柱压 力.定义为某一深度D处, 由岩石孔隙中流体的重 量产生的压力,也称为流 体压力。
关于压力及测试与分析
第一节 地层压力预测 第二节 钻杆测试原理与方法 第三节 油气藏试井评价技术
油气藏动态分析: 油井压力变化分析
3.2.1油井压力变化分析
三、流压变化应采取的措施
2.低流压情况下的措施
①静压合理,抽吸参数偏大的措施:下调 参数、换小泵、间歇抽油; ②静压高,近井地层渗流条件不好的措施: 提高抽吸参数; ③静压低的措施:加强注水、下调油井工 作参数。
3.2.1油井压力变化分析
谢谢欣赏
3.井底流动压力
定义:指油井在正产生产时所测得的油层中部 压力,也是流体从油层中渗流到井底后的剩余 压力,简称流压,通常用Pwf表示。
3.2.1油井压力变化分析
一、与压力有关的概念
4.油田平均地层压力
定义:指每一个独立的开发区内,地层压力的 平均值。它反映了油层总体上地层能量的大小。
pK
pK1
pK2 pK3 ...... pKn n
3.2.1油井压力变化分析
二、压力变化分析
1.地层压力变化
地层压力变化分析,主要分析注采比是否合 理,以及天然能量发育及利用情况。
油层压力下降:注采比小于1,出现亏空,适 当提高注入量,以达到注采平衡。
油层压力上升:注采比大于1,适当提高采液 量或者减少注水量。
3.2.1油井压力变化分析
二、压力变化分析
1.地层压力变化
(1)地层压力上升的原因
①注水井配注过高; ②注水井全井或层段超注; ③相邻油井堵水; ④油井工作制度调小; ⑤油井机、泵、杆工况差。
(2)地层压力下降的原因
①注水井配注过低; ②注水井全井或层段欠注; ③油井提液; ④油井采取增产措施见效。
3.2.1油井压力变化分析
二、压力变化分析
3.2.1 油井压力变化分析
3.2.1油井压力变化分析
【学习目标】
1.了解压力的相关概念; 2.掌握引起油井压力变化的原因; 3.掌握油井压力变化应采取的措施。
油田基础知识
油田基础知识1、地层静压全称为地层静止压力,也叫油层压力,是指油井在关井后,待压力恢复到稳定状态时所测得的油层中部压力,简称静压。
在油田开发过程中,静压是衡量地层能量的标志。
静压的变化与注入和采出油、气、水体积的大小有关。
2、原始地层压力:油层在未开采前,从探井中测得的油层中部压力。
3、静水柱压力:井口到油层中部的水柱压力。
4、压力系数:原始地层压力与静水柱压力之比。
等于1时,属于正常地层压力;大于1时,称为高异常地层压力,或称为高压异常;小于1时,称为低异常地层压力,或称低压异常。
主要是用它来判别地层压力是否异常的一个主要参数。
但是有人说用1来做标准就笼统了,不同的区块有不同的常压值,一般油田都是0.8-1.2是正常值,小于则是低压区,大于则是高压区。
它对钻井、修井、射孔等工程有重要作用,油层高压异常地层钻井修井过程中要加大压井液的密度,防井喷;低压异常地层钻井修井时,要相应降低压井液的密度,防止井漏,污染地层。
地层压力系数也是确定开发层系的一个重要依据,相同压力体系的地层可以用同一套井网开发,不同压力体系的地层需要不同的井网进行开发,否则层间干扰太大,不能有效发挥地层产能,有时可能造成井下倒灌现象的发生。
5、原油体积系数:就是指地层条件下单位体积原油与地面标准条件Gesse汽体积比值6、井筒储存效应与井筒储存系数:在油井测试过程中,由于井筒中的流体的可压缩性,关井后地层流体继续向井内聚集,开井后地层流体不能立刻流入井筒,这种现象称为井筒储存效应。
描述这种现象大小的物理量为井筒储存系数,定义为与地层相通的井筒内流体体积的改变量与井底压力改变量的比值。
7、原油的体积系数:原油在地面的体积与地下体积的比值。
8、微电极电阻率微梯度电阻率与深浅双侧向电阻率的区别(1)浅、深侧向分别测量原状地层、入侵拎电阻率,因为存有裂缝时泥浆入侵对深、深侧向的影响相同,用其幅度高推论裂缝:通常正差异通常为低角度缠,正数差异为高角度缠,并无幅度高就没缠或者不为扩散层;(2)微电极系测井测量得到微梯度、微电位电阻率,微梯度一般反映泥饼、微电位一般反映冲洗带,二者之差主要用来判断是否为渗透性地层,裂缝发育时地层渗透性较好,从道理上讲是可以用微电极反映出来的。
地层压力和温度
一个具有统一水动力系统的油气藏, 其压力梯度值是一个常数,即地层压 力随油气层埋藏深度而呈直线增加。 当实测得到具不同海拔高度的原始地 层压力时,作压力随海拔高度变化的 关系曲线。对新井,只要准确测得其 深度,便可得该井的原始地层压力。
(一)原始油层压力
2、原始油层压力的确定方法 (3)计算法
压力(PH)的比值。
p
fH
1 p
正常地层压力 >1: 高压异常
1 p 异常地层压力 <1:低压异常
二、异常地层压力研究
(一)异常地层压力的概念 ② 压力梯度法:
用压力梯度GP来表示异常地层压力的大小。 GP = 0.01MPa/m: 正常地层压力 GP > 0.01MPa/m: 高异常地层压力 GP < 0.01MPa/m: 低异常地层压力
井底流动压力(井底流压):油井生产时测得的井底压 力称为井底流压。它代表井口剩余压力与井筒内液柱重 量对井底产生的回压。用Pb表示。
油井生产时,井底流压Pb小于油层静止压力Ps,油层 中的流体正是在该压差的作用下流入到井筒。
(二)目前油层压力 1、目前油层压力及其分布 (1)单井生产时油层静止压力的分布
(二)目前油层压力
2、油层静止压力等压图的编制与应用 1)编制:
为了准确地绘制油层静止压力 等压图,需定期测得油井和水井 的油层静止压力。比较好的办法 是在油井中定期测压力恢复曲线, 而在水井中测压力降落曲线。
绘制某一时刻的等压图,不同 时期的压力值应该换算为同一作 图时期的压力值。换算时多采用 油藏平均压力递减曲线法。
(二)目前油层压力
1、目前油层压力及其分布
(2)多井生产时油层静止压力的分布
有关压力的名词解释
1 饱和压力地层原油在压力降低到天然气开始从原油中分离出来时的压力叫饱和压力。
饱和压力是衡量油藏弹性能量大小的重要参数之一。
饱和压力越低,弹性能量越大,有利于用放大生产压差来提高油井产量和油田采油速度。
但饱和压力低,井筒内脱气点高,能量损失大,油井自喷能力差。
2地层静压力{上覆岩层压力)地层静压力也叫上覆岩层压力,指由上覆岩层骨架和孔隙中流体重量引起的压力。
其大小可用下列公式表示:3 静水压力油(气)层中地层水液柱重量所产生的压力叫静水压力。
可用下列公式计算:4 地层压力(孔隙流体压力}又称孔隙流体压力,是指地层孔隙内流体所承受的压力。
如果该流体为油或天然气,就称为油层压力或气层压力。
油(气)层未开采之前,各处的地层压力相对平衡,投入开发后,平衡状态遭到破坏,油(气)层压力与油(气)井井底压力之间产生压差,使油(气)层内的油(气)流人井底,甚至喷出井口。
5 压力系数与异常压力指实测地层压力与同深度静水压力之比值。
压力系数是衡量地层压力是否正常的一个指标。
压力系数为0 . 8 ~1 .2 为正常压力,大于1.2 者称高压异常,小于0 . 8 者称低压异常。
6 原始地层压力油(气)层开采以前的地层压力,称为原始状态下的地层压力,单位为兆帕C M P a )。
原始地层压力一般都是通过探井、评价井(资料井)试油时,下井底压力计至油(气)层中部测得。
原始地层压力也可用试井法、压力梯度法等求得07目前地层压力与静止压力(静压)目前地层压力指油(气)田在开发过程中某一时期的地层压力。
油(气)井关井恢复压力,稳定后所测得的油(气)层中部压力叫静止压力,简称静压。
油(气)层静压代表测压时的目前油(气)层压力,是衡量油(气)层压力水平的标志,因此需要定期进行监测。
8 静压梯度指同一井内单位深度(10 m或1 0 0 m )静止压力的变化值。
利用静压梯度可以计算井内不同深度的静压值,确定油水或气水界面,判断各油(气)层是否属于同一个压力系统等。
石油钻井地层压力预测与计算方法
(1)
Pc——套管压力,MPa; Lf——动液面,m
L——泵挂深度,m; H——油层中部深度,m;
ot , os ——地下、地面原油密度, g/cm3
w
——地层水密度,g/cm3;
三、 井底压力的计算
水井井底注入压力p井计算
p井 pef H w 101 .97
(2) (3) (4)
pef p pm p fr pcf pV
p fr 1.06510
14 1.8 0.2 0.8 HQ1
d14.8
2 Q2 4 d2
pcf 1.0861013
(5)
pef , ppm——有效、实测井口注入压力,MPa; pfr,pcf,pV——注入水通过油管、水嘴、配水器节流凡尔所产生的压力损失, MPa; Q1, Q2——注入量,m3/d; 当有两个直径相同的水嘴时,Q1=0.5Q2.
(6)
p1 , p2——水井、油井单独生产在任一点产生的地层 压力,MPa; pe——原始地层压力,MPa.
四、油水井间地层压力分布
对水井
p1 p
' 井1
1.842103 Q1 r ln 1 K K rw h1 rw
1.842103 Q2 r ln 2 K K rw h2 rw
式(11)减式(12)得
p井1 p井 2 1.842103 K K rw Q1 Q2 d h h ln r 2 w 1
(13)
设M=K· Krw/µ ,则式(13)变换 为
1.842 103 M p 井1-p 井 2 Q1 Q2 d h h ln r 2 w 1
p井1 p井1 p井2 1.842103 Q2 d pe ln K K rw h2 rw
油气田地下地质学---第七章-地层压力与地层温度
油气田地下地质学
--预测砂Leabharlann 泥岩剖面异常地层压力方法1、地震勘探法
地震波传播速度(层速度)或旅行时间与岩石密度密切相关 ◆ 正常压实情况下:泥岩、页岩密度随埋深增加而增加
--随埋深增加,层速度加大,旅行时间减小。
◆ 异常压力过渡带:由于页岩欠压实,页岩孔隙度增 大,密度减小,地震波传播的层速度将偏离正常压实 趋势线向着减小的方向变化,地震波传播旅行时间向 着增加的方向变化。
2、预测异常地层压力,实现平衡钻井 在高压异常地区钻探时,为了顺利地完成钻探任务,
并为油气开采提供优质井身,在开钻之前做两项工作:
● 确定两个关键地质参数: 孔隙流体压力、岩石破裂压力。
● 再根据上述两个关键地质参数进行钻探设计。 --主要包括:钻井液密度、套管程序。
三、原始油层压力研究
油气田地下地质学
正常压实时:随埋深增加,声
波传播速度↑,传播时间↓。
高异常压力过渡带:声波传播 时间向增大方向偏离正常趋势。
声波时差与深度关系曲线
⑶ 页岩密度测井
预测方法与电阻率测井或声 波测井相同。右图2条曲线均 较清晰地反映出高异常地层压 力过渡带顶面约在3352.8m, 两种资料所得结果吻合较好。
密度测井受井眼大小影响,在 预测异常地层压力时,其精度和 效果不及电阻率及声波测井。
偏离正常压实趋势线。
→ 绘制研究井的d(dc)指数与深度关系曲线, 可预测过渡带的顶部位置和异常地层压力。
油气田地下地质学
右图为同一口井 的d指数--深度、dc 指数--深度关系曲 线:高异常地层压 力过渡带顶面位置 约在2652m处。
d指数与dc指数曲线对比
由于dc指数消除了钻井液密度的影响, dc指数比d指数 更能清楚地反映出高异常地层压力过渡带的存在。
石油地质名词解释
第三章
1油气圈闭:圈闭是指地下适合油气聚合的场所,圈闭由三部分构成:储集层,盖层,阻止油气继续运移的造成油气聚集的遮挡物。
2 油气藏:圈闭中同时聚集了油气就形成了油气藏。若油气聚集的数量足够大,具有开采价值,则称为商业油气藏。
3构造圈闭(油气藏):构造圈闭是指构造作用使底层发生变形或变位而形成的圈闭,构造圈闭中的油气聚集就是构造油气藏。
3、圈闭的有效性:在具有油气来源的前提下圈闭聚集油气的实际能力。
4、扩散作用:物质在浓度梯度作用下自发地发生的从高浓度区向低浓度区转移以达到浓度平衡的一种物质传递过程,是物质以分子状态发生的一种转移过程。
7、天然气:广义的天然气是指存在于自然界的一切气体;作为石油及天然气地质学研究的天然气主要是指与油田和气田有关的气体,其主要成分是烃类气体,也包含少量的非烃类气体,如:二氧化碳,硫化氢,即狭义的天然气。
8、气顶气:是指与油共存于油气藏中呈游离态存在于油气藏顶部的天然气。
9、天然气的扩散性:扩散作用是指物质在浓度梯度的作用下自发的发生的从高浓度区向低浓度区转移以达到浓度平衡的物质传递过程。天然气的分子体积小,在地下具有很强的扩散性。
3、石油组分的组成:油质、胶质、沥青类。
4、石油的相对密度:是指20摄氏度时石油的质量与4摄氏度时同体积水的质量之比。
5、石油的粘度:石油流动时分子间相对运动引起的内摩差力的大小,分为运动粘度和动力粘度。
6、石油的旋光性:大多数石油具有将偏振光的振动面旋转一定角度的能力,这就是石油的旋光性。
3生油窗:生ห้องสมุดไป่ตู้量达到最高峰为主要生油期。
4油型气:由腐泥型有机质及其干酪根生成的天然气称为油型气。
5煤型其:由腐殖型有机质及其干酪根生成的天然气称为煤型其。
油藏工程第四章油气藏压力与温度N
D
Pw
油藏工程第四章油气藏压力与温度N
一、流体压力
压力梯度Gw:单位深度的压力变化值
Pair P
D
Pw
因此,流体压力也可以写成:
油藏工程第四章油气藏压力与温度N
二、骨架应力
在某一地层深度处,由岩石固体骨架物质的 重量所产生的压力,称为骨架应力Ps,也称颗粒 压力,或固相压力,或基质压力,计算公式为:
油藏工程第四章油气藏压力与温度N
五、压力系数
<20
低压地层
地层压力状态分类
=20~40 中等压力地层
(MPa)
=40~60 高压地层
>60
超高压地层
压力系数α定义为实测地层压力与相同深度处的静 水压力的比值,它衡量地层压力偏离静水压力的程 度,计算公式为:
油藏工程第四章油气藏压力与温度N
五、压力系数
H
深层地层产生异常高压的原因,
D
大多数都与油气聚集有关。
油藏工程第四章油气藏压力与温度N
五、压力系数
D
深层正常压力地层 深层异常高压力地层
封闭地层异常高压 封闭地层异常低压
油藏工程第四章油气藏压力与温度N
六、油气藏压力
反映油井自喷能力的大小
余压 P0
油藏压力测点分布
油藏压深关系曲线
油藏工程第四章油气藏压力与温度N
油藏压力方程的作用
•1 判断流体类型
•2 计算原始地层压力
油藏工程第四章油气藏压力与温度N
油藏压力方程的作用
•3 判断压力系统
P
D
油藏工程第四章油气藏压力与温度N
油藏压力方程的作用
•4 判断出油层位
油藏工程第四章油气藏压力与温度N
采油知识
22、 什么叫油气田?什么叫含油层系?
答:油气田:油气藏往往不是孤立单独存在的,在一定构造范围内一个或多个油气藏的组合就叫油气田。
含油层系:含油层系就是在地质剖面中一系列的含油层和非含油层的有规律的组合。
23、 什么叫主力油层?接替油层
答:主力油层就是厚度大,渗透率高,大面积分布的好油层。当主力层采出程度和含水较高,产油量开始递减时,要及时加强中、低渗透层的开采,弥补主力油层的减产,这种在油田稳产中起接替作用的油层叫接替层。
21、 什么叫绝对、有效、相对渗透率?
答:绝对渗透率:用空气测定的岩石渗透率叫绝对渗透率,也叫空气渗透率。它反映岩石的物理性质。
有效渗透率:多相流体在多孔介质中渗流时,某一相流体的渗透率叫该相流体的有效渗透率,又叫相渗透率。
相对渗透率:多相流体在多孔介质(油层)中渗流时,其中某一相流体的相渗透率与该介质(油层)的绝对渗透率的比值叫相对渗透率。
24、 什么叫含油面积?含气面积?
答:由含水边界所圈定的面积叫含油面积。气藏的含气面积是指气顶边界所圈定的面积。
25、 什么是断层? Fra bibliotek答:断层是断裂的一种,是指岩层发生破裂,并且两断块沿断裂面发生明显的相对位移的断裂现象。
26、 油气藏的地质含义是什么?
答:油气藏的地质含义是,在同一圈闭内具有同一压力系统的油气聚集。
(3) 气压驱动:依靠油藏气顶压缩气体的膨胀力推动石油流入井底叫气压驱动。气压驱动的开采特点是地层压力逐渐下降,气油比逐渐上升,产量逐渐下降,当含气边界突入油井井底时,气油比急剧上升。
(4) 溶解气驱动:依靠石油中溶解气分离时所产生的膨胀力推动石油流向井底,叫溶解气驱动。溶解气驱动的开采特点是:开采初期,气油比逐渐上升,油层压力不断下降,产量稳定,开采中期,气油比迅速上升,溶解气能量迅速消耗,油层压力和产量显著降低。开采后期,气油比逐渐降低,油层压力急剧下降,产量也降的很低。这种驱油方式驱油效果差,采收率低,不宜采用。
现场地层压力计算
. . 在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G P p =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系. . z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
抽油机井液面折算地层压力方法
气桂段压 强 油桂 段压 强 混合液 杜 段压 强 井底 流压
Pg= (Pc+Pu)/Cg
Po=0.1× Ro× H2
P(o+w)=0。 1× R1× H3
Pwf=Pg+Po+P(o+w)
9在 井底静压计算 和流压雷同,自 1985.2-19乩 。 平方 王。街店
两油田的刀 口定点测压井上进行 了压力计实测和计算对 比,其 静压 平均绝对误差为0.081MPa,平 均相对误差为0。 △ %;最 大绝对 误 差为0。 zMPa,最 大相对误差为1.96%。 一 、基 本 原 理 利用液面计算井底压力的基本原理是通过模拟胜利油 田抽油井 在套管不产气的条件下,正 常生产及关井恢复时,油 套 环 垄 中 气 桂、油桂 、油水混合液杜三段处于相对稳定状态且按重 力分布的物 理形态而得 出的。即
,
应用条件及录取资料程序。
内容提要
:
胜利石 油管理局 滨南霖油厂 结合本 油田的特点,参 考 了国外有 关的分析方 法 9提 出了一套利用动液面,静 液面计算井底 流压 和静 压的数学模型,计 算的仗据是 :井 底压 力 =经 修正 的气杜段压力 + 经修正 的油桂段压力 +经 修正的油水混合液杜段压 力,在 流压计算 中
亠 Ε
方法 抽油井液面 地层压力 折算
v
— ▲ △ ■ ι 卩 ’
胜 利 石 油 管 理 局 一九九 o年 十-月
抽油井液面折算地层压力方法
编写人 :曹 钧合 参加人 :孙 启佑 彭汉儒 张维庆 于滨 审核人 :王 华芬 编写单位 :滨 南寨油厂
胜 利 石 油 管 理 局 一 尤尢○年十一月
目
内容提要 基本原理。 井底 流压计算 。 井底静压计算 参考丈献 附一 :美 国室内模拟 “ 正 的S型 曲线”的回归方程。 修 附二 :方 法计算与压 力计实测对 比现场试验 资料。 附三 :方 法推广应用经济效盆和社会效盆。
【油田开发地质学】第十章地层压力和温度
原始油层压力在背斜构造油藏上的分布特点:
A.原始油层压力随油层埋藏深度的增加而加大;
B.流体性质对原始油层压力的分布有着极为 重要的影响。 井底海拔高度相同的各井: 流体性质相同→P相同; 流体性质各异→密度大→P小; 密度小→P大。
2)折算压力
折算压头产生的压力。
四、油层折算压力
3)折算压力等压图的编制
五、异常地层压力研究***
(一)概念 偏离静水柱压力的地层孔隙流体压力
压力系数αp 压力梯度Gp
αp =1,正常地层压力 αp ≠1,异常地层压力 αp ﹥1,高异常地层压力
αp ﹤1,低异常地层压力
(二)异常地层压力的成因分析 1.成岩作用
驱动能量
天然驱动能量 人工驱动能量(注采,热采,生物采油)
1.油层岩石和其中流体的弹性能 (弹性能驱动) 条件:地层压力 大于 饱和压力
2.含水区的弹性能和露头水柱压能
Pr= H·ρr·g=H·[ρf·Ф+(1-Ф) ρma]·g
3.压力梯度 每增加单位高度所增加的压力 GH (㎩/m)
4.地层压力 作用于岩层孔隙空间内流体上的压力。又称孔隙流体 压力,用Pf表示。
油层压力或气层压力
5.压力系数
实测的地层压力( pf )与同一地层深度静水压力( pH )的比值 。
二、地温场的研究
一)地温测量
关井实测、外推法
二)地温场的分布特征
地温梯度纵向变化——地温梯度图
系统测温
测温井段
井
m
N
Ed-Es3
平均地温梯度 ℃/100m
Es4-Ek
Ma(J)
大庆油田合理地层压力的保持水平
大庆油田合理地层压力的保持水平油气田地面工程第25卷第1期(2006.1)】1大庆油田合理地层压力的保持水平唐莉(北京大学地球与空间科学学院,大庆油田州十三合作区块管理部) 刘惠(大庆油田勘探开发研究院)姜雪源(大庆油田采油六厂)1.影响地层压力的几个重要因素(1)保持原油在油层中的流动性能不变.国内外许多研究者都把保持地层原油不脱气作为保持地层压力的根本目的.从这点出发,把地层压力不低于饱和压力作为保持压力的最低下限.图1是应用油气两相稳定渗流理论公式和北三区原油物性参数计算的相对采油指数(油气两相流时的采油指数与单相油流采油指数之比)与流饱压差,地饱压差的关系曲线.从图l中可以看到:当地层压力低于饱和压力时,油井的采油指数只有单相油流时的一半左右.这就是说地层压力低的油井生产能力不能得到充分的发挥.当地层压力高于饱和压力时,随着地层压力的下降,油井产能就随之下降,而且地饱压差在0~1.5MPa之间时,地层压力的下降对产能影响最大.一Pb(MPa)圈1相对采油指数与流饱压差理论计算曲线油层压力下降不仅使油井生产压差减小,还会引起油层渗流能力的下降.因此保持地层压力大于饱和压力就成了注水开发油田的一条基本原则.(2)保持油井在一定的生产压差下采油.油井在保持自喷采油的条件下最大生产压差为:AP=PR—PiH=PR—P一一exp(一C+)(1)式中:厶P——油井最大生产压差,MPa.由式(1)看出:当油井最低自喷流压一定时,即保持油井在自喷条件下采油时,地层压力越高,油井最大生产压差越大,随着油井含水上升.生产压差可调的范围也就越大,这样就为保持油井产量稳定或控制油井产量递减速度提供了保证.大庆油田原油粘度高,油层非均质严重,注水开发的无水采收率低,大部分储量需要在含水期采出,因此要求油田要稳产到…定含水阶段.而油井含水后采油指数要下降,井筒举升所消耗的能量要增加(最低自喷流压上_歹),这些都需要靠增加油层压力来弥补.因此保持油层压力就显得异常重要.(3)油层压力过高带来的一些负而影响.到l980年,大庆油田主体部分喇萨杏油田含水已达到60%,油田保持自喷与稳产所需的地层压力达到l1.6MPa,此时油田实际地层压力为1】.43M1a, 由于地层压力较高,已经给油田正常开发带来许多负面影响,这些影响包括:①地层压力保持过高.会加剧层问矛盾;②地层压力过高会增加钻加密调整井,修井和井下作业的难度,会加速套管损坏的速度;③会造成过渡带地区原油外流,如萨北东部过渡带地区;④地层压力提离后,注水泵压必然要相应地提高,在相同注水量下所消耗的能量要增加,设备管线的耐压要求也要提高,这些都会增加原油的开采成本.为了保证油田在合理的条件下进行开发,大庆喇萨杏油田从1980年开始转变开采方式,将自喷井逐渐转为抽油开采,通过注采系统的调整,把地层压力控制在原始地层压力以下.因此油层压力不是越高越好,应该有一个合理的上限值,这个数值应该根据油藏的具体条件来研究确定.2.油田地层压力的合理界限大庆长垣内部各开发区地层压力系数较小,:均为1.O6,油藏原始地层压力接近静水柱压力,属于正常压力油藏,原油粘度高为8.6mPa?s,平均地饱压差为2.16MPa,其中南部杏树岗油田高达3.5—4.OMPa;无水期平均最低自喷流压为7.3MPa,最大生产压差为4.OMI'-0_,含水到60%时最低自喷流压上升至9.3MPa,最大生产压差减小到2.OMPa,属于中等自喷能力的油田.开发过程中如果不保持地层压力,把地层压力由原始压力降低到饱和压力附近,油田含水6O%时油井就会停喷停产,这时油井生产压差将降低到零.大庆长垣外围油田,油井无自喷能力,均采用12油气田地面工程第25卷第1期(2006.1)气液两相流气液量与流型转变的研究吕宇玲王鸿膺(中国石油大学储运与建筑工程学院)石油在开采和输送过程中,通常是以气液混合物的形式存在的,所以对气液两相流动特性的研究就显得尤为重要.在多相流动中,流型是研究压降,持液率等其它参数的前提,只有充分考虑流型的影响,其它参数的研究才能有足够的精度.本文利用电导探针信号研究了水平管路中空气一水两相流动流型,绘制了流型图,并研究了气液量的变化对流型转变的影响.1.实验方法与系统试验装置由水罐(1m),离心泵,气体涡轮流量计,液体涡轮流量计,气液混合器,试验管段和气液分离器组成.试验段下游安装有长lm,直径50mm的有机玻璃管,用于流型的观察,其上安有4 组电导探针,用于测量实验数据和流型的识别.2.气液两相流流型(1)气液两相流流型分类.气液两相在管路中的流动形式较为复杂,目前,学术界存在多种流型分类方式,但作者认为,在不影响研究精度及工业应用的前提下,流型划分种类应尽量少,只有集中在几种流型上才有可能使研究更加深入,结果更具通用性.本文根据观察到的现象将气液两相流划分为以下五种流型:光滑分层流,波浪流,段塞流,环状流和泡状流.由于实验条件所限,实验中观测到的泡状流流型不明显,数据不具代表性,因此,主要研究了前四种流型.(2)气液两相流流型与探针信号的分析.气液两相流动试验中,通过采集卡将流动特征信号以电压的形式采集至计算机,经过处理后得到典型流型的试验结果.图l是四种流型的探针电压输出信号,根据图l对信号予以分析.图中纵坐标为电压值(V),横坐标为时间(s),由图可以看出:光滑分层流动信号比较平缓,波动很小,此时肉眼观察气液分界明显,界面平滑.波浪流电压信号波小而密,振幅不大,最大值与最小值差在1V以内,波峰排列均匀,并且没有明显的间歇性.此时肉眼观察气液分界面明显, 界面有波动.段塞流探针电压信号呈现出明显的波峰,波谷,最大值与最小值差别在3V以上.这是因为在液塞通过时,它充满管路整个界面,液位非常高,当液膜通过时,气泡是不导电的,探针输出抽油方式开采.在抽油开采方式下,保持地层压力同样具有非常重要的意义:①可以保持油井具有较大的生产压差,为油井放大压差采油提供保证;②在油井生产压差一定的条件下,地层压力保持水平越高,泵的工作压力也就越高,这样可以保证泵在最佳的状况下进行工作,使抽油泵具有较高的沉没度和充满系数.大庆油田采取早期内部注水保持压力的开发方针.把地层压力界限确定在原始地层压力附近,是符合油田的实际情况的.不同油田原油性质不同, 油层压力系数不同,注水保持压力的界限也应当有所区别.3.结论在确定地层压力保持水平时,应考虑以下一些基本原则:(1)保证原油在油层中具有很好的渗流条件,为此应使地层压力高于油藏饱和压力.由于油藏弹性驱采收率很低,因此即使地饱压差较大也不应使地层压力下降得太低.(2)地层压力保持水平应能满足油井持续稳定生产的需要.无论是自喷开采还是抽油开采的油井都应保持一定的压力水平,使油井具有足够大的生产压差及合理的井底流压,使油井产量具有较大的调整余地.(3)地层压力上限不宜高于原始地层压力.地层压力水平过高会影响油田的正常合理开发. (4)地层压力系数较高的油藏,可以将地层压力降低到静水柱压力附近,以便充分利用油层的天然能量;对于高凝油藏,当把主要能量用来降低井底流压时,就可以把地层压力在一定范围内降低下来,这是合理的,也是符合油藏地质特征的. (5)对于低或特低渗透油藏,即使采取同步注水,高注采比注水,地层压力也难以保持.对于这类油藏应当允许地层压力有所下降,如果油藏地质条件允许,如储量丰度比较高,可以通过缩小注采井距或提高注采井数比来达到保持地层压力的目的.因此,根据油田其地质及动态特征不同,地层压力保持的合理水平也应当有所不同.(栏目主持杨军)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dc 指数法测量地层压力原理
在正常压力地层,随着井深的 增加,对泥页岩而言,钻时逐 渐增大,dc指数也逐渐增大, 在录井图上表现为随井深增加 dc指数逐渐增大的趋势。 在异常高压井段,钻时相对减 少,dc指数也相应减少。在dc 指数--井深图上,表现为向左 偏离了正常趋势。 利用这一规律,可根据dc指数 偏离正常趋势多少来计算地层 孔隙压力。
密度 埋深 孔隙压力增高,孔隙度 增大。岩石的密度减小, 地震波的速度降低 地震波速随深度的增加 而明显减小可认为可能 是高压异常的反映
二、 随钻评估技术
随钻检测的意义
利用钻井过程中随钻测量得到的钻井参数及地 质资料来评估地层孔隙压力
常用方法
dc指数法 标准化钻速法 机械钻速法 页岩密度法 西格马法 c指数法 岩石强度法
可根据邻井或本井上部井段录井数据, 确定式中的参数a,b,c,d的值。
根据录井资料,计算出岩石强度与其对应的井 底压差数据,对所的数据进行曲线拟合,可得如 下函数关系模型:
p a tg{ [(ARs
RS 0 ) /( RSmax / RS 0 )] c} b
式中 Δ P—压差,Mpa; Rsmax—在过平衡钻井条件下的最大岩石 强度,kPa; ARS—平均岩石强度, kPa; RS0—压差为零时的岩石强度, kPa; a,b,c--常数。
d ch 1)反算法: p h dc0 式中 dch 正常趋势线上的dc值 dco- 实际计算的dc值 p-所求深度的地层当量泥密度。 h-正常压力当量密度。 2) 等效深度法 p p H AG0 H0 (G0 GH )
Dc指数法的适用条件
dc指数法只适用于正常沉积压实的泥 页岩地层 受其它许多因素的影响
4. 作dc指数正常趋势线。
作图法:在正常压力井段通过绝大多数点 画一条斜直线,在直线上任取两点即可写 出正常趋势线方程。
dc=b+ah 及式 dc=10ah+b 式中: H-井深。 a-正常趋势线斜率 b-正常趋势线截距。 解析法:在正常压力井段,用回归法求出dc-H之 间的回归方程。
5.求地层压力:
1)岩石强度模型的建立
岩石强度是根据现场随钻采集的钻井地质 数据,包括井深、钻压、转速、钻井液密 度、排量、钻头扭矩、钻头特性及地层岩 性等参数来评估岩石强度 用岩石强度与地层孔隙压力之间的关系模 型来计算地层孔隙压力。
(1)岩石强度模型
RS Af W) f2 (N) f3 (R) f4 (Bs ) f5 (Eff ) 1( f6 (BT ) f7 (Lith) f8 (p) f9 (Hyd )
钻头水利因素 钻头类型 地质情况等因素
目前对这些问题正在进行研究解决
2. 岩石强度法
岩石强度法检测地层压力原理
正常地层在其上覆岩层的作用下,随着岩层埋 藏深度的增加,岩石的压实程度相应增加,地 层的孔隙度减小,钻进时岩石所表现出的强度 增加。 大多数类型的岩石,其岩石强度的变化与地层 的孔隙压力有必然的联系. 利用这一规律可在钻进过程中及时发现井下异 常压力。
式中 A--系数; W--井底压力,KN; N--转速,r/min; R--钻速,m/h; BS--钻头直径,m; BT--钻头类型; Lith--地层岩性; Δ P--井底压差,Mpa; Hyd--水利因素; Eff--钻头磨损因素。
(2)对公式可作进一步简化得
W N Q r2 r1 RS A ( Ed ) ( ) f (t ) r3 Dh Dn R ( Bs )
2 计 算 dc 3. 绘制dc-H曲线图
值
。
一般使用半对数座标。 横坐标用对数座标代表 dc 值。纵座标用线 性座标代表井深H dc-H曲线的组成。 1)正常压力带:H 越大 则dc越大 2)过渡带:钻速开始增加,dc逐渐变 小。 3) 异常高压带:钻速达到最大, dc 指数降 到最小并趋于稳定。
局限性
预测精度不高 预测结果只能作为钻井设计的参考
原理
纵波速度是预测地层孔隙压力的 主要依据。 影响地震纵波传播速度的因素
岩石的类型 埋深和结构
地震预测地层孔隙压力模式
直接预测法、 等效深度法、 和图板预测法
提高地震预测的精度的措施
地震资料的质量 解释工作水平 建立合理有效的地震层速度模型 钻井和地质资料越全面
( Ni ) T f (t ) e 200
其中 ε —转速指数,无因次 r1,r2,r3,r4--系数。
r4
2)地层孔隙压力与岩石强度关系模型的建立 岩石强度与井底压差的关系
ARS RS 0 f 3 (p) f 3 (p) a arctg[bp c] d
根据现场大量录井资料、地质资料和测试资料, 回归得出岩石强度与井底压差的关系如下
dp指数法
1.dc指数法
dc指数法是在机械钻速法的基础上提出来 模式
3.282 lg( ) n NT dc 0.684 W m lg( ) D
•
T--钻时,min/m N--转盘转速,r/min W--钻压,KN D--钻头直径,m ρ n--地层水密度,g/cm3 ρ m--实际使用的钻井液密度, g/cm3
地层压力评估技术
概述 原始地层压力评估
钻前评估技术 随钻评估技术 钻后评估技术
油田开发过程中的地层压力预测
一、钻前评估技术
意义
无钻井资料的新探区来说,是孔隙压力及破裂压力
根据地层中声波速度和地层中孔隙压力之间的关系, 计算出地层孔隙压力。
dc
H
dc指数法监测地层压力的具体作法
1 .现场资料采集 采集资料时,若是第一口探井应从地质料录 井处开始,其它井在过渡带前300~500米开 始。 应收集如下数据:
地质数据:井深、地层、岩性、钻时。 钻井数据:钻压,转速泵压,排量,钻头类型,尺寸。
要求取全,取准数据,并舍去非正常的钻井 数据和非泥岩,页岩数据。