中考相似三角形专题复习2015-2018安徽中考相似压轴题
2018中考压轴之因动点产生的相似三角形问题(部分答案)(PDF版)
课前导学:相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分和两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.九年级数学试题因动点产生的相似三角形问题1.如图,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.满分解答:(1)将点A(2,m)代入y=x+2,得m=4.所以点A的坐标为(2,4).将点A(2,4)代入kyx=,得k=8.(2)将点B (n ,2),代入8y x=,得n =4.所以点B 的坐标为(4,2).设直线BC 为y =x +b ,代入点B (4,2),得b =-2.所以点C 的坐标为(0,-2).由A (2,4)、B (4,2)、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB=BC=,∠ABC =90°.所以S △ABC =12BA BC ⋅=12⨯=8.(3)由A (2,4)、D (0,2)、C (0,-2),得AD=AC=.由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE .所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC=时,CE =AD=此时△ACD ≌△CAE ,相似比为1.②如图4,当CE AC CA AD ==CE=.此时C 、E 两点间的水平距离和竖直距离都是10,所以E (10,8).图3图4图22.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.3.如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.4.如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+-(m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2,2),求实数m 的值;(2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.满分解答(1)将M (2,2)代入1(2)()y x x m m =-+-,得124(2)m m=-⨯-.解得m =4.(2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4,0),E (0,2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小.设对称轴与x 轴的交点为P ,那么HP EO CP CO=.因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BC CB BF =,即2BC CE BF =⋅时,△BCE ∽△FBC .设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2.所以F ′(m +2,0).由'CO BF CE BF =4m BF +=.所以(m BF m +=.由2BC CE BF =⋅,得2(2)m +=.整理,得0=16.此方程无解.图2图3图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC .在Rt △BFF′中,由FF ′=BF ′,得1(2)()2x x m x m +-=+.解得x =2m .所以F ′(2,0)m .所以BF′=2m +2,2)BF m =+.由2BC BE BF =⋅,得2(2)2)m m +=+.解得2m =±综合①、②,符合题意的m为2+.5.如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.6.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?7.如图,已知二次函数(其中0<m<1)的图像与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=P C.(1)∠ABC的度数为°;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.8.如图,抛物线与x轴交于点A(﹣,0)、点B(2,0),与y轴交于点C(0,1),连接B C.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣<t<2),求△ABN的面积S与t的函数关系式;(3)若﹣<t<2且t≠0时△OPN∽△COB,求点N的坐标.9.如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.10.如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1满分解答(1)B 的坐标为(b ,0),点C 的坐标为(0,4b ).(2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x,x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1,0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA .当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA .所以2()14b b =-.解得843b =±Q 为(1,23+).②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
中考相似三角形压轴题+答案
相似1-10一.解答题(共10小题)1.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.2.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).第1页(共20页)3.已知,把Rt△ABC和Rt△DEF按图1摆放,(点C与E点重合),点B、C、E、F始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如图2,△DEF从图1出发,以每秒1个单位的速度沿CB 向△ABC匀速运动,同时,点P从A出发,沿AB以每秒1个单位向点B 匀速移动,AC与△DEF的直角边相交于Q,当P到达终点B时,△DEF 同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)△DEF在平移的过程中,当点D在Rt△ABC的边AC上时,求t的值;(2)在移动过程中,是否存在△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在移动过程中,当0<t≤5时,连接PE,是否存在△PQE为直角三角形?若存在,求出t的值;若不存在,说明理由.第2页(共20页)4.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC 绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.5.如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.①当t为何值时,点P、M、N在一直线上?②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.第3页(共20页)6.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB 向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=,PD=.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.7.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.第4页(共20页)8.已知∠AOB=90°,OM是∠AOB的平分线,将一个直角RPS的直角顶点P在射线OM上移动,点P不与点O重合.(1)如图,当直角RPS的两边分别与射线OA、OB交于点C、D时,请判断PC与PD的数量关系,并证明你的结论;(2)如图,在(1)的条件下,设CD与OP的交点为点G,且,求的值;(3)若直角RPS的一边与射线OB交于点D,另一边与直线OA、直线OB分别交于点C、E,且以P、D、E为顶点的三角形与△OCD相似,请画出示意图;当OD=1时,直接写出OP的长.9.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C 的长度和为6cm.那么灯泡离地面的高度为.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n 的代数式表示)第5页(共20页)分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.第6页(共20页)六六六六六六-相似1-10参考答案与试题解析一.解答题(共10小题)1.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.【解答】解:(1)如图1,当t=1秒时,AE=2,EB=10,BF=4,FC=4,CG=2,由S=S梯形GCBE﹣S△EBF﹣S△FCG,=×﹣=×(10+2)×8﹣×10×4﹣=24(cm2);(2)①如图1,当0≤t≤2时,点E、F、G分别在边AB、BC、CD上移动,此时AE=2t,EB=12﹣2t,BF=4t,FC=8﹣4t,CG=2t,S=S梯形GCBE﹣S△EBF﹣S△FCG=×(EB+CG)•BC﹣EB•BF﹣FC•CG=×8×(12﹣2t+2t)﹣×4t(12﹣2t)﹣×2t(8﹣4t)=8t2﹣32t+48(0≤t≤2).②如图2,当点F追上点G时,4t=2t+8,解得t=4,当2<t<4时,点E在边AB上移动,点F、G都在边CD上移动,此时CF=4t﹣8,CG=2t,FG=CG﹣CF=2t﹣(4t﹣8)=8﹣2t,S=FG•BC=(8﹣2t)•8=﹣8t+32.即S=﹣8t+32(2<t<4).(3)如图1,当点F在矩形的边BC上的边移动时,在△EBF和△FCG中,∠B=∠C=90°,①若=,即=,解得t=.第7页(共20页)所以当t=时,△EBF∽△FCG,②若=即=,解得t=.所以当t=时,△EBF∽△GCF.综上所述,当t=或t=时,以点E、B、F为顶点的三角形与以F、C、G为顶点的三角形相似.2.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴,∵BP=a,CQ=a,BE=CE,∴,∴BE=CE=a,∴BC=3a,∴AB=AC=BC•sin45°=3a,∴AQ=CQ﹣AC=a,PA=AB﹣BP=2a,第8页(共20页)在Rt△APQ中,PQ==a.3.已知,把Rt△ABC和Rt△DEF按图1摆放,(点C与E点重合),点B、C、E、F始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如图2,△DEF从图1出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从A出发,沿AB以每秒1个单位向点B 匀速移动,AC与△DEF的直角边相交于Q,当P到达终点B时,△DEF 同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)△DEF在平移的过程中,当点D在Rt△ABC的边AC上时,求t的值;(2)在移动过程中,是否存在△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在移动过程中,当0<t≤5时,连接PE,是否存在△PQE为直角三角形?若存在,求出t的值;若不存在,说明理由.【解答】解:(1)当D在AC上时,第9页(共20页)∵DE=DF,∴EC=CF=EF=5,∴t=5.(2)存在.∵AP=t,∠EDF=90°,∠DEF=45°,∴∠CQE=45°=∠DEF,∴CQ=CE=t,AQ=8﹣t,当0≤t<5时,①AP=AQ,t=8﹣t,∴t=4;②AP=PQ,作PH⊥AC于H,AH=HQ=AQ=4﹣t,∵PH∥BC,∴△APH∽△ABC,∴=,∴=,∴t=;③AQ=PQ,作QI⊥AB于I,AI=PI=AP=t(等腰三角形的性质三线合一),∵∠AIQ=∠ACB=90°,∠A=∠A,∴△AIQ∽△ACB,∴=,∴=,∴t=,④当5≤t≤10时,AQ=PQ,作PH⊥BC,PG⊥AC,同理可求出,FC=QC=10﹣t,BP=10﹣t,PH=(10﹣t)=8﹣t,第10页(共20页)BH=(10﹣t)=6﹣t,QG=QC﹣GC=QC﹣PH=10﹣t﹣(8﹣t)=2﹣,PG=HC=6﹣(6﹣t)=t,PQ=AQ=8﹣(10﹣t)=t﹣2,∴PQ 2=PG 2+QG 2,(t﹣2)2=(t)2+(2﹣)2,解得:t=秒,其它情况不符合要求,综合上述:当t等于4秒、秒、秒、秒时△APQ是等腰三角形.(3)由勾股定理:CE=CQ=t,∵sinA===,cosA===,∴PW=t,AW=t,∴QW=8﹣t﹣t=8﹣t,∴PQ2=PM2+QW2=(t)2+(8﹣t)2=t2﹣t+64,PE2=PH2+EH2=(t+8﹣t)2+(t﹣t)2=t2﹣t+64,①∠PQE=90°,在Rt△PEQ中PQ2+QE2=PE2,∴t1=0(舍去)t2=;②∠PEQ=90°,PE2+EQ2=PQ2t1=0(舍去)t2=20(舍去)∴此时不存在;③当∠EPQ=90°时PQ2+PE2=EQ2,t1=(舍去)t2=4,综合上述:当t=或t=4时,△PQE是直角三角形.第11页(共20页)4.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC 绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.【解答】解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,∴∠CC1B=∠C1CB=45°,∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.(2)∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,∴∠ABA1=∠CBC1,∴△ABA1∽△CBC1.∴,∵S△ABA1=4,∴S△CBC1=;(3)①如图1,过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上,第12页(共20页)在Rt△BCD中,BD=BC×sin45°=,当P在AC上运动,BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7.5.如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.①当t为何值时,点P、M、N在一直线上?②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.【解答】解:(1)若0<t≤5,则AP=4t,AQ=2t.则==,又∵AO=10,AB=20,∴==.∴=.又∵∠CAB=30°,∴△APQ∽△ABO.∴∠AQP=90°,即PQ⊥AC.当5<t≤10时,同理,可由△PCQ∽△BCO得∠PQC=90°,即PQ⊥AC.∴在点P、Q运动过程中,始终有PQ⊥AC.第13页(共20页)(2)①如图,在Rt△APM中,∵∠PAM=30°,AP=4t,∴AM=.在△APQ中,∠AQP=90°,∴AQ=AP•cos30°=2t,∴QM=AC﹣2AQ=20﹣4t.由AQ+QM=AM得:2t+20﹣4t=,解得t=.∴当t=时,点P、M、N在一直线上.②存在这样的t,使△PMN是以PN为一直角边的直角三角形.设l交AC于H.如图1,当点N在AD上时,若PN⊥MN,则∠NMH=30°.∴MH=2NH.得20﹣4t﹣=2×,解得t=2.如图2,当点N在CD上时,若PM⊥PN,则∠HMP=30°.∴MH=2PH,同理可得t=.故当t=2或时,存在以PN为一直角边的直角三角形.6.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB 向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=8﹣2t,PD=t.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.【解答】解:(1)根据题意得:CQ=2t,PA=t,第14页(共20页)∴QB=8﹣2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA==,∴PD=t.故答案为:(1)8﹣2t,t.(2)不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD=t,∴BD=AB﹣AD=10﹣t,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8﹣2t=,解得:t=.当t=时,PD==,BD=10﹣×=6,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8﹣vt,PD=t,BD=10﹣t,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即t=10﹣t,解得:t=当PD=BQ,t=时,即=8﹣,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=﹣2x+6.∵点Q(0,2t),P(6﹣t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x=代入y=﹣2x+6得y=﹣2×+6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2单位长度.第15页(共20页)7.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.【解答】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S=[32+(m﹣n)2]=+(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,由(2)知,m最大=3﹣3.第16页(共20页)∴S最大=[9+(m最大﹣n最小)2]=[9+(3﹣3﹣6+3)2] =99﹣54….(S最大≈5.47也正确)综上所述,S最大=99﹣54,S最小=.8.已知∠AOB=90°,OM是∠AOB的平分线,将一个直角RPS的直角顶点P在射线OM上移动,点P不与点O重合.(1)如图,当直角RPS的两边分别与射线OA、OB交于点C、D时,请判断PC与PD的数量关系,并证明你的结论;(2)如图,在(1)的条件下,设CD与OP的交点为点G,且,求的值;(3)若直角RPS的一边与射线OB交于点D,另一边与直线OA、直线OB分别交于点C、E,且以P、D、E为顶点的三角形与△OCD相似,请画出示意图;当OD=1时,直接写出OP的长.【解答】解:(1)PC与PD的数量关系是相等.证明:过点P作PH⊥OA,PN⊥OB,垂足分别为点H、N.∵∠AOB=90°,易得∠HPN=90度.∴∠1+∠CPN=90°,而∠2+∠CPN=90°,∴∠1=∠2.∵OM是∠AOB的平分线,∴PH=PN,又∵∠PHC=∠PND=90°,∴△PCH≌△PDN;∴PC=PD.第17页(共20页)(2)∵PC=PD,∠CPD=90°,∴∠3=45°,∵∠POD=45°,∴∠3=∠POD.又∵∠GPD=∠DPO,∴△POD∽△PDG.∴.∵,∴.(3)如图1所示,若PR与射线OA相交,则OP=1;如图2所示,若PR与直线OA的交点C与点A在点O的两侧,则OP=﹣1.9.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C 的长度和为6cm.那么灯泡离地面的高度为180cm.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n第18页(共20页)的代数式表示)【解答】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(4分)(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3分)(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(1分)(直接得出三角形相似或比例线段均不扣分)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=(1分).10.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F 分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF 于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.【解答】解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,第19页(共20页)∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM===.∵△BMA∽△CMG,∴.∴.∴CG=.∴在Rt△BGC中,BG==.第20页(共20页)。
中考三角形相似压轴题
选择题在△ABC和△DEF中,若△A = △D,AB/DE = AC/DF,则下列结论正确的是:A. △ABC △ △DEFB. △ABC和△DEF不一定相似C. △ABC和△DEF仅在一种情况下相似D. △ABC △ △DEF(正确答案)已知△PQR中,PQ = 6,QR = 8,RP = 10,且△STU中,ST/PQ = SU/QR = 3/4,则:A. △PQR与△STU的周长比为4:3B. △PQR与△STU的面积比为3:4C. △PQR与△STU是等腰三角形D. △PQR △ △STU且相似比为4:3(正确答案)下列哪组条件不能判定两个三角形相似?A. 两角分别相等B. 三边对应成比例C. 两边对应成比例且夹角相等D. 两边对应成比例且一边的对角相等(正确答案)在△ABC和△A'B'C'中,若AB/A'B' = BC/B'C'且△B = △B',则:A. △A = △A'且△C = △C'(正确答案)B. △A = △C'且△C = △A'C. △A与△A'、△C与△C'均不相等D. 无法确定△A、△C与△A'、△C'的关系已知△MNO与△XYZ相似,且MN = 2,NO = 3,MO = 4,XY = 6,则YZ的长度为:A. 8B. 9(正确答案)C. 10D. 12下列关于相似三角形的性质,错误的是:A. 相似三角形的对应角相等B. 相似三角形的对应边成比例C. 相似三角形的面积比等于对应边长的平方比D. 相似三角形的周长比等于对应边长的立方比(正确答案)在△GHK和△LMN中,若GH/LM = HK/MN,且△G = △L,△H = △M,则:A. △GHK与△LMN仅面积相等B. △GHK与△LMN仅周长相等C. △GHK与△LMN全等D. △GHK △ △LMN且全等方面也成立(正确答案,但更严谨的表述应为“△GHK △ △LMN”)已知△ABC中,AB = 5,BC = 6,AC = 7,△DEF中,DE = 10,EF = 12,且△A = △D,则:A. DF = 15且△ABC △ △DEFB. DF = 14且△ABC与△DEF不全等C. DF = 16且△ABC △ △DEFD. DF = 14且△ABC △ △DEF(正确答案)下列哪组条件足以证明△PQR与△STU相似,但不需要额外条件即可直接判定?A. △P = △S,△Q = △TB. PQ/ST = QR/TU,且QR = 2PTC. PQ/ST = QR/TU = RP/SU(正确答案)D. △P = △S,PQ/ST = RP/SU且QR ≠ TU。
2015届安徽中考数学总复习课件:第31讲 图形的相似
安 徽 省
数
学
第七章 图形的变化
第31讲 图形的相似
要点梳理
1.比和比例的有关概念 (1)表示两个比相等的式子叫做__比例式__,简称比例.
a c (2)第四比例项:若 = 或 a∶b=c∶d,那么 d 叫做 a,b,c 的__第四比例项__. b d
a b (3)比例中项:若 = 或 a∶b=b∶c,那么 b 叫做 a,c 的__比例中项__. b c (4)黄金分割:把一条线段(AB)分成两条线段,使其中较长线段(AC)是原线段(AB)与
五种基本思路 (1)条件中若有平行线,可采用相似三角形的基本 定理; (2)条件中若有一对等角,可再找一对等角(用判定 定理1)或再找夹边成比例(用判定定理2); (3)条件中若有两边对应成比例,可找夹角相等; (4)条件中若有一对直角,可考虑再找一对等角或 证明斜边、直角边对应成比例; (5)条件中若有等腰三角形,可找顶角相等,或找 一对底角相等,或找底和腰对应成比例.
2 BC__, 较短线段(BC)的比例中项,就叫做把这条线段__黄金分割__.即 AC =__AB·
AC=__
5-1 __AB≈__0.618__AB.一条线段的黄金分割点有__两__个. 2
《相似三角形》中考复习题专题及答案
《相似三角形》复习题及答案一.选择题(1)△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ) A.DB AD =EC BF B.AC AB =FCEF C.DB AD =FC BF D.EC AE =BF AD (2)在△ABC 中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,则最长边是( ) A.138 B.346 C.135 D.不确定(3)在△ABC 中,AB=AC,∠A=36°,∠ABC 的平分线交AC 于D ,则构成的三个三角形中,相似的是( )A.△ABD ∽△BCDB.△ABC ∽△BDCC.△ABC ∽△ABDD.不存在(4)将三角形高分为四等分,过每个分点作底边的平行线,将三角形分四个部分,则四个部分面积之比是( )A.1∶3∶5∶7B.1∶2∶3∶4C.1∶2∶4∶5D.1∶2∶3∶5(5)下列命题中,真命题是( )A.有一个角为30°的两个等腰三角形相似B.邻边之比都等于2的两个平行四边形相似C.底角为40°的两个等腰梯形相似D.有一个角为120°的两个等腰三角形相似(6)直角梯形ABCD 中,AD 为上底,∠D=Rt ∠,AC ⊥AB ,AD=4,BC=9,则AC 等于( )A.5B.6C.7D.8 (7)已知CD 为Rt △ABC 斜边上的中线,E 、F 分别是AC 、BC 中点,则CD 与EF 关系是( )A.EF >CDB.EF=CDC.EF <CDD.不能确定(8)下列命题①相似三角形一定不是全等三角形 ②相似三角形对应中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形相似;④O 是△ABC 内任意一点.OA 、OB 、OC 的中点连成的三角形△A′B′C′∽△ABC 。
其中正确的个数是( )A.0个B.1个C.2个D.3个(9)D 为△ABC 的AB 边上一点,若△ACD ∽△ABC ,应满足条件有下列三种可能①∠ACD=∠B ②∠ADC=∠ACB ③AC 2=AB·AD ,其中正确的个数是( )A.0个B.1个C.2个D.3个(10)下列命题错误的是( )A.如果一个菱形的一个角等于另一个菱形的一个角,则它们相似B.如果一个矩形的两邻边之比等于另一个矩形的两邻边之比,则它们相似C.如果两个平行四边形相似,则它们对应高的比等于相似比D.对应角相等,对应边成比例的两个多边形相似二、填空题(1)比例的基本性质是________________________________________(2)若线段a=3cm,b=12cm,a、b的比例中项c=________,a、b、c的第四比例线段d=________(3)如下图,EF∥BC,若AE∶EB=2∶1,EM=1,MF=2,则AM∶AN=________,BN∶NC=________(4)有同一三角形地块的甲乙两地图,比例尺分别为1∶200和1∶500,则甲地图与乙地图的相似比为________,面积比为________(5)若两个相似三角形的面积之比为1∶2,则它们对应边上的高之比为________(6)已知CD是Rt△ABC斜边AB上的高,则CD2=________(7)把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的____倍,周长扩大为原来的______倍.(8)Rt△ABC中,∠C=90°,CD为斜边上的高。
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
(完整版)2018中考专题相似三角形
9.在 Rt△ABC中,∠ BAC=90°,过点 B 的直线 MN∥AC,D 为 BC 边上一点,连 接 AD,作 DE⊥AD 交 MN 于点 E,连接 AE. ( 1)如图 1,当∠ ABC=4°5时,0时,线段 AD 与 DE有何数量关系?并请说明理由.
5.( 1)如图 1,在正方形 ABCD中,点 E,F 分别在 BC,CD上, AE⊥BF 于点 M , 求证: AE=BF; ( 2)如图 2,将 ( 1)中的正方形 ABCD改为矩形 ABCD, AB=2, BC=3, AE⊥BF 于点 M ,探究 AE与 BF 的数量关系,并证明你的结论.
6.如图,四边形 ABCD中, AB=AC=AD, AC平分∠ BAD,点 P 是 AC 延长线上一 点,且 PD⊥AD. ( 1)证明:∠ BDC=∠PDC; ( 2)若 AC 与 BD相交于点 E,AB=1,CE: CP=2: 3,求 AE 的长.
2.如图,直角△ ABC中,∠ BAC=90°,D 在 BC上,连接 AD,作 BF⊥ AD 分别交 AD 于 E, AC于 F. ( 1)如图 1,若 BD=BA,求证:△ ABE≌△ DBE; ( 2)如图 2,若 BD=4DC,取 AB 的中点 G,连接 CG交 AD 于 M,求证:①GM=2MC; ② AG2=AF?AC.
2018 中考数学专题相似形 (共 40 题)
1.如图,△ ABC和△ ADE是有公共顶点的等腰直角三角形,∠ BAC=∠DAE=90°, 点 P 为射线 BD,CE的交点. ( 1)求证: BD=CE; ( 2)若 AB=2,AD=1,把△ ADE绕点 A 旋转,当∠ EAC=9°0时,求 PB的长;
相似三角形中考复习(知识点+题型分类练习)
相似三角形一、知识概述1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。
2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
3.相似三角形的定义对应边成比例、对应角相等的两个三角形叫做相似三角形.4.相似三角形的基本性质①相似三角形的对应边成比例、对应角相等.②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
③相似三角形的周长比等于相似比④面积比等于相似比的平方温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.5. 相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。
温馨提示:(1)判定三角形相似的几条思路:①条件中若有平行,可采用判定定理1;②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例;③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.④条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。
(2)在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。
(3)运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养当数学建模的思想。
中考专项复习---相似三角形综合
2015届中考专项练习---------相似三角形一、填空选择题1、如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H ,若点H 是AC 的中点,则AGFD的值为________________2、如图,在△ABC 中,∠BAC=30°,AB=AC ,AD 是BC边上的中线,∠ACE=12∠BAC ,CE交AB 于点E ,交AD于点F.若BC=2,则EF 的长为 _________3、如图,在平行四边形ABCD 中,E 在AB上,CE、BD 交于F ,若AE :BE=4:3,且BF=2,则DF=4、如图,DE 是△ABC 的中位线,延长DE 至F 使EF=DE ,连接CF ,则S △CEF :S 四边形BCED 的值为( )5、如图,D 是△ABC 的边BC 上一点,已知AB=4,AD=2.∠DAC=∠B ,若△ABD 的面积为a ,则△ACD 的面积为( ) A .a B .C .D .6、如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( ) A. 1:4 B. 1:3 C. 2:3 D. 1:2 7、如图,Rt △ABC 中,∠A=90°,AD ⊥BC 于点D ,若BD :CD=3:2,则tanB=( )A. 32B. 23C. 63D. 628、如图,菱形ABCD 中,点M ,N 在AC 上,ME ⊥AD , NF ⊥AB. 若NF = NM = 2,ME = 3,则AN =( ) A . B .4 C .5 D .69、将一副三角尺如图所示叠放在一起,则的值是10、如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO=OC ,连接CQ 并延长CQ 交边AB 于点P .则点P 的坐标为11、如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 12. 如图,在平行四边形ABCD 中,点E 在AD 边上,1AE DE 2=,连接AC 与BE 交于点P ,若点Q 为CD 的中点,则APEPQDE S:S 四边形=13、如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为14. 如图在平行四边形ABCD 中,AD=10cm,CD=6cm,E 为AD 上一点,且BE=BC ,CE=CD ,则DE=A . 1:3B . 2:3C . 1:4D . 2:5第1题图第2题图第3题图第4题图第5题图第6题图第7题图第9题图第10题图 第11题图 第8题图第12题图第13题图 第14题图二、解答题13. 在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.14、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.15. 如图,已知点A(-12,0),B(3,0),点C在y轴上,且∠ACB=90°(1)求点C的坐标(2)求Rt△ACB的角平分线CD所在直线的解析式(3)在直线CD上求出满足PBC ACB1S S2=的点P的坐标(4)已知点M在直线CD上,在平面内是否存在点N,使以O,C,M,N为顶点在四边形是菱形?若存在,请直接写出点N的坐标,若不存在,说明理由DCBA O xyDCBA O xy。
中考数学相似三角形压轴题
中考数学中的相似三角形压轴题通常是考察学生综合应用相似三角形的判定和性质,以及相关的代数和几何知识来解决问题的能力。
以下是一个可能的中考数学相似三角形压轴题的例子:
题目:在△ABC中,∠BAC = 90°,AB = AC,点D是BC的中点,AF = BE,连结AD、DE、EF,试判断△DEF的形状,并说明理由。
解:
第一步,由题意知△ABC是等腰直角三角形,D是斜边BC的中点,所以
AD⊥BC,∠CAD=∠BAD=45°=∠B(等腰三角形三线合一)。
第二步,根据题意AF=BE,结合第一步的结论,我们可以得到△BED≌△AFD (SAS)。
因此,ED=FD,∠ADF=∠BDE。
第三步,根据第二步的结论和角的性质,我们可以得到∠EDF=180°-∠ADF-
∠BDE=180°-∠BDE-∠BDE=∠ADB=90°。
第四步,综合第二步和第三步的结论,我们可以得到△DEF是等腰直角三角形。
注意:以上解答过程仅供参考,实际解题过程可能因题目条件和要求的不同而有所差异。
在解题时,应仔细审题并灵活运用所学的相似三角形的判定和性质来解决问题。
同时也要注意书写规范和步骤的完整性。
中考总复习 相似三角形
【名师提醒】解相似三角形问题时,要注意相似三角形中 的对应关系,可根据相似三角形对应的字母写对应边,这 样可避免对应关系混乱.
命题点3 相似三角形的实际应用
例(’15兰州24题8分)如图,在一面 与地面垂直的围墙的同侧有一根高10 米的旗杆AB和一根高度未知的电线杆 CD,它们都与地面垂直,为了测得电 线杆的高度,一个小组的同学进行了 如下测量:某一时刻,在太阳光照射 下,旗杆落在围墙上的影子EF的长度 为2米,落在地面上的影子BF的长为10米,而电线杆落 在围墙上的影子GH的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线 杆的高度. (1)该小组的同学在这里利用的是_____投影的有关知识 进行计算的; (2)试计算出电线杆的高度,并写出计算的过程.
【解析】∵两个相似三角形的面积比是1:4,∴这两个相 似三角形的相似比是1:2, ∴它们的周长比是1:2.
3. 如图,在 △ABC中,DE∥BC,AD=6,DB=3,AE=4, 则EC的长为( B )
A. 1
B. 2
C. 3
D. 4
【解析】本题考查平行线分线段成比例定理
AD AE = , 又∵AD=6, DB=3, DB EC AE=4,∴ 6 = 4 ,解得EC=2. 3 EC
6.某一时刻,身高1.6m的小明在阳光下的影长是0.4m, 同一时刻同一地点,测得某旗杆的影长是5m,则该旗 杆的高度是____m. 20
【解析】根据题意可得
1.6 = 0.4 ,解得h=20m. h 5
7. 如图, 在△ABC中,∠C=90°,AD是 ∠CAB的角平分线,BE⊥AE,垂足为点E. 求证: △BDE~ △ABE. 证明:∵AD是∠CAB的角平分线, ∴ ∠CAD= ∠BAD , ∵∠C=90°, ∴∠CAD+∠ADC=90°, ∵ BE⊥AE, ∴∠E=90°, ∴∠DBE+∠BDE=90°, ∵∠ADC= ∠BDE, ∴∠CAD= ∠BAD = ∠DBE , ∴ △BDE~ △ABE.
中考数学专题复习:二次函数压轴题(相似三角形问题)
中考数学专题复习:二次函数压轴题(相似三角形问题)一、解答题(共16小题)1.如图抛物线y =ax 2+ax +c (a ≠0)与x 轴的交点为A 、B (A 在B 的左边)且AB =3,与y 轴交于C ,若抛物线过点E (﹣1,2).(1)求抛物线的解析式;(2)在x 轴的下方是否存在一点P 使得△PBC 的面积为3?若存在求出P 点的坐标,不存在说明理由;(3)若D 为原点关于A 点的对称点,F 点坐标为(0,1.5),将△CEF 绕点C 旋转,在旋转过程中,线段DE 与BF 是否存在某种关系(数量、位置)?请指出并证明你的结论.2.如图,直线y =﹣x +3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y =x 2+bx +c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)连接AC ,在x 轴上是否存在点Q ,使以P 、B 、Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y 212x =-+bx +c 与x 轴交于A (﹣2,0)、B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQOQ的最大值;(3)把抛物线y 212x =-+bx +c 沿射线AC y ',M是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标.4.如图,抛物线212y x mx n =++与直线132y x =-+交于,A B 两点,交x 轴与,D C 两点,连接,,AC BC 已知()()0,3,3,0A C .(1)求抛物线的解析式;(2)求证:ABC 是直角三角形;(3)P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以A 、P 、Q 为顶点的三角形与ACB △相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.5.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,D 为OC 的中点,直线AD 交抛物线于点E (2,6),且△ABE 与△ABC 的面积之比为3∶2.(1)求直线AD 和抛物线的解析式;(2)抛物线的对称轴与轴相交于点F ,点Q 为直线AD 上一点,且△ABQ 与△ADF 相似,直接写出点Q 点的坐标.第5题图第6题图6.如图,抛物线y =-x ²+b x+c 与x 轴交于点A (-1,0)和B (3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)若P 为抛物线的顶点,动点Q 在y 轴右侧的抛物线上,是否存在点Q 使∠QCO =∠PBC ?若存在,请求出点Q 的坐标.若不存在,请说明理由.7.已知抛物线()20y ax bx c a =++>与x 轴交于点()0A 1,和()40B ,,与y 轴交于点C ,O 为坐标原点,且OB OC =.(1)求抛物线的解析式;(2)如图1,点P 是线段BC 上的一个动点(不与点B 、C 重合),过点P 作x 轴的垂线交抛物线于点Q ,连接OQ .当四边形OCPQ 恰好是平行四边形时,求点Q 的坐标;(3)如图2,在(2)的条件下,D 是OC 的中点,过点Q 的直线与抛物线交于点E ,且2DQE ODQ ∠=∠,在直线QE 上是否存在点F ,使得BEF △与ADC △相似?若存在,求点F 的坐标:若不存在,请说明理由.8.如图,抛物线y=mx 2+8mx +12m (m >0)与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C ,顶点为D ,其对称轴与x 轴交于点E ,联接AD ,OD .(1)求顶点D 的坐标(用含m 的式子表示);(2)若OD ⊥AD ,求该抛物线的函数表达式;(3)在(2)的条件下,设动点P 在对称轴左侧该抛物线上,PA 与对称轴交于点M ,若△AME 与△OAD 相似,求点P 的坐标.9.抛物线23y x bx =-++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标;(2)在直线AC 上方的抛物线上找一点P ,使12ACP ACD S S =,求点P 的坐标;(3)在坐标轴上找一点M ,使以点B ,C ,M 为顶点的三角形与ACD 相似,直接写出点M 的坐标.10.如图.在平面直角坐标系中,抛物线2()20y ax x c a =++≠与x 轴交于点A 、B ,与y 轴交于点C ,点A 的坐标为()1,0-,对称轴为直线1x =.点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交直线BC 于点F ,交抛物线2()20y ax x c a =++≠于点E .(1)求抛物的解析式;(2)当以C 、E 、F 为顶点的三角形与ABC 相似时,求线段EF 的长度:(3)如果将ECF △沿直线CE 翻折,点F 恰好落在y 轴上点N 处,求点N 的坐标.11.如图,已知:抛物线y =x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,点D 为顶点,连接BD ,CD ,抛物线的对称轴与x 轴交于点E .(1)求抛物线解析式及点D 的坐标;(2)G 是抛物线上B ,D 之间的一点,且S 四边形CDGB =4S △DGB ,求出G 点坐标;(3)在抛物线上B ,D 之间是否存在一点M ,过点M 作MN ⊥CD ,交直线CD 于点N ,使以C ,M ,N 为顶点的三角形与△BDE 相似?若存在,求出满足条件的点M 的坐标,若不存在,请说明理由.12.如图,已知抛物线y=ax 2+bx+c (a≠0)经过A (-1,0),B (4,0),C (0,2)三点.(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点E ,使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;(3)若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,试求出∠BDA 的度数.13.如图,抛物线22y ax bx =+-经过点()4,0A 、()10B ,两点,点C 为抛物线与y 轴的交点.(1)求此抛物线的解析式;(2)P 是x 轴上方抛物线上的一个动点,过P 作PM x ⊥轴,垂足为M ,问:是否存在点P ,使得以A 、P 、M 为顶点的三角形与OAC ∆相似若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上找一点D ,过点D 作x 轴的垂线,交AC 于点E ,是否存在这样的点D ,使DE 最长,若存在,求出点D 的坐标,以及此时DE 的长,若不存在,请说明理由.14.如图,在同一直角坐标系中,抛物线1L :28y ax bx =++与x 轴交于()8,0A -和点C ,且经过点()2,12B -,若抛物线1L 与抛物线2L 关于y 轴对称,点A 的对应点为'A ,点B 的对应点为B'.(1)求抛物线2L 的表达式;(2)现将抛物线2L 向下平移后得到抛物线3L ,抛物线3L 的顶点为M ,抛物线3L 的对称轴与x 轴交于点N ,试问:在x 轴的下方是否存在一点M ,使MNA ' 与ACB '△相似?若存在,请求出抛物线的3L 表达式;若不存在,说明理由.15.已知抛物线21:(0)L y ax a =>上一点(,)M m n ,点(,)M m n 在第一象限,过点M 分别作y 轴、x 轴的垂线段,MA MB ,垂足分别是,A B .(1)如图1,若四边形MAOB 是正方形,则m 和a 的数量关系是_______________.(2)若抛物线21:(0)L y ax a =>与直线1:2l y x =-的一个交点C 的纵坐标是12.①求抛物线21:(0)L y ax a =>的解析式.②如图2,将抛物线21:(0)L y ax a =>沿着直线l 平移,平移过程中抛物线的顶点始终在直线l 上.若平移前的抛物线1L 与平移后的抛物线2L 恰好相交于点M ,四边形MAOB 也是正方形,求抛物线2L 的顶点E 的坐标.③在②的条件下继续平移抛物线21:(0)L y ax a =>,得到抛物线33,L L 的顶点D 的横坐标大于点E 的横坐标,:5:OE OD b ,抛物线3L 与x 轴的两个交点,F H (点F 在点H 的左边)之间的距离是6.连接,MF MBF 与DGO △是否相似?请说明理由.16.在平面直角坐标系中,已知抛物线y =mx 2+4mx +4m +6(m <0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当m =﹣6时,直接写出点A ,B ,C ,D 的坐标;(2)如图1,直线DC 交x 轴于点E ,若tan ∠AED=43,求m 的值及直线DE 的解析式;(3)如图2,在(2)的条件下,若点Q 为OC 的中点,连接AQ ,动点P 在第二象限的抛物线上运动,过点P 作x 轴的垂线.垂足为H ,交AQ 于点M ,过点M 作MN ⊥DE ,垂足为N ,求PM +MN 的最大值.参考答案1.(1)y =﹣x 2﹣x +2;(2)存在,P (3,﹣10);(3)DE ⊥BF 且DE =2BF ,2.(1)抛物线解析式为y =x 2﹣4x +3;(2)Q 点的坐标为(0,0)或(73,0).3.(1)2142y x x =-++(2)PQ OQ取得最大值12,此时,(2,4)P .(3)15(2,)2N ,211(2,)2N -,35(2,2N -.4.(1)215322y x x =-+;(2)22;(3)存在,满足条件的点P 的坐标为1136(,),1314,39⎛⎫ ⎪⎝⎭,1744,39⎛⎫⎪⎝⎭.5.(1).234y x x =-++;(2)Q (1,4)或Q (352,)6.(1)223y x x =-++;(2)()512-,7.(1)抛物线的解析式为254y x x =-+;(2)()22Q -,(3)存在,()142F ,,281455F ⎛⎫- ⎪⎝⎭,8.(1)(4,-4m);(2)22y x =-+;(3)(0,1,2)9.(1)223y x x =--+;(1,4)D -;(2)35,22⎛⎫-- ⎪⎝⎭P 或35,22⎛⎫- ⎪⎝⎭;(3)点M 的坐标为(0,0)或(9,0)-,或10,3⎛⎫- ⎪⎝⎭.10.(1)223y x x =-++;(2)94EF =(3)N 的的坐标是1)+11.(1)2=23y x x --;顶点D (1,-4);(2)(2,3)G -;(3)存在,点720,39M ⎛⎫- ⎪⎝⎭或532,39⎛⎫- ⎪⎝⎭.12.(1)抛物线的解析式为:y=-12x 2+32x+2.(2)存在.E 点坐标为(0,2),(3,2).(3)∠ADB=45°.13.(1)215222y x x =-+-;(2)(2,1);(3)(2,1),214.(1)抛物线2L 的解析式为21382y x x =-++.(2)函数3L 的解析式为:2121322y x x =-+-或2126323y x x =-+-.15.(1)am =1;(2)①212y x =;②5(5,)2E -;③MBF V 与DGO △相似16.(1)(﹣3,0),(﹣1,0),(0,﹣18),(﹣2,6)(2)m 23=-,y 43=-x 103+(3)263。
【安徽专版】2018届中考数学基础突破(18)相似三角形》ppt课件(含答案)
命题点
3.(2015· 安徽,23,14分)如图1,在四边形ABCD中,点E,F分别是AB,CD 的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连 接AG,BG,CG,DG,且∠AGD=∠BGC.
(1)求证:AD=BC; (2)求证:△AGD∽△EGF; ������������ (3)如图2,若AD,BC所在直线互相垂直,求 ������������ 的值.
第18讲
相似三角形
考点一
考点二
考点三
考点一比例线段及比例的性质 1.定义 在四条线段中,如果其中两条线段的比等于另外两条线段的比,那 么这四条线段叫作成比例线段,简称比例线段. 2.比例的基本性质
(1)如果 = ,则 ad=bc
������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������
-1+ 5 2
或������������ ≈ 0.618������������ .
考点一
考点二
考点三
考点二相似三角形(高频) 1.相似三角形的性质及判定
性
质 判
定
(1)相似三角形的对应角相等 ,对应边成比例; (2)相似三角形对应的高线、中线、角平分线的比等于相似 比. (3)相似三角形周长的比等于相似比 ,面积比等于相似比的 平方 (1)两角 分别相等的两个三角形相似; (2)两边对应成比例且夹角 相等的两个三角形相似; (3)三边对应成比例 的两个三角形相似; (4)直角边和斜边对应成比例的两个直角三角形相似; (5)顶角相等 的两等腰三角形相似
考点一
中考数学压轴题【相似三角形的存在性问题】解题训练卷
中考数学压轴题【相似三角形的存在性问题】解题训练卷
1中考数学压轴题
【相似三角形的存在性问题】解题训练卷
相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.
判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检
验,如例题1、2、3、4.
应用判定定理
1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6.应用判定定理
3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组).例题解析
例?如图1-1,抛物线21
3
482y x x 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C
.动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、
F 两点,动点P 同时从点B 出发,在线段
OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由.
图1-1
【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠
B 的两条边.△AB
C 是确定的.由21
3
482y x x ,可得A (4,
0)、B (8,0)、C (0,4).于是得到BA =4,BC =45.还可得到12CE CO
EF OB .
△BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了.
在Rt △EFC 中,CE =t ,EF =2t ,所以5CF t .。
中考数学三角形相似专题测试题及答案
《三角形相似》学号:____姓名:_______________三角形的相似是解决数学中图形问题的重要的工具,也是初中数学的重点内容,因此也是中考的重要考查内容。
主要考查以下几方面的内容:1.会运用三角形相似的性质与判定进行有关的计算和推理。
2.能运用三角形相似的知识解决相关的实际问题。
3.能探索解决一些与三角形相似有关的综合性题型。
一、基础训练 1、(07宁德)若23a b =,则a b b+=. 2、若如图所示的两个四边形相似,则α∠的度数是( )A .87B .60C .75D .1203、如果两个相似三角形的相似比为2:3,那么这两个相似三角形周长比为________;对应角平分线的比为_______,对应高的比为__________,对应中线的比为__________,面积比为 。
4、(08海珠)若梯形的上底为3cm ,下底为5㎝,则此梯形的中位线长为㎝.5、(08越秀)如图,D 是ABC ∆的重心,则下列结论正确的是( ) A .DE AD =2 B .DE AD 2= C .DE AD 23= D .DE AD 3=6、如图,已知DE ∥BC ,EC=6cm ,DE=5cm ,AE=3cm ,AB=14cm , 求AD 、BC 的长.•二、例题分析:例1、如图5所示为农村一古老的捣碎器,已知支撑柱AB 的高为0.3米,踏板DE 长为1.6米,支撑点A 到踏脚D 的距离为0.6米,现在从捣头点E 着地的位置开始,让踏脚(2007南京)如图,在梯形ABCD 中,AD BC ∥,6AB DC AD ===,60ABC ∠=,点E F ,分别在线段AD DC ,上(点E 与点A D ,不重合),且120BEF ∠=,设AE x =,DF y =.⑴ 求y 与x 的函数表达式;⑵ 当x 为何值时,y 有最大值,最大值是多少?着地,则捣头点E 上升了米.6075α60138第2题图ABCD E·(第5题图)C图3ABDO第2题例2、三、巩固练习:(A组)1.如图1,若DE ∥BC ,且AD=2cm ,AB=4cm ,AC=3cm ,则AE=_______.2、如图,在梯形ABCD 中,AD ∥BC ,AC 、BD 交于O 点,S △AOD :S △COB =1:9,则OD:OB =。
中考数学专题复习《二次函数与相似三角形综合压轴题》测试卷(附答案)
中考数学专题复习《二次函数与相似三角形综合压轴题》测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx经过点A(2,0)和点B(−1,m),顶点为点D.(1)求直线AB的表达式;(2)求tan∠ABD的值;(3)设线段BD与x轴交于点P如果点C在x轴上且△ABC与△ABP相似求点C的坐标.2.如图在平面直角坐标系中点A(1,2)B(5,0)抛物线y=ax2−2ax(a>0)交x轴正半轴于点C连结AO AB.(1)求点C的坐标和直线AB的表达式(2)设抛物线y=ax2−2ax(a>0)分别交边BA BA延长线于点D E.①若△CDB与△BOA相似求抛物线表达式②若△OAE是等腰三角形则a的值为______(请直接写出答案即可).3.如图拋物线经过A(4,0),B(1,0),C(0,−2)三点.(1)求出抛物线的解析式(2)若在直线AC上方的抛物线上有一点D使得△DCA的面积最大求出点D的坐标(3)若P是抛物线上一动点过P作PM⊥x轴垂足为M使得以A,P,M为顶点的三角形与△OCA相似请直接写出符合条件的点P的坐标.x2+bx+c与x轴交于A B(4,0)两点与y轴交于点C(0,2)连4.如图抛物线y=−12接BC交抛物线的对称轴于点D连接AC.(1)求抛物线的表达式(2)若点E在对称轴上①当AE+CE的值最小时求点E的坐标②以C D E为顶点的三角形与△ABC相似时求点E的坐标.5.如图已知A(−2,0)B(4,0)抛物线y=ax2+bx+c经过A B两点交y轴于点C(0,4).点P是第一象限内抛物线上的一点连接AC BC.M为OB上的动点过点M作PM⊥x轴交抛物线于点P交BC于点Q.(1)求抛物线的函数表达式(2)过点P作PN⊥BC垂足为点N设点M的坐标为(m,0)请用含m的代数式表示线段PN的长并求出当m为何值时PN有最大值最大值是多少?(3)试探究M在运动过程中是否存在这样的点Q使得以O M Q为顶点的三角形与△AOC相似.若存在请求出此时点Q的坐标若不存在请说明理由.6.在平面直角坐标系xOy中已知抛物线y=ax2+bx+c(a≠0)的图像经过点B(4,0) D(5,3)设它与x轴的另一个交点为A(点A在点B的左侧)且△ABD的面积是3.(1)求该抛物线的表达式和顶点坐标(2)求∠DAB的度数(3)若抛物线与y轴相交于点C直线CD交x轴于点E点P在线段AD上当△APE与△ABD相似时求AP的长.7.如图抛物线y=−12x2+32x+2与x轴交于A B两点(点A在点B的左边)与y轴交于点C连接BC.(1)求点A B C的坐标(2)设x轴上的一个动点P的横坐标为t过点P作直线PN⊥x轴交抛物线于点N交直线BC于点M.①当点P在线段AB上时设MN的长度为s求s与t的函数关系式②当点P在线段OB上时是否存在点P使得以O P N三点为顶点的三角形与△COB相似?若存在请求出点P的坐标若不存在请说明理由.8.如图在同一直角坐标系中抛物线L1:y=ax2+bx+8与x轴交于A(−8,0)和点C 且经过点B(−2,12)若抛物线L1与抛物线L2关于y轴对称点A的对应点为A′点B的对应点为B′.(1)求抛物线L2的表达式(2)现将抛物线L2向下平移后得到抛物线L3抛物线L3的顶点为M 抛物线L3的对称轴与x轴交于点N 试问:在x轴的下方是否存在一点M 使△MNA′与△ACB′相似?若存在请求出抛物线的L3表达式若不存在说明理由.9.抛物线y=−x2+bx+3与x轴交于A(−3,0),B(1,0)两点与y轴交于点C点D为抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标S△ACD求点P的坐标(2)在直线AC上方的抛物线上找一点P使S△ACP=12(3)在坐标轴上找一点M使以点B C M为顶点的三角形与△ACD相似直接写出点M 的坐标.(x+2)(ax+b)的图象过点A(−4,3),B(4,4).10.如图已知二次函数y=148(1)求二次函数的解析式(2)请你判断△ACB是什么三角形并说明理由.(3)若点P在第二象限且是抛物线上的一动点过点P作PH垂直x轴于点H试探究是否存在以P H D为顶点的三角形与△ABC相似?若存在求出P点的坐标.若不存在请说明理由.11.如图直线y=−x+4与x轴交于点A与y轴交于B抛物线y=−x2+bx+c经过A B两点与x轴负半轴交于点C连接BC抛物线对称轴与x轴交于点F P为y轴右侧抛物线上的动点直线BP交对称轴于点D.(1)求抛物线的解析式(2)当BD=3PD时求点P的坐标(3)作PQ⊥AB垂足为Q当△BPQ与△BCO相似时直接写出点Q的坐标.12.在平面直角坐标系中二次函数y=ax2+bx+2的图象与x轴交于A(-3 0)B (1 0)两点与y轴交于点C.(1)求这个二次函数的解析式(2)点Q是线段AC上方的抛物线上一动点过点Q作QE垂直于x轴垂足为E.是否存在点Q使以点B Q E为顶点的三角形与△AOC相似?若存在求出点Q的坐标若不存在说明理由(3)点M为抛物线上一动点在x轴上是否存在点Q使以A C M Q为顶点的四边形是平行四边形?若存在直接写出点Q的坐标若不存在说明理由.13.如图① 抛物线y=ax2+bx+c(a≠0)经过点A(−4,0)点B(2,0)和点C(0,−4)它的对称轴为直线l顶点为D.(1)求该抛物线的表达式(2)如图② 点P是直线AC下方该抛物线上的一个动点连接AP CP AC当△APC的面积取得最大值时求点P的坐标(3)如图③ 点E是直线AD下方该抛物线上的一个动点过E点作EF⊥直线l于F连接DE当以D E F为顶点的三角形与△BOC相似时求点E的坐标.14.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣3 0)B(1 0)两点与y轴交于点C(0 ﹣3m)(m>0)顶点为D.(1)如图1 当m=1时①求该二次函数的解析式②点P为第三象限内的抛物线上的一个动点连接AC OP相交于点Q求PQ的最大值OQ(2)如图2 当m取何值时以A D C为顶点的三角形与∠BOC相似.15.如图1 在平面直角坐标系中抛物线y=ax2+bx+c经过A(−2,0)B(8,0)C(0,4)三点.(1)求抛物线y=ax2+bx+c的表达式(2)如图2 设点P是抛物线上在第一象限内的动点(不与B C重合)过点P作PD⊥BC 垂足为点D点P在运动的过程中以P D C为顶点的三角形与△AOC相似时求点P 的坐标(3)在y轴负半轴上是否存在点N使点A绕点N顺时针旋转后恰好落在第四象限抛物线上的点M处且使∠ANM+∠ACM=180°若存在请求N点坐标若不存在请说明理由.(请在备用图中自己画图)16.抛物线y=−x2+2mx−m2+2m(m>0)交x轴于A B两点(A在B的左边)C是抛物线的顶点.(1)当m=2时直接写出A B两点的坐标:(2)点D是对称轴右侧抛物线上一点∠COB=∠OCD①如图(1)求线段CD长度②如图(2)当m>2T(t,0)(t>0)P为线段OC上一点.若△PCD与△POT相似并且符合条件的点P有2个求t和m之间的数量关系.17.如图1 抛物线y=−x2+bx+c经过A(0,3)和B(72,−94)两点直线AB与x轴相交于点C P是直线AB上方的抛物线上的一个动点PD⊥x轴交AB于点D抛物线与x轴的交点为F G.(1)求该抛物线的表达式.(2)当点P的坐标为(2,3)时求四边形APGO的面积.(3)如图2 若PE∥x轴交AB于点E且点P在直线AB上方求PD+PE的最大值.(4)若以A P D为顶点的三角形与△AOC相似请直接写出所有满足条件的点P的坐标.18.如图1 抛物线y=ax2+23x+c(a≠0)与x轴交于A(−2,0)B两点与y轴交于点C(0,4).(1)求抛物线的解析式(2)若点D是第一象限内抛物线上的一点AD与BC交于点E且AE=5DE求点D的坐标(3)如图2 已知点M(0,1)抛物线上是否存在点P使锐角∠MBP满足tan∠MBP=1若2存在求出点P的坐标若不存在说明理由.19.如图1 平面直角坐标系xOy中抛物线y=ax2+bx+c过点A(−1,0)B(2,0)和C(0,2)连接BC点P(m,n)(m>0)为抛物线上一动点过点P作PN⊥x轴交直线BC于点M交x 轴于点N.(1)直接写出抛物线和直线BC的解析式(2)如图2 连接OM当△OCM为等腰三角形时求m的值(3)当P点在运动过程中在y轴上是否存在点Q使得以O P Q为顶点的三角形与以B C N为顶点的三角形相似(其中点P与点C相对应)若存在直接写出点P和点Q的坐标若不存在请说明理由.20.如图(1)在平面直角坐标系中抛物线y=ax2+bx−4(a≠0)与x轴交于A B两点(点A在点B的左侧)与y轴交于点C点A的坐标为(−1,0)且OC=OB点D和点C关于抛物线的对称轴对称.(1)分别求出a b的值和直线AD的解析式(2)直线AD下方的抛物线上有一点P过点P作PH⊥AD于点H作PM平行于y轴交直线AD 于点M交x轴于点E求△PHM的周长的最大值(3)在(2)的条件下 如图2 在直线EP 的右侧 x 轴下方的抛物线上是否存在点N 过点N 作NG ⊥x 轴交x 轴于点G 使得以点E N G 为顶点的三角形与△AOC 相似?如果存在 请直接写出点G 的坐标 如果不存在 请说明理由.参考答案1.(1)解:∠抛物线y =x 2+bx 经过点A (2 0) ∠22+2b =0 解得:b =−2 ∠抛物线解析式为y =x 2−2x 当x =−1 时 y =3 ∠点B 的坐标为B (−1,3)设直线AB 的解析式为y =kx +m (k ≠0) 把A (2 0) B (−1,3) 代入得: {2k +m =0−k +m =3 解得:{k =−1m =2 ∠直线AB 的解析式为y =−x +2 (2)如图 连接BD AD∠y =x 2−2x =(x −1)2−1 ∠点D 的坐标为D (1,−1) ∠A (2 0) B (−1,3)∠AB 2=(−1−2)2+32=18,AD 2=(2−1)2+(−1)2=2,BD 2=(−1−1)2+(−1−3)2=20∠AB 2+AD 2=BD 2 ∠∠ABD 为直角三角形 ∠tan∠ABD =ADAB =√2√18=13(3)设直线BD 的解析式为y =k 1x +b 1(k 1≠0) 把点D (1,−1) B (−1,3)代入得:{k 1+b 1=−1−k 1+b 1=3 解得:{k 1=−2b 1=1∠直线BD 的解析式为y =−2x +1当y =0 时 x =12 ∠点P 的坐标为P (12,0) 当∠ABP ∠∠ABC 时 ∠ABC =∠APB如图 过点B 作BQ ∠x 轴于点Q 则BQ =3 OQ =1∠∠ABP ∠∠ABC∠∠ABD =∠BCQ由(2)知tan∠ABD =13∠tan∠BCQ =13 ∠BQ CQ =13∠CQ =9∠OC =OQ +CQ =10∠点C 的坐标为C (−10,0)当∠ABP ∠∠ABC 时 ∠APB =∠ACB 此时点C 与点P 重合∠点C 的坐标为C (12,0)综上所述 点C 的坐标为C (−10,0)或(12,0).2.(1)解:∠x =−b 2a =1∠O C 两点关于直线x =1对称∠C (2,0)设直线AB :y =kx +b (k ≠0)把A (1,2) B (5,0) 代入得{k +b=25k +b=0解得{k =−12b =52则y =−12x +52 (2)①设D 的坐标为(p,q ) 则BD AB =q 2 若△CDB 与△BOA 相似 则BD AB =BC BO∠q 2=BC BO =35∠q =65 ∠D (p,q )在直线AB 上∠D (135,65) 代入抛物线解析式可得a =1013∠抛物线解析式为y =1013x 2−2013x .②∠A (1,2) B (5,0) O (0,0)∠OA =√5 OB =5 AB =2√5∠OA 2+AB 2=OB 2∠∠OAB=90°∠∠OAE=90° 设E 的坐标为(m,n )∠△OAE 是等腰三角形∠AE =AO =√5∠BE =3√5∠S △BEO =12BE ⋅OA =12BO ⋅n ∠12×3√5×√5=12×5n∠n =3∠E (m,n )在直线AB 上∠3=−12m +52 ∠m =−1又∠E (−1,3)在抛物线上∠3=a +2a故答案为:1.3.解:(1)设抛物线的解析式为y =a (x −4)(x −1)∵点C (0,−2)在抛物线上∴−4×(−1)a =−2∴a =−12∴抛物线的解析式为y =−12(x −4)(x −1)=−12x 2+52x −2(2)如图当点D 在抛物线上 且使△DCA 的面积最大 必有平行于直线AC 的直线DE且和抛物线只有一个交点设直线AC 解析式为y =kx +m∵A (4,0) C (0,−2)∠{4k +m =0m =−2解得{k =12m =−2∴直线AC 解析式为y =12x −2设直线DE 解析式为y =12x +b ①∵抛物线的解析式为y =−12x 2+52x −2②联立①②化简得 x 2−4x +4+2b =0∴ Δ=16−4(4+2b )=0∴b =0∴x 2−4x +4=0∴x =2∴D (2,1)过点P 作PM ⊥OAA (4,0) C (0,−2)∴OA =4 OC =2∴ OA OC =2设点P (p,ℎ)∴AM =|4−p|.PM =|ℎ| ℎ=−12p 2+52p −2③∵∠APM =∠AOB =90°∵以A P M 为顶点的三角形与△OAC 相似∴ PM AM=OA OC =2 ① ∴ |ℎ||4−p|=2④联立③④解得{p =4ℎ=0 (舍)或{p =5ℎ=−2或{p =−3ℎ=−14 ∴P (−3,−14)或(5,−2)②PM AM=OC OA =12 ∴ |ℎ||4−p|=12⑤联立③⑤解得 {p =2ℎ=1 或{p =4ℎ=0 (舍)或{p =0ℎ=−2∴P (2,1)或(0,−2)综上 得到点P (−3,−14)或(5,−2)或(2,1)或(0,−2).4.(1)解:将点B C 的坐标代入抛物线表达式得:{c =2−12×16+4b +c =0解得:{b =32c =2故抛物线的表达式为:y =−12x 2+32x +2(2)解:①∵B 是点A 关于抛物线对称轴的对称点 连接BC 交抛物线对称轴于点E 则点E 为所求点则点D E 重合设BC 的解析式为y =kx +b将B(4,0) C(0,2)代入解析式可得{0=4k +b b =2解得{k =−12b =2∴直线CB 的表达式为:y =−12x +2 由y =−12x 2+32x +2知 点D 的横坐标为−b 2a =32把x =32代入y =−12x +2 可得y =54∴E (32,54)②令y =−12x 2+32x +2=0 解得:x =−1或4 则点A(−1,0)由点A B C 的坐标得 AB =5 AC =√5 BC =√20∵AB 2=AC 2+BC 2∴△ABC 为直角三角形 且∠ACD =90°∵以C D E 为顶点的三角形与△ABC 相似则△CDE 为直角三角形当∠CE ′D 为直角时 如图则点E ′的坐标为E ′(32,2)当∠ECD 为直角时 如图∵∠ACB 为直角∴A,C,E 三点共线设AC 的解析式为y =k 1x +b 1把A (−1,0),C (0,2)代入可得{2=b 0=−x +b 解得{k =2b =2∴直线AC 的表达式为:y =2x +2当x =32时 y =2x +2=5即点E(32,5)综上点E的坐标为:(32,2)或(32,5).5.(1)解:∵A(−2,0)B(4,0)抛物线y=ax2+bx+c经过A B两点交y轴于点C(0,4)∴c=4{4a−2b+4=016a+4b+4=0解得{a=−12 b=1∴抛物线解析式为y=−12x2+x+4(2)解:设直线BC的解析式为y=kx+b1∵点C的坐标为(0,4)B点坐标为(4,0)∴{4k1+b=0b=4∴{k1=−1b=4∴直线BC的解析式为y=−x+4∴点P的坐标为(m,−12m2+m+4)点Q的坐标为(m,−m+4)∴PQ=−12m2+m+4−(−m+4)=−12m2+2m=−12(m−2)2+2∵OC=OB=4∴∠B=45°∠BQM=∠PQN=45°∴PN=√22PQ=−√22m2+√2m=−√22(m−2)2+√2∴当m=2时PN有最大值√2(3)解:存在Q(43,83)或Q(83,43)理由:如图所示OC=4OA=2Q的坐标为(m,−m+4)∠COA=∠OMQ=90°当△OAC∽△MOQ时MQOM =OCOA=2即−m+4m=2解得m=43此时Q的坐标为(43,83)当△OAC∽△MQO时MQOM =OAOC=12即−m+4m=12解得m=83此时Q的坐标为(83,43)综上Q点坐标为(43,83)或(83,43).6.解:(1)设A(m,0)∵B(4,0),D(5,3)∴AB=4−m AB边上的高为3则由ΔABD的面积是3可得:12(4−m)×3=3解得m=2∴A(2,0)设抛物线解析式为y=a(x−2)(x−4)将D(5,3)代入得:3a=3解得a=1∴y=(x−2)(x−4)=x2−6x+8∵y=x2−6x+8=(x−3)2−1∴顶点坐标为(3,−1)故该抛物线的表达式为y=x2−6x+8顶点坐标为(3,−1)(2)如图过点D作DF⊥x轴于点F∵A(2,0),B(4,0),D(5,3)∴DF =3,AF =5−2=3,AB =4−2=2∴DF =AF∴∠DAB =∠DAF =45°(3)如图∵抛物线的表达式为y =x 2−6x +8令x =0 则y =8∴ C(0,8)设直线CD 解析式为y =kx +b将C(0,8),D(5,3)代入得{b =85k +b =3解得{k =−1b =8直线CD 解析式为:y =-x +8当y =0时 −x +8=0 解得x =8∴E(8,0)∵A(2,0),B(4,0),D(5,3)∴AB =4−2=2 AD =√(5−2)2+32=3√2,BD =√(5−4)2+32=√10 ①若ΔADB ∽ΔAPE 则AP AE =AD AB∴AP =AE⋅AD AB =3√2×62=9√2>AD∵点P 在线段AD 上∴此种情形不存在 不合题意②若ΔADB ∽ΔAEP 则AP AB =AE AD∴AP =AE ⋅AB AD =3√2=2√2 综上所述 AP 的长为2√2.7.(1)解:当x =0时 y =2当y =0时 即−12x 2+32x +2=0 解得:x 1=−1 x 2=4∠A(−1,0) B(4,0) C(0,2)(2)解:①设直线BC 的解析式为y =kx +b (k ≠0)把B(4,0) C(0,2)代入 得{4k +b =0b =2解得:{k =−12b =2∠直线BC 的解析式为y =−12x +2 ∠点P 的横坐标为t∠M (t,−12t +2) N (t,−12t 2+32t +2) 当点P 在y 轴的左侧 即−1≤t <0时由题意得:s =−12t +2−(−12t 2+32t +2)=−12t +2+12t 2−32t −2=12t 2−2t 当点P 在y 轴的右侧(包含原点) 即0≤t ≤4时 由题意得:s =−12t 2+32t +2−(−12t +2)=−12t 2+32t +2+12t −2=−12t 2+2t 综上 s ={12t 2−2t (−1≤t <0)−12t 2+2t (0≤t ≤4)②如图 当△OP 1N 1∽△COB 时可得OP 1CO =N 1P 1BO 即t 2=−12t 2+32t+24∠−t 2+3t +4=4t整理得:t 2+t −4=0 解得:t 1=−1+√172 t 2=−1−√172(不合题意 舍去)当△OP2N2∽△BOC时可得OP2BO =N2P2CO即t4=−12t2+32t+22∠−2t2+6t+8=2t整理得:t2−2t−4=0解得:t3=1+√5t4=1−√5(不合题意舍去)综上点P的坐标为(−1+√172,0)和(1+√5,0).8.解:(1)将A(−8,0)B(−2,12)分别代入y=ax2+bx+8中得{a×(−8)2−8b+8=0a×(−2)2−2b+8=12解得{a=−12 b=−3∴抛物线L1的解析式为y=−12x2−3x+8=−12(x+3)2+252则:顶点为(−3,252)∵抛物线L1与抛物线L2关于y轴对称顶点也关于y轴对称开口方向及大小均相同即二次项系数相同∴抛物线L2的顶点为(3,252)∴抛物线L2的解析式为y=−12(x−3)2+252=−12x2+3x+8.故抛物线L2的解析式为y=−12x2+3x+8.(2)如图存在点M 使△MNA′与△ACB′相似.由题意得:A′(8,0) B′(2,12) C (2,0) N (3,0) ∴ AC =10 B′C =12 A′N =5 ∵ ∠A′NM =∠ACB′=90°∴ △A′MN 与△AB′C 相似 可以分两种情况: ①当△AB′C ∽△A′MN 时 则MNNA′=B′C AC=1210=65∴ MN =6 即点M (3,−6)此时 抛物线L 3的表达式为y =−12(x −3)2−6=−12x 2+3x −212.②当△AB′C ∽△MA′N 时 同理可得:点M (3,−256)此时 抛物线L 3的表达式为y =−12(x −3)2−256=−12x 2+3x −263故:函数L 3的解析式为:y =−12x 2+3x −212或y =−12x 2+3x −263.9.解:(1)将A(−3,0),B(1,0)代入抛物线解析式中得:{9a −3b +3=0a +b +3=0解得:{b =−2c =3∠抛物线解析式为y =−x 2−2x +3=−(x 2+2x)+3 =−(x 2+2x +1−1)+3=−(x +1)2+4 当x =−1时 y =4 ∠顶点D(−1,4)(2)当x =0时 ∠点C 的坐标为(0,3)∠AC =√32+32=3√2,CD =√12+12=√2,AD =√22+42=2√5 ∠AC 2+CD 2=AD 2∠△ACD 为直角三角形 ∠ACD =90°. 设直线AC 的解析式为y =kx +b 根据题意得:{−3k +b =0b =3解得:{k =1b =3∠直线AC 的解析式为y =x +3 ∠A(−3,0) D(−1,4)∠线段AD 的中点N 的坐标为(−2,2) 过点N 作NP//AC 交抛物线于点P 设直线NP 的解析式为y =x +c 则−2+c =2 解得:c =4 ∠直线NP 的解析式为y =x +4由y =x +4,y =−x 2−2x +3联立得:−x 2−2x +3=x +4 解得:x 1=−3−√52,x 2=−3+√52∠P (−3−√52,5−√52)或(−3+√52,5+√52)(3)分三种情况: ①△CMB ∽△ACD∴CM CB =ACAD ∴CM √10=3√22√5∴CM =3此时M 恰好为原点 M(0,0) ②△MCB ∽△ACD∴MC AC =CBCD∴3√2=√10√2 ∴CM =3√10设M(x,0)∵OM 2+OC 2=CM 2 ∴x 2+32=(3√10)2∴x 2=81∴x =−9或x =9(舍去) 此时M(−9,0) ③△CBM ∽△ACD∴CB AC =CM AD∴√103√2=CM2√5 ∴CM =103设M(x,0)∴|CM −OC |=103−3=13∴x =−13或x =13(舍去)此时M 在y 轴负半轴上 M (0,−13)综上所述 点M 的坐标为(0,0)或(−9,0)或(0,−13).10.(1)解:由题意得 函数图象经过点A (﹣4 3) B (4 4) 故可得:{3=148(−4+2)(−4a +b )4=148(4+2)(4a +b )解得:{a =13b =−20故二次函数关系式为: y =148(x +2)(13x −20)=1348x 2+18x −56.故答案为:y =1348x 2+18x −56.(2)解:△ACB 是直角三角形 理由如下: 由(1)所求函数关系式y =1348x 2+18x −56当y =0时 0=1348x 2+18x −56解得x 1=−2 x 2=2013∠点C 坐标为(﹣2 0) 点D 坐标为(2013 0) 又∠点A (﹣4 3) B (4 4) ∠AB =√(4+4)2+(4−3)2=√65 AC =√(−2+4)2+(0−3)2=√13BC =√(4+2)2+(4−0)2=2√13∠满足AB 2=AC 2+BC 2 ∠△ACB 是直角三角形. (3)解:存在 点P 的坐标为(−50133513)或(−1221328413).设点P 坐标为(x 148(x +2)(13x ﹣20)) 则PH =148(x +2)(13x ﹣20) HD =﹣x +2013 若∠DHP ∠∠BCA 则PH AC=DH BC即148(x+2)(13x−20)√13=−x+20132√13解得:x =−5013或x =2013(因为点P 在第二象限 故舍去) 代入可得PH =3513即P 1坐标为(−50133513)若∠PHD ∠∠BCA 则PH BC=HD AC即148(x+2)(13x−20)2√13=−x+2013√13解得:x =−12213或 x =2013(因为点P 在第二象限 故舍去). 代入可得PH =28413即P 2坐标为:(−1221328413).综上所述 满足条件的点P 有两个 即P 1(−50133513)或P 2(−1221328413).11.(1)解:∠直线y =−x +4与x 轴交于点A 与y 轴交于B ∴当x =0时 y =4 当y =0时 ∴A (4,0) B (0,4)又抛物线y =−x 2+bx +c 经过A B 两点 把A (4,0) B (0,4)代入得:{−16+4b +c =0c =4解得:{b =3c =4∠抛物线的解析式是y =−x 2+3x +4 (2)解:作PE ⊥AC 垂足为E 如图所示∠∠DFA =∠PEA =∠BOA =90° ∠DF ∥PE ∥BO由(1)得:抛物线的解析式是y =−x 2+3x +4 抛物线对称轴是x =−b2a =−32×(−1)=32 ∠BD =3PD①当P 在对称轴右侧时 OF ∶OE =BD ∶BP =3∶4 点P 的横坐标是2 y =−4+6+4=6 ∠点P 的坐标是(2,6)②当P 在对称轴左侧时 OF ∶OE =BD ∶BP =3∶2 点P 的横坐标是1 y =−1+3+4=6 ∠点P 的坐标是(1,6)∠点P 的坐标是(2,6)或(1,6)(3)解:∠抛物线对称轴与x轴交于点F对称轴是x=−b2a =−32×(−1)=32∠F(32,0)∠点A C关于对称轴对称∠CF=AF=4−32=52∠C(−1,0)∠A(4,0)B(0,4)∠OC=1OA=OB=4∠△ABO是等腰直角三角形∠∠BAO=∠ABO=45°设P(t,−t2+3t+4)过点P作PM∥y轴交直线AB于点M过点M作MN⊥y轴于点N 当点P在AB上方点Q在点B的右侧时如图所示则M(t,−t+4)MN=t∠PM=−t2+3t+4−(−t+4)=−t2+4t∠△BMN是等腰直角三角形∠BM=√2MN=√2t∠∠PMQ=∠ABO=45°∠PQM=90°∠△PMQ是等腰直角三角形∠PQ=MQ=√22PM=√22(−t2+4t)∠BQ=BM−MQ=√2t−√22(−t2+4t)=√22t2−√2t若△BPQ∼△BCO则PQOB =BQOC∠√22(−t 2+4t )4=√22t 2−√2t 1解得:t 1=0(舍) t 2=125当t 2=125时 −t 2+3t+4=−(125)2+3×125+4=13625∠P (125,13625) M (125,85) ∠PM =13625−85=9625过点Q 作QK ⊥PM 轴于点K 则QK =12PM =12×9625=4825∠点Q 的横坐标为125−4825=1225 纵坐标为−1225+4=8825 ∠Q (1225,8825)若△BPQ ∼△CBO 则PQ OC =BQOB ∠√22(−t 2+4t )1=√22t 2−√2t 4解得:t 1=0(舍) t 2=185当t 2=185时 −t 2+3t+4=−(185)2+3×185+4=4625∠P (185,4625) M (185,25) ∠PM =4625−25=3625 同理可得:Q (7225,2825)当点P 在AB 上方 点Q 在点B 的左侧时 如图所示则M (t,−t+4) MN =t∠PM =−t 2+3t+4−(−t+4)=−t 2+4t同理可得:PQ =MQ =√22PM =√22(−t 2+4t ) BM =√2MN =√2t∠BQ =BM −MQ =−√22t 2+√2t 若△BPQ ∼△CBO 则PQOB =BQOC ∠√22(−t 2+4t )4=−√22t 2+√2t 1解得:t 1=0(舍) t 2=43当t 2=43时 −t 2+3t+4=−(45)2+3×43+4=569∠P (43,569)同理可得:Q (−49,329) 若△BPQ ∼△BCO 则PQ OC=BQ OB∠√22(−t 2+4t )1=−√22t 2+√2t 4解得:t 1=0(舍) t 2=143(舍去)当点P 在AB 下方 对称轴左侧的抛物线上时 则t <0 如图所示∠PM =−t+4−(−t 2+3t+4)=t 2−4t ME =−t ∠PQ =MQ =√22PM =√22t 2−2√2t BM =√2ME =−√2t∠BQ =MQ −BM =√22t 2−√2t若△BPQ ∼△CBO 则PQOB =BQOC ∠√22t 2−2√2t 4=√22t 2−√2t 1解得:t 1=0(舍) t 2=43(舍) 若△BPQ ∼△BCO 则PQOC =BQOB∠√22t 2−2√2t 1=√22t 2−√2t 4解得:t 1=0(舍) t 2=143(舍)当点P 在AB 下方 对称轴右侧的抛物线上时 则t>4 如图所示∠PM =t 2−4t ME =t ∠PQ =MQ =√22PM =√22t 2−2√2t BM =√2ME =√2t∠BQ =BM+MQ =√22t 2−2√2t+√2t =√22t 2−√2t若△BPQ ∼△CBO 则PQOB=BQ OC∠√22t 2−2√2t 4=√22t 2−√2t 1解得:t 1=0(舍) t 2=43(舍) 若△BPQ ∼△BCO 则PQ OC=BQ OB∠√22t 2−2√2t 1=√22t 2−√2t 4解得:t 1=0(舍) t 2=143(舍)当t 2=143时 −t 2+3t+4=−(143)2+3×143+4=−349∠P (143,−349)同理可得:Q (569,−209)综上所述:点Q 的坐标为Q 1(7225,2825),Q 2(1225,8825),Q 3(569,−209),Q 4(−49,409) 12.解:(1)∠抛物线y =ax 2+bx +2过点A (-3 0) B (1 0)∠{9a −3b +2=0a +b +2=0 解得:{a =−23b =−43∠二次函数的关系解析式为y =−23x 2−43x +2.(2)存在点Q (-2 2)或(−34,218)使以点B Q E 为顶点的三角形与△AOC 相似.理由如下:如图①设点E 的横坐标为c 则点Q 的坐标为(c −23c 2−43c +2)∠BE =1-c QE =−23c 2−43c +2①OA 和BE 是对应边时 ∠∠BEQ ∠∠AOC ∠OA BE=OC QE即31−c =2−23c 2−43c+2整理得 c 2+c -2=0 解得c 1=-2 c 2=1(舍去)此时 −23×(−2)2−43×(−2)+2=2点Q (-2 2)②OA 和QE 是对应边时 ∠∠QEB ∠∠AOC ∠OA QE=OC BE 即3−23c 2−43c+2=21−c整理得 4c 2-c -3=0解得c 1=−34 c 2=1(舍去)此时−23×(−34)2−43×(−34)+2=218点Q(−34,21 8)综上所述存在点Q(-2 2)或(−34,218)使以点B Q E为顶点的三角形与∠AOC相似.(3)①如图2当MC//AQ且MC=AQ时M与C关于对称轴x=-1对称∠AQ=MC=2∠Q1(-1 0)Q2(-5 0)②如图3当AC//MQ且AC=MQ时因为平行四边形是中心对称图形并且中心对称点在x轴上所以点M到x轴的距离为2.设M(m23m2−43m+3)∠2 3m2−43m+3=-2∠m2+2m-6=0∠m=-1±√7∠QG=3∠Q 3(2+√7 0) Q 4(2−√7 0).综上所述 满足条件的点Q 的坐标为:Q 1(-5 0) Q 2(-1 0) Q 3(2+√7 0) Q 4(2−√7 0).13.解:(1)将点A (−4,0) 点B (2,0) 点C (0,−4)代入y =ax 2+bx +c得{c =−416a −4b +c =04a +2b +c =0∠{a =12b =1c =−4∠y =12x 2+x −4(2)如图 过P 点作x 轴垂线交AC 于点Q设直线AC 的解析式为y =kx +b∠{−4k +b =0b =−4∠{k =−1b =−4∠y =−x −4设P (t,12t 2+t −4) 则Q (t,−t −4) ∠PQ =−t −4−12t 2−t +4=−12t 2−2t∠S △ACP =12×4×(−12t 2−2t)=−t 2−4t =−(t +2)2+4∠当t =−2时 S △ACP 有最大值∠P (−2,−4)(3)抛物线的对称轴为x =−1 顶点D (−1,−92)设E (m,12m 2+m −4) 则F (−1,12m 2+m −4)∠EF =−1−m DF =12m 2+m −4+92=12m 2+m +12∠点E 是直线AD 下方该抛物线上的一个动点∠−4<m <−1∠B (2,0) C (0,−4)∠OB =2 OC =4∠tan∠OCB =12当∠EDF =∠OCB 时 △EDF ∼△BCO∠EF FD =12∠2(−1−m)=12m 2+m +12解得m =−1(舍)或m =−5(舍)当∠FED =∠OCB 时 △EDF ∼△DBO∠EF FD =2∠2(12m 2+m +12)=−1−m解得m =−1(舍)或m =−2∠E (−2,−4)综上所述:当以D E F 为顶点的三角形与△BOC 相似时 E 点坐标(−2,−4).14.(1)解:①由m =1可知点C (0 ﹣3)∵抛物线与x 轴交点为A(−3,0) B(1,0)∴抛物线解析式为:y =a(x +3)(x −1)将点C(0,−3)代入上式 得a ×3×(−1)=−3∴a =1∴抛物线的解析式为:y =(x +3)(x −1)=x 2+2x −3②由①可知抛物线解析式为y =x 2+2x −3 则设P(x,x 2+2x −3) 设直线AC 的解析式为y =kx +b由题意可得{−3k +b =0b =−3解得{k =−1b =−3∴直线AC 的解析式为y =−x −3如图1 过点P 作PN ⊥x 轴 交AC 于N 则PN//OC∴点N(x,−x −3)∴PN =(−x −3)−(x 2+2x −3)=−x 2−3x∵PN//OC∴△PQN ∽△OQC∴ PQ OQ =PN OC∴ PQ OQ =−x 2−3x 3=−(x+32)2+943 ∴当x =−32时 PQ OQ 的最大值为34 (2)解:∵y =mx 2+2mx −3m =m(x +1)2−4m∴顶点D 坐标为(−1,−4m)如图2 过点D 作DE ⊥x 轴于点E 则DE =4m OE =1 AE =OA −OE =2 过点D 作DF ⊥y 轴于点F 则DF =1 CF =OF −OC =4m −3m =m由勾股定理得:AC2=OC2+OA2=9m2+9CD2=CF2+DF2=m2+1AD2=DE2+AE2=16m2+4∵ΔACD与ΔBOC相似且ΔBOC为直角三角形∴ΔACD必为直角三角形i)若点A为直角顶点则AC2+AD2=CD2即:(9m2+9)+(16m2+4)=m2+1整理得:m2=−12∴此种情形不存在ii)若点D为直角顶点则AD2+CD2=AC2即:(16m2+4)+(m2+1)=9m2+9整理得:m2=12∵m>0∴m=√2 2此时可求得ΔACD的三边长为:AD=2√3CD=√62AC=3√62ΔBOC的三边长为:OB=1OC=3√22BC=√222两个三角形对应边不成比例不可能相似∴此种情形不存在iii)若点C为直角顶点则AC2+CD2=AD2即:(9m2+9)+(m2+1)=16m2+4整理得:m2=1∵m>0∴m=1此时可求得ΔACD的三边长为:AD=2√5CD=√2AC=3√2ΔBOC的三边长为:OB=1OC=3BC=√10∵ADBC =ACOC=CDOB=√2∴满足两个三角形相似的条件∴m=1.综上所述当m=1时以A D C为顶点的三角形与ΔBOC相似.15.(1)解:将A(−2,0),B(8,0),C(0,4)三点坐标代入y=ax2+bx+c中得{4a−2b+c=0c=464a+8b+c=0解得{a=−14b=32c=4所以抛物线表达式为:y=−14x2+32x+4.(2)解:根据题意得:∵A(−2,0),B(8,0),C(0,4)∠OA=2,OB=8,OC=4∴AOOC=COBO=12又∠AOC=∠COB=90°∴△AOC∽△COB∴∠ACO=∠CBO∴∠ACB=∠ACO+∠BCO=∠CBO+∠BCO=90°当△AOC∽△PDC时∴∠ACO=∠PCD∵∠ACO+∠OCB=90°∴∠PCD+∠OCB=90°∴PC⊥OC∴点P的纵坐标为4当y=4时有−14x2+32x+4=4解得x=6或x=0(舍)∴点P的坐标为(6,4)当△AOC∽△CDP时∠P′CD′=∠CAO作P′G⊥y轴于点G过点P′作P′H∥y轴交BC于点H如图∴∠P′HC=∠BCO∵AOOC=COBO=12,∠AOC=∠BOC=90°∴△AOC∽△COB∴∠OCB=∠OAC∴∠P′CH=∠P′HC∴P′C=P′H设直线BC的解析式为y=k′x+b′把点B(8,0),C(0,4)代入得:{8k ′+b′=0b′=4解得:{k′=−12b′=4∠直线BC的解析式为y=−12x+4设P′(m,−14m2+32m+4)则H(m,−12m+4)∴P′C=P′H=−14m2+32m+4−(−12m+4)=−14m2+2m在Rt△P′GC中由勾股定理得P′C2=P′G2+GC2即(−14m2+2m)2=m2+(−14m2+32m)2解得m=3∴P′(3,254)综上点P的坐标为:(6,4)或(3,254).(3)解:过N作NF⊥MC交MC于点F过N点作NG⊥AC交CA的延长线于点G则∠G=∠CFN=90°∴∠ACM+∠GNF=180°设CM与x轴交于K由旋转得:AN=MN∵∠ANM+∠ACM=180°∴∠ANM=∠GNF∴∠ANG=∠MNF∵∠G=∠MFN=90°∴△NGA≌△NFM∴NG=NF∴NC平分∠ACM∵CO⊥AB ∴OK=OA=2∴K(2,0)∴CK的解析式为:y=−2x+4∴−2x+4=−14x2+32x+4解得:x1=0,x2=14∴M(14,−24)设N(0,n)∵AN=MN∴(−2)2+n2=142+(−24−n)2解得:n=−16所以点N坐标为(0,−16).16.解:(1)∠抛物线y=−x2+2mx−m2+2m(m>0)交x轴于A B两点∠当m=2∠y=−x2+4x∠x1=0x2=4∠A(0,0)B(4,0).(2)①∠y=−x2+2mx−m2+2m∠对称轴x=−b2a=m∠顶点坐标C(m,2m)延长CD交x轴于点E设点E(a,0)a>m∠∠COB=∠OCD∠|OE|=|CE|∠a2=(a−m)2+(2m)2解得:a=52m∠点E的坐标为:(52m,0)设直线CE的解析式为:y=k1x+b1(k≠0)∠{2m=km+b 0=52mk+b解得:{k=−43b=103m∠y=−43x+103m∠−43x+103m=−x2+2mx−m2+2m解得:x1=m(舍)x2=m+43∠点D(m+43,2m−169)∠CD=209.②设直线OC的解析式为:y=k1x(k≠0)∠y=2x∠设点P(b,2b)∠OP=√b+24b2=√5b CP=√(m−b)2+(2m−2b)2=√5(m−b)当△OPT∼△CDP∠OP CD =OTCP∠√5b×920=√5(m−b)整理得:9b2−9mb+4t=0∠Δ>0∠81m2−4×9×4t>0∠9m2−16t>0当△OTP∼△CDP∠OT CD =OPCP∠t×920=√5b√5(m−b)整理得:b =9tm 20+9t∠仅存在一个点P∠不符合题意∠综上 t 和m 之间的数量关系为:9m 2−16t >0.17.(1)解:∵抛物线y =−x 2+bx +c 经过A (0,3)和B (72,−94)两点∴将A (0,3)和B (72,−94)代入y =−x 2+bx +c 得{c =3−(72)2+72b +c =−94 解得{b =2c =3 ∴抛物线的解析式为y =−x 2+2x +3(2)解:在 y =−x 2+2x +3中 当y =0时 −x 2+2x +3=0 解得x =3或x =−1 ∠G(3,0)∠OG =3∠A(0,3),P(2,3)∠OA =3,AP =2,AP ∥x 轴∠S 四边形APGO =AP+OG 2⋅OA =2+32×3=7.5(3)解:设直线AB 的解析式为y =kx +n 把A (0,3)和B (72,−94)代入得{n =372k +n =−94解得{k =−32n =3∴直线AB 的解析式为y =−32x +3 在y =−32x +3 当y =0时 −32x +3=0 解得x =2 ∴C (2,0)联立{y =−x 2+2x +3y =−32x +3 解得x 1=0 x 2=72 ∵PD ⊥x 轴 PE ∥x 轴∴∠ACO =∠DEP∴Rt △DPE ∽Rt △AOC∴ PD PE =OA OC =32 即PE =23PD∴PD +PE =53PD设点P (a,−a 2+2a +3) 0<a <72 则D (a,−32a +3)∴PD =(−a 2+2a +3)−(−32a +3)=−(a −74)2+4916 ∴PD +PE =−53(a −74)2+24548∵−53<0 抛物线开口向下 PD +PE 有最大值 0<a <72 ∴当a =74时 PD +PE 有最大值为24548(4)解:∵PD ⊥x 轴∴PD ∥y 轴 即∠OAC =∠PDA根据题意 分两种情况:①当△AOC ∽△DPA 时∴∠DPA =∠AOC =90°∵PD ⊥x 轴 ∠DPA =90° A (0,3)∴点P 纵坐标是3 横坐标x >0 即−x 2+2x +3=3 解得x =2∴点D 的坐标为(2,0)∵PD ⊥x 轴∴点P 的横坐标为2∴点P (2,3)②当△AOC ∽△DAP 时∴ ∠APD =∠ACO过点A 作AG ⊥PD 于点G 如图所示:∴△APG ∽△ACO∴ PG AG =OC AO设点P (n,−n 2+2n +3) 则D (n,−32n +3) 则−n 2+2n+3−3n =23 解得n =43 ∠P (43,359)综上所述 P (2,3)或P (43,359).18.(1)解:把点A(−2,0) C(0,4)代入y =ax 2+23x +c (a ≠0)得:{4a −43+c =0c =4 解得:{a =−23c =4 ∠抛物线的解析式为y =−23x 2+23x +4 (2)解:过点D 作DF∥AB 交BC 于点F当y =0时 有−23x 2+23x +4=0 解得x 1=−2,x 2=3∠B (3,0)设直线BC 的解析式为:y =kx +b代入B (3,0) C(0,4)得:{3k +b =0b =4解得{k =−43b =4∠直线BC 的解析式为:y =−43x +4 设点D 的横坐标为t 则D (t ,−23t 2+23t +4) ∠F (12t 2−12t,−23t 2+23t +4) ∠DF =t −(12t 2−12t)=−12t 2+32t∠A(−2,0) B(3,0)∠AB =5∠DF∥AB∠△DEF∽△AEB∠DF AB =DE AE∠−12t 2+32t 5=DE 5DE =15 ∠−12t 2+32t =1解得:t 1=1 t 2=2∠点D 的坐标为(1,4)或(2,83)(3)解:存在点P 使tan∠MBP =12 ①当PB 在MB 上方时 过点M 作IM ⊥PB 交PB 于I 过I 作IJ ⊥y 轴于J则tan∠MBI =MI MB =12∠∠JMI +∠JIM =90° ∠JMI +∠OMB =90°∠∠JIM =∠OMB又∠∠IJM =∠MOB =90°∠△MIJ∽△BMO∠IJ MO=JM OB =IM MB ∠IJ 1=JM 3=12 ∠IJ =12 JM =32∠OJ =JM +OM =52∠I (12,52)设直线BI 的解析式为:y =mx +n代入B(3,0) I (12,52)得:{3m +n =012m +n =52 解得:{m =−1n =3∠直线BI 的解析式为:y =−x +3联立{y =−23x 2+23x +4y =−x +3解得:{x =−12y =72或{x =3y =0 (不合题意 舍去)∠此时点P 的坐标为(−12,72)②当PB 在MB 下方时 过点M 作KM ⊥P ′B 交P ′B 于K 过K 作KL ⊥y 轴于L 同理可得 点P 的坐标为(−3114,−7398)综上所述 点P 的坐标为(−12,72)或(−3114,−7398).19.(1)解:∠抛物线y =ax 2+bx +c 过点A (−1,0) B (2,0)∠抛物线的表达式为y =a (x +1)(x −2)将点C (0,2)代入y =a (x +1)(x −2) 得:2=−2a解得:a =−1∠抛物线的表达式为y =−(x +1)(x −2) 即y =−x 2+x +2设直线BC 的表达式为y =kx +t 过点B (2,0) C (0,2)∠{2k +t =0t =2解得:{k =−1t =2∠直线BC 的表达式为y =−x +2(2)∠点M 在直线BC 上且P (m,n )(m >0) PN ⊥x 轴 C (0,2)∠M (m,−m +2) OC =2∠CM 2=(m −0)2+(−m +2−2)2=2m 2 OM 2=m 2+(−m +2)2=2m 2−4m +4 当△OCM 为等腰三角形时①若CM =OM 则CM 2=OM 2即2m 2=2m 2−4m +4解得:m =1②若CM =OC 则CM 2=OC 2即2m2=4解得:m=√2或m=−√2(舍去)③若OM=OC则OM2=OC2即2m2−4m+4=4解得:m=2或m=0(舍去)综上所述m=1或m=√2或m=2(3)∠B(2,0)C(0,2)∠COB=90°∠OC=OB=2∠∠OCB=∠OBC=45°CB=√OC2+OB2=√22+22=2√2∠点P与点C相对应P(m,n)(m>0)∠△POQ∽△CBN或△POQ∽△CNB①若点P在点B的左侧则∠CBN=45°BN=2−m CB=2√2∠CNB=∠CON+∠OCN=90°+∠OCN>90°如图当△POQ∽△CBN即∠POQ=45°时∠P(m,m)此时直线OP的表达式为y=x∠直线OP:y=x与抛物线y=−x2+x+2交于点P(m,m)(m>0)∠−m2+m+2=m解得:m=√2或m=−√2(负值舍去)∠OP=√(√2)2+(√2)2=2∠OP BC =OQBN即2√2=2−√2解得:OQ=√2−1∠P(√2,√2)Q(0,√2−1)如图当△POQ∽△CNB即∠PQO=45°时过点P作PK⊥y轴于K点∠PK=KQ=m KO=PN=−m2+m+2∠PQ=KPsin∠PQO =msin45°=√2m OQ=KQ−KO=m−(−m2+m+2)=m2−2∠PQ CB =OQNB即√2m2√2=m2−22−m解得:m=1+√133或m=1−√133(负值舍去)∠P(1+√133,7+√139)Q(0,4−2√139)②若点P在点B的右侧则∠CBN=135°BN=m−2如图当△POQ∽△CBN即∠POQ=135°时过点P作PK⊥y轴于K点∠P(m,−m)此时直线OP的表达式为y=−x PK=KQ=m KO=−(−m2+m+2)=m2−m−2∠m2−m−2=m解得:m=1+√3或m=1−√3(负值舍去)∠OP=PKsin∠POK =msin45°=√2m=√2(1+√3)=√2+√6∠OP BC =OQBN即√2+√62√2=1+√3−2解得:OQ=1∠P(1+√3,−1−√3)Q(0,1)如图当△POQ∽△CNB即∠PQO=135°时过点P作PK⊥y轴于K点∠PK=KQ=m KO=PN=−(−m2+m+2)=m2−m−2∠PQ=KPsin∠PQK =msin45°=√2m OQ=KO−KQ=m2−m−2−m=m2−2m−2∠PQ CB =OQNB即√2m2√2=m2−2m−2m−2解得:m=1+√5或m=1−√5(负值舍去)∠P(1+√5,−3−√5)Q(0,−2)综上所述P(√2,√2)Q(0,√2−1)或P(1+√133,7+√139)Q(0,4−2√139)或P(1+√3,−1−√3)Q(0,1)或P(1+√5,−3−√5)Q(0,−2).20.解:(1)∵点A的坐标为(−1,0)∴OA=1.令x=0则y=−4∴C(0,−4)OC=4∵OC=OB∴OB=4∴B(4,0)设抛物线的解析式为y=a(x+1)(x−4)∵将x=0y=−4代入得:−4a=−4解得a=1∴抛物线的解析式为y=x2−3x−4∴a=1b=−3∵抛物线的对称轴为x=−−32×1=32C(0,−4)∵点D和点C关于抛物线的对称轴对称∴D(3,−4)设直线AD的解析式为y=kx+b.∵将A(−1,0)D(3,−4)代入得:{−k+b=03k+b=−4解得k=−1b=−1∴直线AD的解析式y=−x−1(2)∵直线AD的解析式y=−x−1∴直线AD的一次项系数k=−1∴∠BAD=45°.∵PM平行于y轴∴∠AEP=90°∴∠PMH=∠AME=45°.∴△MPH的周长=PM+MH+PH=PM+√22MP+√22PM=(1+√2)PM.设P(a,a2−3a−4)则M(a,−a−1)则PM=−a−1−(a2−3a−4)=−a2+2a+3=−(a−1)2+4.∴当a=1时PM有最大值最大值为4.∴△MPH的周长的最大值=4×(1+√2)=4+4√2(3)在直线EP的右侧x轴下方的抛物线上存在点N过点N作NG⊥x轴交x轴于点G使得以点E N G为顶点的三角形与△AOC相似理由如下:设点G的坐标为(a,0)则N(a,a2−3a−4)①如图2.1若OAOC =EGGN时△AOC∠△EGN.则a−1−a2+3a+4=14整理得:a2+a−8=0.得:a=−1+√332(负值舍去)∴点G为(−1+√332,0)②如图2.2若OAOC =GNEN时△AOC∠△NGE则a−1−a2+3a+4=4整理得:4a2−11a−17=0得:a=11+√3938(负值舍去)∴点G为(11+√3938,0)综上所述点G的坐标为(−1+√332,0)或(11+√3938,0).。
相似三角形(8大题型)(48道压轴题专练)(原卷版)—2024-2025学年九年级数学上册单元速记巧
相似三角形(8大题型)(48道压轴题专练) 压轴题型一 相似形压轴题型1.(20-21九年级上·重庆渝中·期末)如图,△ABC 三个顶点的坐标分别是A (-2,2),B (-4,1),C (-1,-1).以点C 为位似中心,在x 轴下方作△ABC 的位似图形△A'B'C .并把△ABC 的边长放大为原来的2倍,那么点A'的坐标为( )A .(1,-6)B .(1,-7)C .(2,-6)D .(2,-7)2.(23-24八年级下·山东淄博·(2)ABCD AD AB AD <<纸片,以它的一边为边长剪去一个菱形,在余下的平行四边形中,再以它的一边为边长剪去一个菱形.若剪去两个菱形后余下的平行四边形与原平行四边形ABCD 相似,则平行四边形ABCD 的相邻两边AD 与AB 的比值是 .3.(2024·湖北武汉·一模)如图是由小正方形组成的网格,四边形ABCD的顶点都在格点上,仅用无刻度的直尺在所给定的网格中按要求完成下列画图,画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先以点A为位似中心,将四边形ABCD缩小为原来的12,画出缩小后的四边形111AB C D,再在AB上画点E,使得DE平分四边形ABCD的周长;(2)在图2中,先在AB上画点F,使得CF BC=,再分别在AD,AB上画点M,N,使得四边形BCMN 是平行四边形.4.(23-24九年级上·江苏南京·阶段练习)形状相同(即长与宽之比相等)的矩形是相似矩形,已知一个矩形长为()1a a³,宽为1.一分为二(1)如图1,将矩形分割为一个正方形(阴影部分)和小矩形,小矩形恰与原矩形相似,则a的值为______.(2)如图2,将矩形分割为两个矩形,使每个小矩形均与原矩形相似,则a的值为______.一分为多(3)有同学说“无论a为何值,该矩形总可以分割为几个小矩形,这几个小矩形都与原矩形相似”,你同意这个说法吗?若同意,在图3中画出一种可行的分割方案;若不同意,举出反例.一分为三(4)将矩形分割为三个矩形,使每个小矩形均与原矩形相似.画出所有可能的分割方案的示意图,并在每个示意图下方直接写出对应的a 的值.5.(20-21八年级下·山东淄博·期末)如图,四边形ABCD ∽四边形A B C D ¢¢¢¢,且62A Ð=°,75B Ð=°,140D Т=°,9AD =,11A B ¢¢=,6A D ¢¢=,8B C ¢¢=.(1)请直接写出:C Ð= 度;(2)求边AB 和BC 的长.6.(23-24九年级上·广西南宁·阶段练习)如图,在平面直角坐标系中,ABC V 的三个顶点坐标分别为()1,1A ,()3,2B ,()2,3C (每个方格的边长均为1个单位长度),请按下列要求画图:(1)111A B C △与ABC V 关于原点O 成中心对称,画出111A B C △并写出点1A 的坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC V 放大,画出放大后的222A B C △并写出点2B 的坐标;(3)根据信息回答问题:已知ABC V 的面积为32,AB ,请直接写出222A B C △的面积和22A B 边上的高的值.压轴题型二 比例线段压轴题型1.(2020古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底0.618≈,称为黄金分割比例),如图,著名的“断臂维纳斯”便是如此.此外,.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm2.(2024·四川乐山·一模)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG GN MN MG ==这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC V 中,已知3AB AC ==,4BC =,若D ,E 是边BC 的两个“黄金分割”点,则ADE V 的面积为 .3.(23-24八年级下·贵州六盘水·期末)已知a ,b ,c ,d ,e ,f 六个数,如果()0a c e k b d f b d f ===++¹,那么a c e k b d f++=++.理由如下:∵()0a c e k b d f b d f===++¹∴a bk =,c dk =,e fk =(第一步)∴()k b d f a c e bk dk fk k b d f b d f b d f++++++===++++++(第二步)(1)解题过程中第一步应用了______的基本性质;在第二步解题过程中,()k b d f k b d f ++=++应用了______的基本性质;(2)应用此解题过程中的思路和方法解决问题:①如果22567a b c ===,则218a b c ++=______;②已知0345x y z ==¹,求23x y z x y z -++-的值.4.(23-24九年级上··的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽1AB =.(1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连接AE ,求点D 到线段AE 的距离.5.(22-23九年级上·浙江·周测)若实数a b c ,,满足a b c b c a a c b c a b +-+-+-==,求()()()a b b c a c abc+×+×+的值.6.(23-24九年级下·山东淄博·期末)已知a ,b ,c ,d 为四个不为0的数.(1)如果3a b =,求a b b +与a b a b -+的值;(2)如果(),a c a b c d b d =¹¹,求证a c b a d c =--;(3)如果a c a b d b +=+,求证a c b d=.压轴题型三 相似三角形的判定压轴题型1.(21-22九年级上·陕西咸阳·期中)如图,在矩形ABCD 中,E 是AD 边的中点,BE ^F ,连接DF ,分析下列四个结论,①AEF CAB △∽△,②CF 2AF =;③DF DC =;④CD AC =.其中正确的结论有( )A .4个B .3个C .2个D .1个2.(2024·广东深圳·二模)如图,在等腰直角ABC V 中,4AB BC ==,D 为BC 上一点,E 为BC 延长线上一点,且45DAE =°∠,2AE AD =,则BD = .3.(2024·广东梅州·模拟预测)(1)如图1,在矩形ABCD 中,点C ,D 分别在边DC ,BC 上,AB AB ^,垂足为点G .求证:ADE DCF ∽V V .【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H Ð=Ð.【类比迁移】(3)如图3,在菱形ABCD 中,E F 分别在边DC ,BC 上,10AE DF ==,7DE =,60AED Ð=°,求CF 的长.4.(2024·山西晋中·二模)综合与实践问题情境:数学活动课上,老师要求同学们以正方形为背景探索几何图形运动变化中的数学结论.如图1,正方形ABCD 中,4AB =,点E ,F 分别是边AB ,AD 的中点,连接EF ,点G 是线段EF 上的一个动点,连接AG ,将线段AG 绕点A 逆时针方向旋转90°,得到AH ,连接HD ,GB .猜想证明:(1)针对老师给出的问题背景,“智慧小组”发现GB HD =,请你证明这一结论;操作探究:(2)“善思小组”提出问题:如图2,当点G 为线段EF 的中点时,连接FH ,试判断四边形AGFH 的形状,并说明理由;深入探究:(3)“创新小组”BG 与直线DH 交于点M ,当AHD V 为直角三角形时,请直接写出四边形AGMH 的面积.5.(2024·安徽蚌埠·一模)如图1,在四边形ABCD 中,120ABC Ð=°,60ADC Ð=°,对角线AC ,BD 相交于点O ,且AC AD =,BD 平分ABC Ð.(1)求证:DB AB CB =+;(2)如图2,过点D 作DE AB ∥,使DE BC =,连接AE ,取AE 中点 F ,连接DF ,求证:22AC DF OD =×.6.(23-24九年级上·湖南常德·期中)(1)如图1,在四边形ABCD 中,90BAD BCD Ð=Ð=°,连接AC BD ,,过点A 作AE AC ^交CB 的延长线于点E ,求证:E ACD Ð=Ð.(2)如图2,在四边形ABCD 中,AB AD =,(1)中的其它条件不变,点M ,N 分别是BD EC ,的中点,连接AN AM ,,MN .①求证:AE AC =﹔②求证:N ABE AM ∽△△.压轴题型四 相似三角形的性质压轴题型1.(22-23九年级上·上海长宁·期中)已知点D 在ABC V 的边BC 上,联结AD ,如果ABD △与ACD V 相似,那么下列四个说法:①BAD C Ð=Ð;②AD BC ^;③2AD BD CD =×;④22AB BD AC CD =.一定成立的是( ).A .②④B .①③C .①②③D .②③④2.(2024·上海浦东新·三模)如图,在ABC V 中,3AC BC ==,90C Ð=°,点D 在边BC 上(不与点B ,点C 重合),连接AD ,点E 在边AB 上,EDB ADC Ð=Ð.已知点H 在射线AC 上,连接EH 交线段AD 于点G ,当1CH =,且AEH BED Ð=Ð时,则BE AB = .3.(23-24八年级下·山东威海·期末)如图1,矩形ABCD ,点E ,点F 分别为AD ,BC 上的点,将矩形沿EF 折叠,使点B 的对应点B ¢落在CD 上,连接BB ¢.(1)如图2,当点B ¢与点D 重合时,连接BE ,试判断四边形BEB F ¢的形状,并说明理由;(2)若6AB =,8BC =,求折痕EF 的最大值.4.(23-24八年级下·山东东营·期末)综合与探究(1)如图1,在正方形ABCD 中,点E ,F 分别在边BC CD ,上,且AE BF ^,则线段AE 与BF 的之间的数量关系为_____________;(2)【类比探究】如图2,在矩形ABCD 中,35AB AD ==,,点E ,F 分别在边BC ,CD 上,且AE BF ^,请写出线段AE 与BF 的数量关系,并证明你的结论.(3)【拓展延伸】如图3,在Rt ABC V 中,9046ABC AB BC Ð=°==,,,D 为BC 上一点,且2BD =,连接AD ,过点B 作BE AD ^于点F ,交AC 于点E ,求BE 的长.5.(23-24九年级下·广西南宁·阶段练习)已知等边ABC V ,以AC 为斜边向外作Rt ACD △,定义Rt ACD △为等边ABC V 的“关联直角三角形”,连接BD 交AC 于点E ,下面我们来研究与DE BE的值有关的问题.(1)如图①,当“关联直角三角形”是等腰直角三角形时,DE BE的值为______;(2)如图②,当“关联直角三角形”是含30°的直角三角形时,求DE BE的值;(3)如图③,当“关联直角三角形”是一般的直角三角形时,若16,3DE AB BE ==,求BD 的值.6.(2024·安徽·中考真题)如图1,ABCD Y 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF Ð=°,求AC BD 的值.压轴题型五 相似三角形的应用压轴题型1.(2024·浙江温州·三模)图1是《九章算术》中记载的“测井深”示意图,译文指出:“如图2,今有井直径CD 为5尺,不知其深AD .立5尺长的木CE 于井上,从木的末梢E 点观察井水水岸A 处,测得“入径CF ”为4寸,问井深AD 是多少?(其中1尺10=寸)”根据译文信息,则井深AD 为( )A .500寸B .525寸C .550寸D .575寸2.(2022·浙江金华·一模)将一本高为17cm (即17cm EF =)的词典放入高(AB )为16cm 的收纳盒中(如图1).恰好能盖上盒盖时,测得底部F 离收纳盒最左端B 处8cm ,若此时将词典无滑动向右倒,书角H 的对应点H ¢恰为CD 中点.(1)收纳盒的长BC = ;(2)现将若干本同样的词典放入此有盖的收纳盒中,如图2放置,则最多有本书可与边BC 有公共点.3.(2024·江苏南京·一模)在光学中,由实际光线会聚成的像,称为实像,而光线能会聚的是因为折射.图中,凸透镜EF 的焦距为f ,主光轴l EF ^,A ,B ,C ,D 都在l 上,其中O 是光心,2OB OD f ==,蜡烛PQ l ^(蜡烛可移动,且OQ f >),光线PG l ∥,其折射光线GC 与另一条经过光心的光线PP ¢相交于点P ¢(P Q l ¢¢^)即为蜡烛在光屏上所成的实像.图中所有点都在同一平面内.记物高()PQ 为h ,像高()P Q ¢¢为h ¢,物距()OQ ,像距()OQ ¢为v .(1)若10cm f =,10cm h =,15cm u =,=v cm .(2)求证111u v f+=.(3)当f 一定时,画出v 与u 之间的函数图象()u f >,并结合图象描述v 是怎么随着u 的变化而变化的?4.(23-24九年级上·河北邢台·1,小红家的阳台上放置了一个晒衣架,图2是晒衣架的侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点在地面上,经测量得到136cm AB CD ==,51cm OA OC ==,34cm OE OF ==,现将晒衣架完全稳固张开,扣链EF 成一条线段.发现:连接AC .则AC 与EF 有何位置关系?并说明理由;探究:若32cm EF =,求利用夹子垂挂在晒衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上?5.(22-23九年级上·浙江·单元测试)如图,Rt ABC V 为一块铁板余料,90B Ð=°,6cm BC =,8cm AB =,要把它加工成正方形小铁板,有如图所示的两种加工方案,请你分别计算这两种加工方案的正方形的边长.6.(2022九年级·全国·专题练习)阅读理解:如图1,AD 是△ABC 的高,点E 、F 分别在AB 和AC 边上,且EF //BC ,可以得到以下结论:AH EF AD BC=.拓展应用:(1)如图2,在△ABC 中,BC =3,BC 边上的高为4,在△ABC 内放一个正方形EFGM ,使其一边GM 在BC 上,点E 、F 分别在AB 、AC 上,则正方形EFGM 的边长是多少?(2)某葡萄酒庄欲在展厅的一面墙上,布置一个腰长为100cm ,底边长为160cm 的等腰三角形展台.现需将展台用隔板沿平行于底边,每间隔10cm 分隔出一排,再将每一排尽可能多的分隔成若干个无盖正方体格子,要求每个正方体格子内放置一瓶葡萄酒.平面设计图如图3所示,将底边BC 的长度看作是0排隔板的长度.①在分隔的过程中发现,当正方体间的隔板厚度忽略不计时,每排的隔板长度(单位:厘米)随着排数(单位:排)的变化而变化.请完成下表:排数/排0123…隔板长度/厘米160__________________…若用n 表示排数,y 表示每排的隔板长度,试求出y 与n 的关系式;②在①的条件下,请直接写出该展台最多可以摆放多少瓶葡萄酒?压轴题型六 重心的性质压轴题型1.(23-24九年级上·浙江宁波·期末)如图,点G 是ABC V 的重心,过点G 作MN BC ∥分别交AB AC ,于点M ,N ,过点N 作ND AB ∥交BC 于点D ,则四边形BDNM 与ABC V 的面积之比是( )A .1:2B .2:3C .4:9D .7:92.(2023·上海·一模)在Rt ABC △中,9030B BAC BC Ð=°Ð=°=,,1,以AC 为边在ABC V 外作等边ACD V ,设点E 、F 分别是ABC V 和ACD V 的重心,则两重心E 与F 之间的距离是 .3.(2024·江苏盐城·中考真题)如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN 为平行四边形;(2)①如图2,连接AC BD 、交于点O ,可得M 、N 两点都在BD 上,当平行四边形ABCD 满足________时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)4.(23-24七年级下·江苏扬州·阶段练习)作图.(1)直尺作图:如图1,已知D 、E 分别为AB 、AC 中点,过点A 作AF 平分ABC V 面积;(2)直尺作图:如图2,已知AD BC ∥,在四边形ABCD 中作一点O ,使AOB COD S S =△△;(3)尺规作图:如图3,已知D 为AC 中点,点M 在BC ,在AC 上作点N 使MN 平分ABC V 面积.5.(2024·辽宁丹东·二模)阅读与思考:三角形的重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.三角形重心的一个重要性质:重心与一边中点的连线的长是对应中线长的13.下面是小明证明性质的过程.如图,在ABC V 中,D 、E 分别是边BC 、AC 的中点,AD 、BE 相交于点G ,求证:13GE GD BE AD ==证明:连接ED ,∵D ,E 是边BC ,AC 的中点,∴DE AB ∥,12DE AB =(依据1)∴ABG DEGV V ∽∴12GE GD DE GB GA AB ===(依据2)∴13GE GD BE AD ==(1)任务一,在小明的证明过程中,依据1和依据2的内容分别是:依据1:______________________依据2:______________________(2)应用①如图,在ABC V 中,点G 是ABC V 中的重心,连接AG 并延长交BC 与点E ,若 3.5GE =,求AG 长.②在ABC V 中,中线AD 、BE 相交于点O ,若ABC V 的面积等于30,求BOD V 的面积.6.(2024·河南周口·三模)(1)古往今来,人们在生产和生活中对三角形的应用层出不穷,三角形也是我们平时研究的重点,如图1,已知ABC V 是等边三角形. P 是ABC V 的重心,连接BP CP ,并延长分别交边AC AB ,于点E ,D .试判断:①BPD Ð的度数为 ;②线段PB PD PE ,,之间的数量关系:PB PD PE +;(填写“>”“<”或“=”)(2)如图2,若在等边ABC V 中,点E 是射线AC 上一动点(其中点E 不与点A 重合,且12CE AC <),连接BE ,作边BA 关于直线 BE 的对称线段 BD ,直线CD ,BE 相交于点 P ,试探究线段PB PC PD ,,的数量关系,并说明理由.压轴题型七 平面向量的线性运算压轴题型1.(23-24九年级上·上海·期中)下列判断不正确的是( )A .()222a b a b +=+r r r r ;B .如果向量a r 与b r 均为单位向量,那么a b =r r 或a b =-r r ;C .如果a b =r r ,那么a b =r r ;D .对于非零向量b r ,如果()0a k b k =×¹r r ,那么a b r r P .2.(2024·上海普陀·二模)如图,梯形ABCD 中,AD BC ∥,过点A 作AE DC ∥分别交BD 、BC 于点F 、E ,23BE BC =,设AD a =uuu r r ,AB b =uuu r r ,那么向量FE uuu r 用向量a r 、b r 表示为 .3.(23-24八年级下·上海崇明·期末)如图,点E 在平行四边形ABCD 的对角线BD 的延长线上.(1)填空:BA AB +uuu r uuu r = ,BA AE ED DC +++uuu r uuu r uuu r uuu r = ;(2)图中与AB uuu r 相等的向量是 ,与AD uuu r 相反的向量是 ;(3)求作:DC DE +uuu r uuu r (不写作法,保留作图痕迹,写出结论).4.(23-24八年级下·上海·期末)如图,在四边形ABCD 中,AD BC ∥,点O 是对角线AC 的中点,DO 的延长线与BC 相交于点E ,设AB a uuu r r =,AD b =uuu r r ,BE c =uuu r r .(1)试用向量a r 、b r 、c r 表示向量:ED =uuu r ______;(2)写出图中所有与AD uuu r 互为相反向量的向量:______;(3)求作:AD OC +uuu r uuu r.(画出所求向量,并直接写出结论)5.(23-24八年级下·上海闵行·期末)如图,已知梯形ABCD 中,AB DC P ,点E 在AB 上,ED BC ∥.(1)填空:BE ED DC CB +++=uuu r uuu r uuu r uuu r ,(2)填空:BA AD DC EA ++-=uuu r uuu r uuu r uuu r ;(3)在图中直接作出AE ED AB +-uuu r uuu r uuu r .(不写作法,写结论)6.(2022八年级下·上海·专题练习)如图,已知点M 是△ABC 边BC 上一点,设AB uuu r =a r ,AC uuu r =b r .(1)当BM MC=2时,AM uuuu r =______;(用a r 与b r 表示)(2)当AM uuuu r =4377a b +r r 时,BM MC =______;(3)在原图上作出AM uuuu r 在AB uuu r 、AC uuu r 上的分向量.压轴题型八 相似三角形的动点问题1.(2020·山西·一模)如图,在ABC V 中,8AB AC ==,6BC =,点P 从点B 出发以1个单位长度/秒的速度向点A 运动,同时点Q 从点C 出发以2个单位长度/秒的速度向点B 运动,其中一点到达另一点即停.当以B ,P ,Q 为顶点的三角形与ABC V 相似时,运动时间为( )A .2411秒B .95秒C .2411秒或95秒D .以上均不对2.(2023八年级上·江苏·专题练习)如图,在ABC V 中,90C Ð=°,3AC =,4BC =,动点P 从点B 出发以每秒1个单位长度的速度沿B A ®匀速运动;同时点Q 从点A 出发同样的速度沿A C B ®®匀速运动.当点P 到达点A 时,P 、Q 同时停止运动,设运动时间为t 秒,当t 为 时,以B 、P 、Q 为顶点的三角形是等腰三角形.3.(2024·吉林长春·三模)如图,在Rt ABC △中,90ABC Ð=°,8AB =,6BC =,点D 为AC 中点,动点P 从点A 出发,沿边AB 以每秒5个单位长度的速度向终点B 运动,连结DP ,将线段DP 绕点D 逆时针旋转90°得线段DE ,连结PE .设点P 运动的时间为t 秒.(1)用含t 的代数式表示点P 到AC 的距离为________;(2)当点E 落在ABC V 内部(不包括边界)时,求t 的取值范围;(3)当PE 与ABC V 的一边平行时,求线段PE 的长度;(4)当经过点E 与ABC V 的一个顶点的直线平分ABC V 面积时,直接写出t 的值.4.(2024·江苏苏州·二模)如图,矩形ABCD 中,4AB =厘米,3BC =厘米,点E 从A 出发沿AB BC -匀速运动,速度为1厘米/秒;同时,点F 从C 出发沿对角线CA 向A 匀速运动,速度为1厘米/秒,连接DE DF EF 、、,设运动时间为t 秒.请解答以下问题:(1)当0 2.5t <<时①t 为何值时,EF AD ∥;②设DEF V 的面积为y ,求y 关于t 的函数;5.(2023·吉林松原·模拟预测)已知ABC V 中,90C Ð=°,3cm AC =,4cm CD =,BD AD =.点F 从点A 出发,沿AC CD -运动,速度为1cm/s ,同时点E 从点B 出发,沿BD DA -运动,运动速度为1cm/s ,一个点到达终点,另一点也停止运动.设AEF △ 的面积为S 2cm ,点E ,F 运动时间为t s .(1)求BD 的长;(2)用含t 的代数式表示DE ;(3)求S 与t 的函数关系式,并写出t 的取值范围.6.(23-24九年级下·河北邯郸·阶段练习)如图1和2,在矩形ABCD 中,6,8AB BC ==,点K 在CD 边上.且73CK =.点M N ,分别在,AB BC 边上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速运动,点E 在CD 边上随P 移动,且始终保持^PE AP ;点Q 从点D 出发沿DC 匀速运动,点P Q ,同时出发,点Q 的速度是点P 的一半,点P 到达点N 时停止,点Q 随之停止.设点P 移动的路程为x .(1)当点Q 与点K 重合时,通过计算确定点P 的位置;(2)若点P 在BN 上,当BP CE =时,如图2,求x 的值;(3)在点P 沿折线MB BN -运动过程中,求点Q ,E 的距离(用含x 的式子表示);(4)已知点P 从点M 到点B 再到点N 共用时20秒,请直接写出点K 在线段QE 上(包含端点)的总时长.。
2019中考相似三角形专题复习2015-2018安徽中考相似压轴题
希望教育 2019年中考数学一轮复习讲义学生:全慧 第一讲 相似三角形1、比例对于四条线段a ,b ,c ,d ,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如(即ab =bc ),我们就说这四条线段是成比例线段,简称比例线段. 1.若, 则;2.以下列长度(同一单位)为长的四条线段中,不成比例的是( )A .2,5,10,25B .4,7,4,7C .2,0.5,0.5,4D .,,,3.若∶3 =∶4 =∶5 , 且, 则; 4.:若, 则5、已知,求代数式的值.2、平行线分线段成比例定理:平行线分线段成比例定理指的是两条直线被一组平行线(不少于3条)所截,截得的对应线段的长度成比例。
推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例。
练习1,如下图,EF∥BC ,若AE∶EB=2∶1,EM=1,MF=2,则AM∶AN=____,BN∶NC=_____2、已知:如图,ABCD ,E 为BC 的中点,BF ︰FA =1︰2,EF 与对角线BD 相交于G ,求BG ︰BD 。
3、如图,在ΔABC 中,EF//DC ,DE//BC ,求证: (1)AF ︰FD =AD ︰DB ; (2)AD 2=AF·AB。
3 、相似三角形的判定方法判定0.平行于三角形一边的直线与其他两边或两边延长线相交,所截得的三角形与 判定1. 两个角对应相等的两个三角形__________.a cb d =322=-y y x _____=y x 255225a bc 6=-+c b a ___________,____,===c b a 43===f e d c b a ______=++++f d b e c a 023a b =≠()225224a ba b a b -⋅--判定2. 两边对应成_________且夹角相等的两个三角形相似. 判定3. 三边对应成比例的两个三角形___________. 判定4.斜边和 对应成比例的两个直角三角形相似 常见的相似形式:1. 若DE∥BC(A 型和X 型)则______________.2.子母三角形(1) 射影定理:若CD 为Rt△ABC 斜边上的高(双直角图形) (2)∠ABD=∠c则Rt△ABC∽Rt△ACD∽Rt△CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.(1)练习1、如图,已知∠ADE=∠B ,则△AED ∽__________2、如图,在Rt △ABC 中,∠C=90°,DE ⊥AB 于D ,则△ADE ∽_________3、如图;在∠C=∠B ,则_________ ∽_________,__________ ∽_________4.如图,具备下列哪个条件可以使⊿ACD∽⊿BCA ( )A B C D 5.下列四个三角形,与右图中的三角形相似的是( )6、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( ) A. 只有1个 B. 可以有2个 C. 可以有3个 D. 有无数个4 、相似三角形的性质与应用1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.练习1、如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.E A D CBEA DCBAD CBBC AB CD AC =CD BDAC AB =CB CD AC •=2BD AD CD •=2第3题第2题第1题OAC BACBA BE CDE E DDABCD3、如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与 四边形MBCN 的面积比为( ).(A) (B) (C) (D)4、如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为2,则四边形EBCF 的面积为 .5、如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°, 则AE 的长为 .6.如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分) 的面积分别是4,9和49.则△ABC 的面积是 .7.如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( ) A . 2:5 B . 2:3 C . 3:5 D . 3:28、如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( ) A . 2 B . 2.5或3.5 C . 3.5或4.5 D . 2或3.5或4.55、相似多边形(1)对应边成比例,对应角相等的两个多边形叫做相似多边形. (2)相似多边形的对应角相等,对应边的比相等.(3)相似多边形对应边的比称为相似比. 相似多边形面积的比等于相似比的平方.练习1.如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A. 2 cm 2B. 4 cm 2C. 8 cm 2D. 16 cm 22.(2011.潍坊)已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( ) A .B .C .D .24、将一个长为a ,宽为b 的矩形,(1)分为相同的两个矩形,且与原矩形相似,求a:b(2) 分为相同的三个矩形,且与原矩形相似,求a:b (3) 割掉一个正方形,剩余的矩形与原矩形相似,求a:b12131423215-215+35、如图,AB∥EF∥CD,(1)AB=10,CD=15,AE∶ED=2∶3,求EF的长。
中考数学相似三角形专题复习一
1 / 2相似三角形专题复习一:线段的比、黄金分割1、在比例尺1:10000的地图上,相距2cm 的两地的实际距离是( )。
A .200cm B .200dm C .200m D .200km 2.已知线段a=10,线段b 是线段a 上黄金分割的较长部分,则线段b 的长是 3.若则下列各式中不正确的是( )A .B .C .D .4、若52=-yy x ,则y x =_________。
已知32=y x ,则yx yx +-=_________。
5、若045=-y x 且0≠xy ,则x ∶y =_________。
6、2和8的比例中项是_________;线段2㎝与8㎝的比例中项为_________。
7、如果两个相似三角形的面积比为3∶4,则它们的周长比为_________。
8、已知a :b :c =2 :3 :4,且2a +3b -2c =10,求a , b ,c 的值。
相似三角形专题复习二:相似的性质1、如果两个相似三角形的面积比为3∶4,则它们的周长比为_________。
1.1已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 2、如图,DE ∥BC ,AD ∶BD=2∶3,则ΔADE 的面积∶四边形DBCE 的面积=_________。
2.1如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有:( )个3、如图,在梯形ABCD 中,AD ∥BC ,△ADE 与△BCE 面积之比为4 :9,那么△ADE 与△ABE 面积之比为________4、如图,在△ABC 中,矩形DEFG ,G 、F 在BC 上,D 、E 分别在AB 、AC 上,AH ⊥BC 交DE 于M ,DG ∶DE =1∶2,BC =12 cm ,AH =8 cm ,求矩形的各边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
希望教育 2019年中考数学一轮复习讲义学生:全慧 第一讲 相似三角形1、比例对于四条线段a ,b ,c ,d ,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如a cb d=(即ab =bc ),我们就说这四条线段是成比例线段,简称比例线段. 1.若322=-y y x , 则_____=yx; 2.以下列长度(同一单位)为长的四条线段中,不成比例的是( )A .2,5,10,25B .4,7,4,7C .2,,,4D .2,5,52,25 3.若a ∶3 =b ∶4 =c ∶5 , 且6=-+c b a , 则___________,____,===c b a ;4.:若43===f e d c b a , 则______=++++fd be c a 5、已知,求代数式的值.2、平行线分线段成比例定理:平行线分线段成比例定理指的是两条直线被一组平行线(不少于3条)所截,截得的对应线段的长度成比例。
推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例。
练习1,如下图,EF ∥BC ,若AE ∶EB=2∶1,EM=1,MF=2,则AM ∶AN=____,BN ∶NC=_____ 2、已知:如图,ABCD ,E 为BC 的中点,BF ︰FA =1︰2,EF 与对角线BD 相交于G ,求BG ︰BD 。
3、如图,在ΔABC 中,EF 行于三角形一边的直线与其他两边或两边延长线相交,所截得的三角形与判定1. 两个角对应相等的两个三角形__________.判定2. 两边对应成_________且夹角相等的两个三角形相似. 判定3. 三边对应成比例的两个三角形___________. 判定4.斜边和 对应成比例的两个直角三角形相似 常见的相似形式:1. 若DE∥BC(A 型和X 型)则______________.2.子母三角形(1) 射影定理:若CD 为Rt△ABC 斜边上的高(双直角图形) (2)∠ABD=∠c则Rt△ABC∽Rt△ACD∽Rt△CBD 且AC 2=________,CD 2=_______,BC 2=__ ____. (1) 练习1、如图,已知∠ADE=∠B ,则△AED ∽__________2、如图,在Rt △ABC 中,∠C=90°,DE ⊥AB 于D ,则△ADE ∽_________3、如图;在∠C=∠B ,则_________ ∽_________,__________ ∽_________4.如图,具备下列哪个条件可以使⊿ACD ∽⊿BCA ( )A BCAB CDAC = B CDBD ACAB = C CB CD AC •=2 D BD AD CD •=25.下列四个三角形,与右图中的三角形相似的是( )6、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( )A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个4 、相似三角形的性质与应用1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.练习1、如图,路灯距离地面8米,身高米的小明站在距离灯的底部(点O ) 20米的A 处,则小明的影子AM 长为 米.3、如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与 四边形MBCN 的面积比为( ).A .B .C .D .(A) 12(B)13(C)14(D)234、如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为.5、如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.6.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是.7.如图,在□ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:28、如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE 是直角三角形时,t的值为()A.2B.或C.或D.2或或5、相似多边形(1)对应边成比例,对应角相等的两个多边形叫做相似多边形.(2)相似多边形的对应角相等,对应边的比相等.(3)相似多边形对应边的比称为相似比.相似多边形面积的比等于相似比的平方.练习1.如图,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A. 2 cm2B. 4 cm2C. 8 cm2D. 16 cm22.(2011.潍坊)已知矩形ABCD中,AB=1,在BC上取一点E ,沿AE将△AB E向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B. C.D.24、将一个长为a,宽为b的矩形,(1)分为相同的两个矩形,且与原矩形相似,求a:b(2)分为相同的三个矩形,且与原矩形相似,求a:b(3)割掉一个正方形,剩余的矩形与原矩形相似,求a:b5、如图,AB ∥EF ∥CD ,(1)AB =10,CD =15,AE ∶ED =2∶3,求EF 的长。
(2)AB =a ,CD =b ,AE ∶ED =k ,求EF 的长。
(3)若上下两个梯形相似AB =4,CD =8,求EF 的长6、位似位似图形:如果两个多边形不仅 ,而且对应顶点的连线 ,对应边 或 ,那么这样的两个图形叫做位似图形,这个点叫做 ,这时的相似比又称为 .①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是 图形,而相似图形不一定是 图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;(4)位似图形上任意一对对应点到位似中心的距离等于 .(5)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.(6)关于原点位似的特征作位似图形的几种可能: 放大 缩小正像异侧倒像1、如图,路灯距地面8米,身高米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影长度( )A .变短米B .变长米C .变长米D .变短米2、小芳同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1m 长的标杆测得其影长为,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为和2m ,你能帮助小芳同学算出学校旗杆的高度?综合练习1.如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD DE 21 。
若△DEF 的面积为2,则□ABCD 的面积是 。
2、如图,已知AB∥CD,AD 与BC 相交于点P ,AB=4,CD=7,AD=10,则AP=( ) A . 4011 B .407C .7011D .7043、已知平行四边形ABCD 中,AE∶EB=1∶2,求△AEF 与△CDF 的周长比,如果S △AEF =6cm 2,求S △CDF . 4、E 为平行四边形ABCD 的对角线AC 上一点,AE∶EC=1∶3,BE 的延长线交CD 的延长线于G ,交AD 于F ,求证:BF∶FG=1∶2.5、已知如图,在平行四边形ABCD 中,DE=BF,求证:DQ CD =PQPD.6、如果四边形ABCD 的对角线交于O ,过O 作直线OG∥AB 交BC 于E ,交AD 于F ,交CD 的延长线于G ,求证:OG 2=GE·GF.7、ABCD 的对角线AC ,BD 相交于点O ,E 是AB 延长线上一点,OE 交BC 于点F ,AB =a ,BC =b ,BE =c ,求BF 的长.基本方法 1、(做平行线构造成比例线段)如图,已知⊿ABC 中,D 为 AC 上的一点,AD ∶DC= 3∶2, E 为 CB 延长线上的一点,ED 和 AB 相交于点 F ,EF=FD 。
求:EB ∶BC 的值。
2、已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AE AC的值;(2)若AB a FB EC ==,,求AC 的长.3、在△ABC 中,D 、E 分别为BC 的三等分点,CM 为AB 上的中线,CM 分别交AE 、AD 于F 、G ,求证CF∶FG∶GM=5∶3∶2ABF ED1.【等线段代换法】 在△ABC 中,AB=AC,直线DEF 与AB 交于D ,与BC 交于E ,与AC 的延长线交于F 。
求证:CFEFBD DE =。
2、已知在△ABC 中,AD 平分∠BAC,EM 是AD 的中垂线,交BC 延长线于E.求证:DE 2=BE·CE.【中间比例过渡法】已知△ABC 中,DE ∥BC,BE 与CD 交于点O ,AO 与DE 、BC 分别交于点N 、M , 求证:OMONAM AN =。
中考题荟萃1、如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN⊥AC 于点N ,则MN 等于( )A.65 B. 95 C. 125 D. 1652、如图,ABC ∆中,AD 是中线,DAC B BC ∠=∠=,8,则线段AC 的长为( )A .4B .24C .6D .343、如图27-65所示,在△ABC 中,D 是BC 边上的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F . (1)求证△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长4、如图1,四边形ABCD 的对角线AC ,BD 相交于点O ,OB=OD ,OC=OA+AB ,AD=m ,BC=n ,∠ABD+∠ADB=∠ACB .(1)填空:∠BAD 与∠ACB 的数量关系为 ;(2)求的值;(3)将△ACD 沿CD 翻折,得到△A′CD(如图2),连接BA′,与CD 相交于点P .若CD=,求PC 的长.25、已知ΔABC ,AB=AC,D 在AB 上,E 在AC 上,且∠AED=∠B=600,若CE:DE:BC=1:2:3,设AD=m ,DB=n , (1)填空:AB AE的值是 。