高考数学题型全归纳:正、余弦定理在实际生活中的应用典型例题(含答案)

合集下载

完整版正弦定理余弦定理应用实例练习含答案

完整版正弦定理余弦定理应用实例练习含答案

后,就可以计算出A 、B 两点的距离为( )课时作业3应用举例时间:45分钟 满分:100分1. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成 60°勺视角,从B 岛望C 岛和A 岛成75°的视角,贝J B 、C 间的距离是 ()A . 10^3海里 C . 5迈海里【答案】 D【解析】 如图,/A = 60° /B = 75° 贝JZC = 45 °, 由正弦定理得:BCAB si nA 10x sin60 BC= sinC = sin452. 如图所示,设A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出AC 的距离为50m , / ACB = 45° / CAB = 105°B . 10/6海里 D . 5^6海里课堂训练—30 =150 ° ZCBO = 45 ° AB=35 ,【答案】 A【解析】 因为ZACB = 45° ZCAB = 105°所以ZABC = 30°根 据正弦定理可知'sin%=sin 監,即爲=馬,解得AB=5072m ,选 A.3. 从某电视塔的正东方向的A 处,测得塔顶仰角是60°从电视 塔的西偏南30°的B 处,测得塔顶仰角为45° A , B 间距离是35m ,【答案】 如图所示,塔高为0C ,贝JZOAC = 60° 从OB = 180°A . 5Oj2m C . 25 辺m则此电视塔的高度是m.【解析】A设电视塔高度为hm,则OA=^h, OB= h,在△KOB中由余弦定理可得AB2= OA2+ OB2—2OA OB cos/AOB,即352=(誓h)2 + h2—2x¥hx hx (—乎)解得h= 5佰.4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45° °如果此船不改变航向,继续向南航行, 有无触礁的危险?【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.【解析】 在△ABC 中,BC= 30,ZB= 30°,ZACB= 135°,•••zBAC = 15「「亠亠5 BC AC 卄30 AC 由正弦疋理snB ,即:sin15匸sin30/.AC = 60COS15 =°0cos(45 — 30 )=60(cos45 coS30 斗 sin45 sin30 ) = 15(V 6+V 2),•••A 到 BC 的距离为 d = ACsin45 = 15&3 + 1)〜40.98 海里 >38 海 里,所以继续向南航行,没有触礁危险.课后作业、选择题(每小题5分,共40分)1. 已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°如图所示,/ ECA = 40° ZFCB = 60°, ZACB = 180°—40 -60 = 80 :180 ° — 80••AC= BC ,.・.ZA=/ABC = ------ 2 --- = 50°,.・.ZABG= 180 —Z CBH-ZCBA = 180°— 120°— 50°= 10°.故选 B.2. 某市在“旧城改造”工程中,计划在如下图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮价格为a 元/m 2,则购买这【答案】 C1 1 1【解析】 $△= 2^ 20X 30X sin150 =十 20X 30X=150(m 2),•••购买这种草皮需要150a 元,故选C.【答案】【解析】 EGCH种草皮需要A . 450a 元C . 150a 元3. 有一长为10m 的斜坡,倾斜角为75°.在不改变坡高和坡顶的 前提下,通过加长坡面的方法将它的倾斜角改为 30。

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编正弦定理与余弦定理一、单选题1.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A B C D 二、解答题2.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.3.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .4.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.5.(2024北京高考真题)在ABC 中,,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,由正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.2.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin 16B =,再根据正弦定理得sin sin a b A B =,即4sin A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin 4A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=3.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===因为()0,πC ∈,所以sin 0C >,从而sin 2C =,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ===,由三角形面积公式可知,ABC的面积可表示为21113sin 222228ABC S ab C c c ==⋅= ,由已知ABC的面积为32338c =所以c =4.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A得到:224cos 30(2cos 0A A A -+=⇔=,解得cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211t t A A t t-+==+++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412bc==,解得b c ==故ABC的周长为2+5.(1)2π3A =;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角,则cos 0B ≠,则2sin 7B =,则7sin sin sin b a BA A ==,解得sin 2A =,因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ==2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭131142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C,解得sin 14C =,因为C为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭111142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7522ABC S ac B ==⨯⨯=△。

高考数学复习好题精选 正弦定理和余弦定理应用举例

高考数学复习好题精选 正弦定理和余弦定理应用举例

正弦定理和余弦定理应用举例题组一距 离 问 题1.一船自西向东航行,上午10时到达灯塔P 的南偏西75°、距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船航行的速度为( )A.海里/时 B .34海里/时17626C.海里/时 D .34海里/时17222解析:如图.由题意知∠MPN =75°+45°=120°,∠PNM =45°.在△PMN 中,由正弦定理,得sin120sin 45MN PM = ,∴MN.又由M 到N 所用时间为14-10=4小时,∴船的航行速度v== (海里/时).答案:A2.一船以每小时15km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.解析:如图,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得=,解得BM=30 km.60sin45°BMsin30°2答案:3.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.解:在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .①在△BCD 中,由正弦定理可得BC ==a . ②a sin105°sin45°3+12在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A 、B 两点之间的距离为AB ==a .AC 2+BC 2-2AC ·BC ·cos30°22题组二高 度 问 题4.据新华社报道,强台风“珍珠”在广东饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是 ( )A.米 B .10米 C.米 D .20米2063610632解析:如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO=45°,∠AOB=75°,∴∠OAB=60°.由正弦定理知,20sin 45sin 60AO ,∴AO= (米).答案:A5.在一个塔底的水平面上某点测得该塔顶的仰角为θ,由此点向塔底沿直线行走了30 m ,测得塔顶的仰角为2θ,再向塔底前进103m ,又测得塔顶的仰角为4θ,则塔的高度为________.解析:如图,依题意有PB=BA=30,PC=BC=.在三角形BPC 中,由余弦定理可得cos2θ,所以2θ=30°,4θ=60°,在三角形PCD 中,可得PD =PC ·sin4θ=15(m).答案:15 m6.某人在山顶观察地面上相距2 500m 的A 、B 两个目标,测得目标A 在南偏西57°,俯角为30°,同时测得B 在南偏东78°,俯角是45°,求山高(设A 、B 与山底在同一平面上,计算结果精确到0.1 m).解:画出示意图(如图所示)设山高PQ =h ,则△APQ 、△BPQ 均为直角三角形,在图(1)中,∠PAQ =30°,∠PBQ =45°.∴AQ =tan 30PQ = ,BQ =tan 45PQ =h .在图(2)中,∠AQB =57°+78°=135°,AB =2 500,所以由余弦定理得:AB 2=AQ 2+BQ 2-2AQ ·BQ cos ∠AQB ,即2 5002h )2+h 2h ·h )h 2,∴h984.4(m).答:山高约984.4 m.题组三角 度 问 题7.在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,如果c =a ,B =30°,那么3角C 等于 ( )A .120°B .105°C .90°D .75°解析:∵c =a ,∴sin C =sin A =sin(180°-30°-C )=sin(30°+C )3333=(sin C +cos C ),33212即sin C =-cos C .∴tan C =-.又C ∈(0,180°),33∴C =120°.答案:A8.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:设增加同样的长度为x ,原三边长为a 、b 、c ,且c 2=a 2+b 2,a +b >c 新的三角形的三边长为a +x 、b +x 、c +x ,知c +x 为最大边,其对应角最大.而(a +x )2+(b +x )2-(c +x )2=x 2+2(a +b -c )x >0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.答案:A题组四正、余弦定理的综合应用9.有一山坡,坡角为30°,若某人在斜坡的平面上沿着一条与山坡底线成30°角的小路前进一段路后,升高了100米,则此人行走的路程为 ( )A .300 mB .400 mC .200 mD .200 m3解析:如图,AD 为山坡底线,AB 为行走路线,BC 垂直水平面.则BC=100,∠BDC=30°,∠BAD=30°,∴BD=200,AB=2BD=400 米.答案:B10.线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80km/h 的速度由A 向B 行驶,同时摩托车以50km/h 的速度由B 向C 行驶,则运动开始________h 后,两车的距离最小.解析:如图所示:设th 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则AD =80t ,BE =50t .因为AB =200,所以BD =200-80t ,问题就是求DE 最小时t 的值.由余弦定理:DE 2=BD 2+BE 2-2BD ·BE cos60°=(200-80t )2+2500t 2-(200-80t )·50t=12900t 2-42000t+40000.当t =7043时DE 最小.答案:704311.如图,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.解:因为CP ∥OB ,所以∠CPO =∠POB =60°-θ,∴∠OCP =120°.在△POC 中,由正弦定理得=,∴=,所以CP =sinθ.OP sin ∠PCO CP sin θ2sin120°CP sin θ43又Error!=,∴OC =sin(60°-θ).2sin120°43因此△POC 的面积为S (θ)=CP ·OC sin120°=·sin θ·sin(60°-θ)×1212434332=sin θsin(60°-θ)=sin θ(cos θ-sin θ)43433212=,θ∈(0°,60°).23所以当θ=30°时,S (θ)取得最大值为.3312.(2010·宁波模拟)某建筑的金属支架如图所示,根据要求AB 至少长2.8 m ,C 为AB 的中点,B 到D 的距离比CD 的长小0.5 m ,∠BCD =60°,已知建造支架的材料每米的价格一定,问怎样设计AB ,CD 的长,可使建造这个支架的成本最低?解:设BC =am (a ≥1.4),CD =bm ,连接BD .则在△CDB 中,(b -)2=b 2+a 2-2ab cos60°.12∴b =.a 2-14a -1∴b +2a =+2a .a 2-14a -1设t =a -1,t ≥-1=0.4,2.82则b +2a =Error!+2(t +1)=3t ++4≥7,34t 等号成立时t =0.5>0.4,a =1.5,b =4.答:当AB =3 m ,CD =4 m 时,建造这个支架的成本最低.。

(完整版)正弦定理、余弦定理综合应用典型例题

(完整版)正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭. 3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,.例2.已知ABC △1,且sin sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC +-= 22()2122AC BC AC BC AB AC BC +--==, 所以60C =.例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π.例4.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,c =3b.求ac的值;解:由余弦定理得2222cos a b c b A =+-=2221117()2,3329c c c c c +-= 故3a c =例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++的值为 . 612例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos _________________.3例7.(2009年广东卷文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=,则b =【解析】0000000sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=由62a c ==+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得sin 2sin a b B A =⋅=, 例8.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 2 ,AC 的取值范围为 (2,3) .解: 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos 22θθ<<⇒<<, 2cos (2,3).AC θ∴=∈例9.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠。

正余弦定理题型总结(全)

正余弦定理题型总结(全)

平面向量题型归纳(全)题型一:共线定理应用例一:平面向量→→b a ,共线的充要条件是( )A.→→b a ,方向相 同 B. →→b a ,两向量中至少有一个为零向量 C.存在,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→→b a λλλλ变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→→b a //”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件变式二:设→→b a ,是两个非零向量( )A.若→→→→=+b a b a _则→→⊥b aB. 若→→⊥b a ,则→→→→=+b a b a _ C. 若→→→→=+b a b a _,则存在实数λ,使得→→=a b λ D 若存在实数λ,使得→→=a b λ,则→→→→=+ba b a _例二:设两个非零向量→→21e e 与,不共线,(1)如果三点共线;求证:D C A e e CD e e BC e e AB ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。

变式一:设→→21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。

变式二:已知向量→→b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D题型二:线段定比分点的向量形式在向量线性表示中的应用例一:设P 是三角形ABC 所在平面内的一点,,2BA BC BP +=则( )A. PB PA +=0B. PA PC +=0C. PC PB +=0D. PB PA PC ++=0变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且OC OB OA ++=20,那么( )A. OD A =0 B. OD A 20= C. OD A 30= D. OD A =02变式二:在平行四边形ABCD 中a AB =,b AD =,NC AN 3=,M 为BC 的中点,则=MN ( 用b a ,表示)例二:在三角形ABC 中,c AB =,b AC =,若点D 满足DC BD 2=,则=AD ( )A. ,3132c b +B. ,3235b c -C. ,3132c b -D. ,3231c b +变式一:(高考题) 在三角形ABC 中,点D 在边AB 上,CD 平分角ACB,a CB =,b CA =21==,则=CD ( )A. ,3231b a +B. ,3132b a +C. ,5453b a + D. ,5354b a +变式二:设D,E,F 分别是三角形ABC 的边BC,CA,AB 上的点,且,2BD DC =,2EA CE =,2FB AF =则CF BE AD ++,与BC ( )A.反向平行B. 同向平行C.互相垂直D.既不平行也不垂直变式三:在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AF AE AC μλ+=,其,,R ∈μλ则μλ+=变式四:在平行四边形ABCD 中,AC 与BD 交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,a AC =,b BD =则=AF ( )A.,2141b a + B. ,3132b a + C. ,4121b a + D. ,3231b a +题型三:三点共线定理及其应用例一:点P 在AB 上,求证:OB OA OP μλ+=且μλ+=1(,,R ∈μλ)变式:在三角形ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 和N,若,AM m AB =,AN n AC =则m+n=例二:在平行四边形ABCD 中,E,F 分别是BC,CD 的中点,DE 与AF 交于点H,设,a AB =,b BC =则=AH A. ,5452b a - B. ,5452b a + C. ,5452b a +- D. ,5452b a --变式:在三角形ABC 中,点M 是BC 的中点,点N 是边AC 上一点且AN=2NC,AM 与BN 相交于点P,若,PM AP λ=求λ的值。

高考数学 高频考点归类分析 正弦定理和余弦定理的应用

高考数学 高频考点归类分析 正弦定理和余弦定理的应用

正弦定理和余弦定理的应用典型例题:例1. (2012年上海市理5分)在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ▲A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C 。

【考点】正弦定理和余弦定理的运用。

【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<。

由余弦定理的推理得222cos 02a b c C ab+-=<。

∴C 为钝角,即该三角形为钝角三角形。

故选C 。

例2. (2012年广东省文5分)在ABC ∆中,若°60A ∠=,°45B ∠=,32BC =,则=AC 【 】A . 43B . 23C . 3D . 32【答案】B 。

【考点】正弦定理的应用。

【解析】由正弦定理得sin sin BC ACA B=,即0032sin 60sin 45AC =,解得=23AC 。

故选B 。

例3. (2012年湖北省文5分)设△ABC 的内角,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且>>A B C ,320cos =b a A ,则sin :sin :sin A B C 为【 】 A.4∶3∶2 B.5∶6∶7 C.5∶4∶3 D.6∶5∶4 【答案】D 。

【考点】正弦定理和余弦定理的应用。

【解析】∵,,a b c 为连续的三个正整数,且>>A B C ,∴a b c >>。

∴2,1=+=+a c b c ①。

又∵已知320cos =b a A ,∴3cos 20bA a=②。

由余弦定理可得222cos 2+-=b c a A bc ③。

则由②③可得2223202b b c a a bc+-=④。

联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b 。

2020年高考理科数学 《解三角形》题型归纳与训练及答案解析

2020年高考理科数学 《解三角形》题型归纳与训练及答案解析

2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。

【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。

例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。

高考数学题型全归纳:正、余弦定理在实际生活中的应用典型例题(含答案)

高考数学题型全归纳:正、余弦定理在实际生活中的应用典型例题(含答案)

正、余弦定理在实际生活中的应用正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛、解这类应用题需要我们吃透题意、对专业名词、术语要能正确理解、能将实际问题归结为数学问题.求解此类问题的大概步骤为:(1)准确理解题意、分清已知与所求、准确理解应用题中的有关名称、术语、如仰角、俯角、视角、象限角、方位角等;(2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中、通过合理运用正弦定理、余弦定理等有关知识建立数学模型、然后正确求解、演算过程要简练、计算要准确、最后作答.1.测量中正、余弦定理的应用例1 某观测站C 在目标南偏西25︒方向、从出发有一条南偏东35︒走向的公路、在C 处测得公路上与C 相距31千米的处有一人正沿此公路向走去、走20千米到达、此时测得CD 距离为21千米、求此人所在处距还有多少千米?分析:根据已知作出示意图、分析已知及所求、解CBD ∆、求角.再解ABC ∆、求出AC 、再求出AB 、从而求出AD (即为所求).解:由图知、60CAD ∠=︒. 22222231202123cos 22312031BD BC CD B BC BD +-+-===⋅⨯⨯、sin B =. 在ABC ∆中、sin 24sin BC B AC A ⋅==. 由余弦定理、得2222cos BC AC AB AC AB A =+-⋅⋅.即2223124224cos 60AB AB =+-⋅⋅⋅︒.整理、得2243850AB AB --=、解得35AB =或11AB =-(舍).故15AD AB BD =-=(千米).答:此人所在处距还有15千米.评注:正、余弦定理的应用中、示意图起着关键的作用、“形”可为“数”指引方向、因此、只有正确作出示意图、方能合理应用正、余弦定理.2.航海中正、余弦定理的应用A C D 31 21B 20 20 35︒25︒ 东 北例2 在海岸处、发现北偏东45︒1海里的处有一艘走私船、在处北偏西75︒方向、距为2海里的C处的缉私船奉命以海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从处向北偏东30︒方向逃窜、问缉私船沿什么方向能最快追上走私船、并求出所需要的时间?分析:注意到最快追上走私船、且两船所用时间相等、可画出示意图、需求CD 的方位角及由C 到所需的航行时间.解:设缉私船追上走私船所需时间为小时、则有CD =、10BD t =.在ABC △中、∵1AB =-、2AC =、4575120BAC ∠=︒+︒=︒、根据余弦定理可得BC ==根据正弦定理可得sin120sin AC ABC BC︒∠===∴45ABC ∠=︒、易知CB 方向与正北方向垂直、从而9030120CBD ∠=︒+︒=︒. 在BCD △中、根据正弦定理可得:sin 1sin 2BD CBD BCD CD ∠∠===、 ∴30BCD =︒△、30BDC ∠=︒、∴BD BC ==、则有10t =、0.245t ==小时14.7=分钟. 所以缉私船沿北偏东060方向、需14.7分钟才能追上走私船.评注:认真分析问题的构成、三角形中边角关系的分析、可为解题的方向提供依据.明确方位角是应用的前提、此题边角关系较复杂要注意正余弦定理的联用.3.航测中正、余弦定理的应用例3 飞机的航线和山顶在同一个铅直平面内、已知飞机的高度为海拔20250m 、速度为45︒75︒ 30︒A CB180km/h 、飞行员先看到山顶的俯角为'1830︒、经过120秒后又看到山顶的俯角为81︒、求山顶的海拔高度(精确到m ).分析:首先根据题意画出图形、如图、这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离、然后再根据航线的海拔高度求得山顶的海拔高度.解:设飞行员的两次观测点依次为和、山顶为M 、山顶到直线的距离为MD .如图、在ABM △中、由已知、得 1830'A ∠=︒、99ABM ∠=︒、6230'AMB ∠=︒. 又12018066060AB =⨯=⨯(km ), 根据正弦定理、可得6sin1830'sin 6230'BM ︒=︒、 进而求得6sin1830'sin 81sin 6230'MD ︒︒=︒、∴2120MD ≈(m ), 可得山顶的海拔高度为20250212018130-=(m ).评注:解题中要认真分析与问题有关的三角形、正确运用正、余弦定理有序地解相关的三角形、从而得到问题的答案.4.炮兵观测中正、余弦定理的应用例 4 我炮兵阵地位于地面处、两观察所分别位于地面点C 和处、已知6000CD =米、45ACD ∠=︒、75ADC ∠=︒、目标出现于地面点处时、测得30BCD ∠=︒、15BDC ∠=︒(如图)、求炮兵阵地到目标的距离(结果保留根号).分析:根据题意画出图形、如图、题中的四点、、C 、可构成四个三角形.要求AB 的长、由于751590ADB ∠=︒+︒=︒、只需知道AD 和BD 的长、这样可选择在ACD ∆和BCD ∆中应用定理求解.解:在ACD △中、18060CAD ACD ADC ∠=︒-∠-∠=︒、6000CD =、45ACD ∠=︒、根据正弦定理有sin 45sin 60CD AD ︒==︒、 同理、在BCD △中、A B D M 30︒ 45︒ 75︒ A C D 15︒180135CBD BCD BDC ∠=︒-∠-∠=︒、6000CD =、30BCD ∠=︒、根据正弦定理有sin 30sin135CD BD ︒==︒. 又在ABD ∆中、90ADB ADC BDC ∠=∠+∠=︒、根据勾股定理有:AB ====.所以炮兵阵地到目标的距离为米.评注:应用正、余弦定理求解问题时、要将实际问题转化为数学问题、而此类问题又可归结为解斜三角形问题、因此、解题的关键是正确寻求边、角关系、方能正确求解.5.下料中正余弦定理的应用例5 已知扇形铁板的半径为、圆心角为60︒、要从中截取一个面积最大的矩形、应怎样划线? 分析:要使截取矩形面积最大、必须使矩形的四个顶点都在扇形的边界上、即为扇形的内接矩形、如图所示.解:在图(1)中,在AB 上取一点、过作PN OA ⊥于N 、过作PQ PN ⊥交OB 于Q 、再过Q 作QM OA ⊥于M .设AOP x ∠=、sin PN R x =.在POQ △中、由正弦定理、得A C D 31 21B 20 20 35︒ 25︒ 东 北sin(18060)sin(60)OP PQ x =︒-︒︒-.∴sin(60)PQ R x =︒-.于是[]22sin sin(60)cos(260)cos 60S PN PQ R x x R x =⋅=⋅︒-=-︒-︒221(1)2R ≤-=.当cos(260)1x -︒=即30x =︒时、S 2. 在图(2)中、取AB 中点C 、连结OC 、在AB 上取一点、过作//PQ OC 交OB 于Q 、过作PN PQ ⊥交AB 于N 、过Q 作QM PQ ⊥交CA 于M 、连结MN 得矩形MNPQ 、设POC x ∠=、则sin PD R x =.在POQ △中、由正弦定理得:sin(18030)sin(30)R R x =︒-︒︒-、 ∴2sin(30)PQ R x =︒-.∴[]2224sin sin(30)2cos(230)cos30S PD PQ R x x R x =⋅=⋅︒-=-︒-︒222(1cos30)(2R R ≤-︒=(当15x =︒时取“”).∴当15x =︒时、S 取得最大值2(2R .∵22(2R >、 ∴作30AOP ∠=︒、按图(1)划线所截得的矩形面积最大.评注:此题属于探索性问题、需要我们自己寻求参数、建立目标函数、这需要有扎实的基本功、在平时学习中要有意识训练这方面的能力.综上、通过对以上例题的分析、要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地、灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.。

完整版高中数学高考总复习正弦定理与余弦定理应用举例习题及详解

完整版高中数学高考总复习正弦定理与余弦定理应用举例习题及详解

高考总复习高中数学高考总复习正弦定理与余弦定理应用举例习题及详解一、选择题在观察,灯塔A与海洋观察站C的距离都等于.(2010·a广东六校km)两座灯塔A 和B1的距离为A与灯塔B在观察站C的南偏东40°,则灯塔站C的北偏东20°,灯塔B) ()km.( B.2a A.aD.3 a C.2aD答案][. =120°][解析依题意得∠ACB由余弦定理222AB+BC-AC=cos120°BC·2AC222AC·BC=AC cos120°+BC-2∴AB1??-2222a -a=a2=3a+??2D.故选=∴AB3a.π3”是“∠A>”的(sin(2.文)(2010·广东佛山顺德区质检)在△ABC中,“A>) 23 B.必要不充分条件.充分不必要条件AD.既不充分也不必要条件C.充要条件A[答案]ππ33,则∠中,若][解析在△ABC sin A>A>,反之∠A>时,不一定有sin A>,如A2332π5π5π1. sin==sin=时,A sin=2666) (Bb=cos”的Aaba,、所对的边长为、角ABC)(理在△中,ABab则“=”是“cos .必要不充分条件B A.充分不必要条件C.既不充分也不必要条件.充要条件DA]答案[ BA时,ba解析[]当==,cos bA cos a∴=B;=Aa当cos Bb cos时,由正弦定理得A cos A sin··B sin=,cos B含详解答案.高考总复习∴sin2sin2,AB=,-2B2B或∴22AA==ππ.=A+B∴A=B或2222.=b或ac+b则a=,cos B”“a cos A=b所以“a=b”?A.b”,故选”?/ “a=“a cos A=b cos B,ABC=120°B、C两地的距离为20km,观测得∠3.已知A、B两地的距离为10km,)(则AC两地的距离为3km B. 10kmA.7kmD C.105km .10D[答案],由余弦20,∠B=120°[解析]如图,△ABC中,AB=10,BC=定理得,222 cos120°AC·=ABBC+BC·-2AB1??-22×=700,=1020+202-×10×??2D.7km.∴选∴AC=10b-cA2的a、b、c分别为角A、B、C的对应边),则△ABC文4.()在△ABC 中,sin(=c22)形状为( .直角三角形BA.正三角形.等腰直角三角形CD.等腰三角形B答案][bAc-1-cos bA2=,cos==,∴A[解析]sin c2c22222a+bc-b222B.b,故选=∴=,∴ac+cbc222的最大值为CB+cos=1,则cos A+在△(理)(2010·河北邯郸)ABC 中,sincos A+cos B)(5 2 B. A. 43 D. C.1 2D答案[]2222B,∴sin,A=sin∵[解析]sin+A cos=B1. A=B,∴AB0<A,<π,∴sin=sin B∵cos2A =cos B+cos故A cos+C2cos-A含详解答案.高考总复习3122,+A+1=-2(cos A-=-2cos)A+2cos22π31.时,取得最大值A=<,∴0<cos A<1,∴cos∵0<A222的对边分别为、CABC的外接圆半径为R,角A、B5.(文)(2010·广东汕头一中)已知△22)(b)sin B,那么角(sin CA-sin C)=的大小为(2a-a、b、c,且2Rππ B. A. 232ππ D. C. 34C][答案222b,=2a[解析]由正弦定理得,ab-c-222ca-+b2 ==,∴cos C22ab π.=,∴C∵0<C<π4122,=AA-cos的对边,且三内角A、B、CA为锐角,若sin理()已知a、b、c是△ABC2)(则B.b+ca≤2a A.b+c<2D .c=2a b+c≥2a+C.b B[答案]1122=-A解析[]∵sincos A-,A=,∴cos222 =为锐角,∴又AA=60°,∴B+C120°,CCB-B+cos2sin22Cb+c+sinsin B∴==Aa2sin23B-C=cos≤1,∴b+c≤2a.253,sin B=,则cos C的值为() cos(2010·6.北京顺义一中月考)在△ABC中,已知A=1355616 A. B.6565161656C.或D.-656565[答案]A 5123[解析]∵cos A=,∴sin A=>=sin B,∴A>B,1313534∵sin B=,∴cos B=,∴cos C=cos[π-(A+B)]55含详解答案.高考总复习16.=A sin BA cos)sincos=-B cos(A=+-B65.B?A>ABC中,有sin A>sin B[点评]在△,又测得塔100m测得一电视塔尖的仰角为45°,再向塔底方向前进7.在地面上一点D).(尖的仰角为60°,则此电视塔高约为________m 227 B.A.237257C.247 D .A][答案=15°,100[解析]如图,∠D=45°,∠ACB=60°,DC=,∠DAC sin45°DC·AC=,∵sin15°·sin60°∴AB=AC sin60°sin45°·100·=sin15°32×100×22A.∴选=≈237.2-64π=成等差数列,且ac、b、c青岛市质检)在△ABC中,∠B=,三边长a.8(文)(2010·3),则b的值是(6 B.3 A.26D. C.5D]答案[22222+122ac=ac4由条件[解析]2b=a+c,∴b+=a,+c+222222b+bcaa+c--1 ,cos又B=,∴=12ac22222,6+∴ab+c=226.,∴b∴4b==18+b,a的对边分别为、Ca、b、c.若、b、c成等比数列,且c=a2、△(理)ABC 的内角AB)cos则B=(31 B.A.4422 C. D. 43B][答案2 2=a成等比数列,∴cb,=ac,又∵c、][解析∵ab、222222ab2a+4a-ca+-322. cos,∴B===a2b∴=42aca×2a2含详解答案.高考总复习在知识的交汇处命题是高考命题的基本原则.本题融数列与三角函数于一体,[点评]三角函数等内容等比数列等基础知识.同时也体现了数列、集中考查正弦定理、余弦定理、是高考中的热点问题,复习时要注意强化.的双曲线,若△AB、C为焦点,且经过点9.如图所示的曲线是以锐角△ABC的顶点3Ac sin)=,则此双曲线的离心率为ABC(的内角的对边分别为a、b、c,,且a=4b=6,2a7+73-3 B. A. 22 7 .3+7C3D-.D [答案]π3ccc sin A3a[解析]=,因为C为锐角,所以?sin CC==?=,=C3sin a2sin A2321222227c=2×4×6c2=ab+×-2ab cos C=4=+628,∴-由余弦定理知26a7.3+∴e===cb-7-2622yx在双曲P>0)-=1(a>0,的两个焦点,b是双曲线10.(文)(2010·山东济南)设F、F2122ba→→→→)(2ac(c为半焦距)PF线上,若PF·PF=0,||·,则双曲线的离心率为|PF|=2112113+3- A.B. 2215+CD..2 2D][答案22222=-||),根据双曲线定义得:4aPF=(|PF|[解析]由条件知,|PF||+PF|F=|F|2212112222-4ac,4 ac=4-2||PF|·|PF=|FF|c-||PFPF+||222111222=0,+e-ae+ac-c=0,∴1∴5+1. >1,∴e=∵e2C1→→→→→(理)(2010·安徽安庆联考)如图,在△ABC中,tan=,AH·BC=0,AB·(CA +CB)=0,22经过点B以A、H为两焦点的双曲线的离心率为()含详解答案.高考总复习15+1 -B. 5 A. 21-5 D. +1 C.52A]答案[→→BC,·BC=0,∴AH⊥[解析]∵AHC2tan2AH4C1 tan,∴C===,∵tan=CH22C32tan1-2→→→CA0,∴=CB,又∵AB·(CA+CB)=C180°-AHC??=2tan=,=cot=∴tan B??BH223ABa=C=AH=2x,2,由条件知双曲线中CH=BHx,则AH=2x,∴=x,AB=5x2设2 ,(BH=5-1)x-1+52c A.=∴e==,故选2a15-二、填空题CABB和对岸标记物,测得∠C11.如图,为了测定河的宽度,在一岸边选定两点A,________米.45°CBA=,AB=120米,则河的宽度为30°=,∠1)-[答案]60(3=CAB,又∵∠-=,=,则=,设于⊥点作过][解析CCDABDBDxCDxAD120x 30°,含详解答案.高考总复习3x.3-∴1)=,解之得,x=60(3x-120位于A,B,灯塔12.(2010·福建三明一中)如图,海岸线上有相距B5海里的两座灯塔相距A的北偏西75°方向,与灯塔A的正南方向.海上停泊着两艘轮船,甲船位于灯塔A则两艘轮船处.5海里的C乙船位于灯塔32海里的D处;B的北偏西60°方向,与B相距海里.之间的距离为________13答案][ AB=BC,60°[解析]如图可知,∠ABC=,45°,60°,从而∠DAC∴AC==5,∠BAC=32又AD=,∴由余弦定理得,2213.2AD·ACCD=AD·cos45°+AC=-,、ca、b、文)(2010·山东日照模拟)在△ABC中,三个内角A、BC所对的边分别是13.(π________.=a+b=已知c=2,C,△ABC的面积等于3,则34[答案]π1 ,ab=4[解析]由条件知,ab sin=3,∴32224-a+bπ∵cos,=ab3222222=16,=+2ab8,∴=8(a+b)a=++ba∴8+b4.+b=∴a1222,a=c10-a若),=caB中,理()在△ABC角A、、C的对边分别为、b、,面积S(b +4 ______.的最大值是则bc250100答案]+[11222,ab=sin由题意得,][解析bcA(+c-)42含详解答案.高考总复习π222,又根据余弦定理得=A,∴∠∴Aa-2bc=sin bA,结合余弦定理得,sin+Ac=cos4100222.100+50≥2bc-2bc,∴bc100=b≤+c=-2bc22-海里的灯塔恰一船向正北匀速行驶,看见正西方两座相距10.14(文)(2010·山东日照)方向上,另一60°好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西小时.海里/灯塔在南偏西75°方向上,则该船的速度是________10[答案]v3 v,=v海里AC/小时,如图由题意知,AD=,[解析]设该船的速度为22tan30°+tan45°,=2+3∵tan75°=tan30°tan45°1-v3+102AB10. ==,解得v又tan75°=,∴2+3vAD2的方位角为M如图,一船在海上自西向东航行,在A处测得某岛(理)(2010·合肥质检)范围已知该岛周围n kmkm后在B处测得该岛的方位角为北偏东β角,北偏东α角,前进m ________时,该船没有触礁危险.当α与β满足条件内(包括边界)有暗礁,现该船继续东行.)-ββ>n sin(α[答案]m cosαcos,∴∠AMB90°-α+∠β=90°-=∠MAB+∠AMB=90°[解析]∠MAB=-α,∠MBC,=α-βAMBαcos BMmm,BM,解得=由题可知,在△ABM中,根据正弦定理得=?-β?-β?sinα?sin?90°-αsin?αβαcos m cosαsin(β>n满足α与βm cosαcos所以=sin(90°要使船没有触礁危险需要BM-β)>n,?α-βsin? )时船没有触礁危险.-β三、解答题A cos bBa所对的边,、、分别是角、、中,在△河北唐山.15(2010·)ABCabcABC且cos+1.=含详解答案.高考总复习c(1);求→→的最大值.3,求CA·(2)CB若tan(A+B)=-=b cos A1及正弦定理得,[解析](1)由a cos B+Bc sin Ac sin cos A=1,·cos B+·C sin C sin )=sin C,∴c sin(A+B C,≠0B)=sin(π-C)=sin又sin(A+1.=∴c2π,A+B=3,0<A+B<π,∴tan((2)∵A+B)=-3π.=A+B)∴C=π-(3 由余弦定理得,22222ab-ab=-ab≥2+b cos-2abC=aab+b1a=1→→→→CB≤,CA·CB,∴CA·=22 =”号.b=1时取“当且仅当a=1→→.CB的最大值是所以,CA·2由于地形的C的距离,如图,要计算西湖岸边两景点B与)16.(文)(2010·广东玉湖中学=BADAB=14km,∠,两点,现测得AD⊥CDAD=10km,限制,需要在岸上选取A和D=3=1.414,C的距离(精确到0.1km).参考数据:2,求两景点60°,∠BCD=135°B与2.236.,1.7325==x,]在△ABD中,设BD[解析222,cos AD·∠=BDAD+BDA-2BD·则BA222·cos60°,+1010-2·x即14=x2 0,10x-96=整理得:x-),舍去x=解之得,x16,=-6(21由正弦定理得,BDBC=,BCD sin∠sin CDB∠含详解答案.高考总复习1611.3(km)≈=82sin30°∴BC=·sin135°11.3km.的距离约为B与C答:两景点经规划调理长沙市某棚户区改造建筑用地平面示意图如图所示.)(2010·湖南十校联考)(是原ABCD研确定,棚改规划建筑用地区域可近似为半径是R的圆面.该圆的内接四边形=2万米.万米,棚户建筑用地,测量可知边界AB=AD=4BC=6万米,CD的面积及圆面的半径R的值;(1)请计算原棚户区建筑用地ABCD可以调整.为了提高、BC(2)因地理条件的限制,边界AD、CD不能变更,而边界AB,使得棚户区改造的新建筑用地上设计一点P棚户区改造建筑用地的利用率,请在ABC的面积最大,并求出其最大值.APCD,由余AC[解析]=(1)因为四边形ABCD内接于圆,所以∠ABC+∠ADC180°,连接弦定理:222ABC +6-2AC×=44×6cos∠22.=4∠+2-2×ADC2×4cos1.60°.∠ABC=∵∠ABC∈(0,π),∴∠ABC=∴cos211 ×6×sin60°+××2×4sin120°S则=×4ABCD四边形22 .=83(万平方米) ABC中,由余弦定理:在△222∠·-2AB·BCACABC=ABBC+cos17.=2×46×=28,故16=+36-AC2×2 由正弦定理得,21212AC274 万米).=,∴R=(=2R=33ABC sin∠32=S+S(2)S,APCAPCDADC△四边形△1S=AD·CD·sin120°=23.ADC△2设AP=x,CP=y,13则S=xy·sin60°=xy.APC△24222-2xyyAC又由余弦定理:=x+cos60°含详解答案.高考总复习2228.xy+=-=xy22.xy≥2-xy∴x=+yxy-xy 28,当且仅当x=y时取等号.∴xy≤33时面积最大,其最大面积y,即当x∴S=23+=28xy≤23+×=93APCD四边形44 万平方米.为93处各有一个C、B17.(2010·上海松江区模拟)、如图所示,在一条海防警戒线上的点A收到发自静止50千米.某时刻,BC水声监测点,B、两点到点A的距离分别为20千米和同时接收到该声波信号,已知声波在水中的传播速度C秒后A、目标P的一个声波信号,8 1.5千米/秒.是P的距离,并求xP(1)设A到的距离为x千米,用x表示B的值.、C到0.01千米.(2)求P到海防警戒线AC的距离)(结果精确到PC=x,解析[](1)依题意,有PA=12. -8=-PB=x1.5x ×20AB=PAB中,在△222222?-PBxx-AB+1220-PA?+=PAB=cos∠20·AB2x2PA·323x+=x550 AC中,AC=同理,在△P222222x-PCxAC-+PA50+25 =,=cos=∠PACx502x·2PA·AC PAC,∠PAB=cos∠cos∵323x+2531. x==∴,解之得,x5x中,,在△AC于DADP(2)作PD⊥25 得,∠PAD=由cos312142=,-cos∠PAD=sin∠PAD131214 千米,18.33=APD=31·421≈∠A=∴PDP sin31 千米.的距离为到海防警戒线答:静止目标PAC18.33含详解答案.高考总复习含详解答案.。

(完整版)正弦定理和余弦定理典型例题

(完整版)正弦定理和余弦定理典型例题

《正弦定理和余弦定理》典型例题透析类型一:正弦定理的应用:例1.已知在ABC ∆中,10c =,45A =o ,30C =o ,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C=Q , ∴sin 10sin 45102sin sin 30c A a C ⨯===oo∴ 180()105B A C =-+=o o , 又sin sin b c B C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯====⨯=o o o 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。

【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴56a =【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ∆===o 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C=, ∴sin 1sin 23c B C b ===o , (方法一)∵0180C <<o o , ∴30C =o 或150C =o ,当150C =o 时,210180B C +=>o o ,(舍去);当30C =o 时,90A =o ,∴222a b c =+=.(方法二)∵b c >,60B =o , ∴C B <,∴60C <o 即C 为锐角, ∴30C =o ,90A =o ∴222a b c =+=.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。

高中数学高考总复习正弦定理与余弦定理应用举例习题及详解

高中数学高考总复习正弦定理与余弦定理应用举例习题及详解

高中数学高考总复习正弦定理与余弦定理应用举例习题及详解一、选择题1.(2010·广东六校)两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )km.( )A .a B.2a C .2aD.3a[答案] D[解析] 依题意得∠ACB =120°.由余弦定理cos120°=AC 2+BC 2-AB 22AC ·BC∴AB 2=AC 2+BC 2-2AC ·BC cos120° =a 2+a 2-2a 2⎝⎛⎭⎫-12=3a 2 ∴AB =3a .故选D.2.(文)(2010·广东佛山顺德区质检)在△ABC 中,“sin A >32”是“∠A >π3”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[答案] A[解析] 在△ABC 中,若sin A >32,则∠A >π3,反之∠A >π3时,不一定有sin A >32,如A =5π6时,sin A =sin 5π6=sin π6=12. (理)在△ABC 中,角A 、B 所对的边长为a 、b ,则“a =b ”是“a cos A =b cos B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A[解析] 当a =b 时,A =B , ∴a cos A =b cos B ; 当a cos A =b cos B 时, 由正弦定理得 sin A ·cos A =sin B ·cos B , ∴sin2A =sin2B , ∴2A =2B 或2A =π-2B , ∴A =B 或A +B =π2.则a =b 或a 2+b 2=c 2.所以“a =b ”⇒“a cos A =b cos B ”, “a cos A =b cos B ”⇒/ “a =b ”,故选A.3.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,观测得∠ABC =120°,则AC 两地的距离为( )A .10km B.3kmC .105kmD .107km[答案] D[解析] 如图,△ABC 中,AB =10,BC =20,∠B =120°,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·cos120° =102+202-2×10×20×⎝⎛⎭⎫-12=700, ∴AC =107km.∴选D.4.(文)在△ABC 中,sin 2A 2=c -b2c (a 、b 、c 分别为角A 、B 、C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形[答案] B[解析] sin 2A 2=1-cos A 2=c -b 2c ,∴cos A =bc ,∴b 2+c 2-a 22bc =bc,∴a 2+b 2=c 2,故选B.(理)(2010·河北邯郸)在△ABC 中,sin 2A +cos 2B =1,则cos A +cos B +cos C 的最大值为( )A.54B. 2 C .1D.32[答案] D[解析] ∵sin 2A +cos 2B =1,∴sin 2A =sin 2B , ∵0<A ,B <π,∴sin A =sin B ,∴A =B . 故cos A +cos B +cos C =2cos A -cos2A =-2cos 2A +2cos A +1=-2(cos A -12)2+32,∵0<A <π2,∴0<cos A <1,∴cos A =12时,取得最大值32.5.(文)(2010·广东汕头一中)已知△ABC 的外接圆半径为R ,角A 、B 、C 的对边分别为a 、b 、c ,且2R (sin 2A -sin 2C )=(2a -b )sin B ,那么角C 的大小为( )A.π3B.π2C.π4D.2π3[答案] C[解析] 由正弦定理得,a 2-c 2=2ab -b 2, ∴cos C =a 2+b 2-c 22ab =22,∵0<C <π,∴C =π4.(理)已知a 、b 、c 是△ABC 三内角A 、B 、C 的对边,且A 为锐角,若sin 2A -cos 2A =12,则( )A .b +c <2aB .b +c ≤2aC .b +c =2aD .b +c ≥2a[答案] B[解析] ∵sin 2A -cos 2A =12,∴cos2A =-12,又A 为锐角,∴A =60°,∴B +C =120°, ∴b +c 2a =sin B +sin C2sin A=2sinB +C 2cos B -C23=cos B -C 2≤1,∴b +c ≤2a .6.(2010·北京顺义一中月考)在△ABC 中,已知cos A =513,sin B =35,则cos C 的值为( )A.1665B.5665C.1665或5665D .-1665[答案] A[解析] ∵cos A =513,∴sin A =1213>35=sin B ,∴A >B ,∵sin B =35,∴cos B =45,∴cos C =cos[π-(A +B )]=-cos(A +B )=sin A sin B -cos A cos B =1665.[点评] 在△ABC 中,有sin A >sin B ⇔A >B .7.在地面上一点D 测得一电视塔尖的仰角为45°,再向塔底方向前进100m ,又测得塔尖的仰角为60°,则此电视塔高约为________m .( )A .237B .227C .247D .257[答案] A[解析] 如图,∠D =45°,∠ACB =60°,DC =100,∠DAC =15°, ∵AC =DC ·sin45°sin15°,∴AB =AC ·sin60° =100·sin45°·sin60°sin15°=100×22×326-24≈237.∴选A.8.(文)(2010·青岛市质检)在△ABC 中,∠B =π3,三边长a 、b 、c 成等差数列,且ac =6,则b 的值是( )A. 2B. 3C. 5D. 6[答案] D[解析] 由条件2b =a +c ,∴4b 2=a 2+c 2+2ac =a 2+c 2+12,又cos B =a 2+c 2-b 22ac ,∴12=a 2+c 2-b212,∴a 2+c 2=6+b 2, ∴4b 2=18+b 2,∴b = 6.(理)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a 、b 、c 成等比数列,且c =2a ,则cos B =( )A.14B.34C.24D.23[答案] B[解析] ∵a 、b 、c 成等比数列,∴b 2=ac ,又∵c =2a , ∴b 2=2a 2,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.[点评] 在知识的交汇处命题是高考命题的基本原则.本题融数列与三角函数于一体,集中考查正弦定理、余弦定理、等比数列等基础知识.同时也体现了数列、三角函数等内容是高考中的热点问题,复习时要注意强化.9.如图所示的曲线是以锐角△ABC 的顶点B 、C 为焦点,且经过点A 的双曲线,若△ABC 的内角的对边分别为a 、b 、c ,且a =4,b =6,c sin A a =32,则此双曲线的离心率为( )A.3+72B.3-72C .3-7D .3+7[答案] D [解析]c sin A a =32⇒a sin A =c 32=c sin C⇒sin C =32,因为C 为锐角,所以C =π3, 由余弦定理知c 2=a 2+b 2-2ab cos C =42+62-2×4×6×12=28,∴c =27∴e =a b -c =66-27=3+7.10.(文)(2010·山东济南)设F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 在双曲线上,若PF 1→·PF 2→=0,|PF 1→|·|PF 2→|=2ac (c 为半焦距),则双曲线的离心率为( )A.3-12B.3+12 C .2D.5+12[答案] D[解析] 由条件知,|PF 1|2+|PF 2|2=|F 1F 2|2,根据双曲线定义得:4a 2=(|PF 1|-|PF 2|)2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=|F 1F 2|2-4ac =4c 2-4ac ,∴a 2+ac -c 2=0,∴1+e -e 2=0, ∵e >1,∴e =5+12. (理)(2010·安徽安庆联考)如图,在△ABC 中,tan C 2=12,AH →·BC →=0,AB →·(CA →+CB →)=0,经过点B 以A 、H 为两焦点的双曲线的离心率为( )A.5+12B.5-1C.5+1D.5-12[答案] A[解析] ∵AH →·BC →=0,∴AH ⊥BC , ∵tan C 2=12,∴tan C =2tanC21-tan 2C 2=43=AHCH,又∵AB →·(CA →+CB →)=0,∴CA =CB , ∴tan B =tan ⎝⎛⎭⎫180°-C 2=cot C 2=2=AHBH ,设BH =x ,则AH =2x ,∴CH =32x ,AB =5x ,由条件知双曲线中2C =AH =2x,2a =AB-BH =(5-1)x ,∴e =c a =25-1=5+12,故选A.二、填空题11.如图,为了测定河的宽度,在一岸边选定两点A ,B 和对岸标记物C ,测得∠CAB =30°,∠CBA =45°,AB =120米,则河的宽度为________米.[答案] 60(3-1)[解析] 过C 点作CD ⊥AB 于D ,设BD =x ,则CD =x ,AD =120-x ,又∵∠CAB =30°,∴x 120-x =33,解之得,x =60(3-1). 12.(2010·福建三明一中)如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°方向,与A 相距32海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处.则两艘轮船之间的距离为________海里.[答案]13[解析] 如图可知,∠ABC =60°,AB =BC ,∴AC =5,∠BAC =60°,从而∠DAC =45°, 又AD =32,∴由余弦定理得, CD =AD 2+AC 2-2AD ·AC ·cos45°=13.13.(文)(2010·山东日照模拟)在△ABC 中,三个内角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3,△ABC 的面积等于3,则a +b =________.[答案] 4[解析] 由条件知,12ab sin π3=3,∴ab =4,∵cos π3=a 2+b 2-42ab,∴a 2+b 2=8,∴(a +b )2=a 2+b 2+2ab =8+8=16, ∴a +b =4.(理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积S =14(b 2+c 2-a 2),若a =10,则bc 的最大值是______.[答案] 100+50 2[解析] 由题意得,12bc sin A =14(b 2+c 2-a 2),∴a 2=b 2+c 2-2bc sin A ,结合余弦定理得,sin A =cos A ,∴∠A =π4,又根据余弦定理得100=b 2+c 2-2bc ≥2bc -2bc ,∴bc ≤1002-2=100+50 2.14.(文)(2010·山东日照)一船向正北匀速行驶,看见正西方两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度是________海里/小时.[答案] 10[解析] 设该船的速度为v 海里/小时,如图由题意知,AD =v 2,AC =32v ,∵tan75°=tan45°+tan30°1-tan45°tan30°=2+3,又tan75°=ABAD,∴2+3=10+3v2v 2,解得v =10. (理)(2010·合肥质检)如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进m km 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围n km 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险.[答案] m cos αcos β>n sin(α-β)[解析] ∠MAB =90°-α,∠MBC =90°-β=∠MAB +∠AMB =90°-α+∠AMB ,∴∠AMB =α-β,由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m sin (α-β),解得BM =m cos αsin (α-β),要使船没有触礁危险需要BM sin(90°-β)=m cos αcos βsin (α-β)>n ,所以α与β满足m cos αcos β>n sin(α-β)时船没有触礁危险.三、解答题15.(2010·河北唐山)在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,且a cos B +b cos A =1.(1)求c ;(2)若tan(A +B )=-3,求CA →·CB →的最大值. [解析] (1)由a cos B +b cos A =1及正弦定理得, c sin A sin C ·cos B +c sin Bsin C ·cos A =1, ∴c sin(A +B )=sin C ,又sin(A +B )=sin(π-C )=sin C ≠0, ∴c =1.(2)∵tan(A +B )=-3,0<A +B <π,∴A +B =2π3,∴C =π-(A +B )=π3.由余弦定理得,12=a 2+b 2-2ab cos C =a 2+b 2-ab ≥2ab -ab =ab =2CA →·CB →,∴CA →·CB →≤12,当且仅当a =b =1时取“=”号. 所以,CA →·CB →的最大值是12.16.(文)(2010·广东玉湖中学)如图,要计算西湖岸边两景点B 与C 的距离,由于地形的限制,需要在岸上选取A 和D 两点,现测得AD ⊥CD ,AD =10km ,AB =14km ,∠BAD =60°,∠BCD =135°,求两景点B 与C 的距离(精确到0.1km).参考数据:2=1.414,3=1.732,5=2.236.[解析] 在△ABD 中,设BD =x , 则BA 2=BD 2+AD 2-2BD ·AD ·cos ∠BDA , 即142=x 2+102-2·10x ·cos60°, 整理得:x 2-10x -96=0, 解之得,x 1=16,x 2=-6(舍去), 由正弦定理得, BC sin ∠CDB =BDsin ∠BCD,∴BC =16sin135°·sin30°=82≈11.3(km)答:两景点B 与C 的距离约为11.3km.(理)(2010·湖南十校联考)长沙市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域可近似为半径是R 的圆面.该圆的内接四边形ABCD 是原棚户建筑用地,测量可知边界AB =AD =4万米,BC =6万米,CD =2万米.(1)请计算原棚户区建筑用地ABCD 的面积及圆面的半径R 的值;(2)因地理条件的限制,边界AD 、CD 不能变更,而边界AB 、BC 可以调整.为了提高棚户区改造建筑用地的利用率,请在ABC 上设计一点P ,使得棚户区改造的新建筑用地APCD 的面积最大,并求出其最大值.[解析] (1)因为四边形ABCD 内接于圆,所以∠ABC +∠ADC =180°,连接AC ,由余弦定理:AC 2=42+62-2×4×6cos ∠ABC =42+22-2×2×4cos ∠ADC .∴cos ∠ABC =12.∵∠ABC ∈(0,π),∴∠ABC =60°.则S 四边形ABCD =12×4×6×sin60°+12×2×4×sin120°=83(万平方米). 在△ABC 中,由余弦定理: AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =16+36-2×4×6×12=28,故AC =27.由正弦定理得,2R =AC sin ∠ABC =2732=4213,∴R =2213(万米).(2)S 四边形APCD =S △ADC +S △APC , S △ADC =12AD ·CD ·sin120°=2 3.设AP =x ,CP =y , 则S △APC =12xy ·sin60°=34xy .又由余弦定理:AC 2=x 2+y 2-2xy cos60°高考总复习含详解答案 =x 2+y 2-xy =28.∴x 2+y 2-xy ≥2xy -xy =xy .∴xy ≤28,当且仅当x =y 时取等号.∴S 四边形APCD =23+34xy ≤23+34×28=93,即当x =y 时面积最大,其最大面积为93万平方米.17.(2010·上海松江区模拟)如图所示,在一条海防警戒线上的点A 、B 、C 处各有一个水声监测点,B 、C 两点到点A 的距离分别为20千米和50千米.某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A 、C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B 、C 到P 的距离,并求x 的值.(2)求P 到海防警戒线AC 的距离(结果精确到0.01千米).[解析] (1)依题意,有P A =PC =x ,PB =x -1.5×8=x -12.在△P AB 中,AB =20cos ∠P AB =P A 2+AB 2-PB 22P A ·AB =x 2+202-(x -12)22x ·20=3x +325x同理,在△P AC 中,AC =50cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x, ∵cos ∠P AB =cos ∠P AC ,∴3x +325x =25x,解之得,x =31. (2)作PD ⊥AC 于D ,在△ADP 中,由cos ∠P AD =2531得, sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠APD =31·42131=421≈18.33千米, 答:静止目标P 到海防警戒线AC 的距离为18.33千米.。

(完整版)正弦定理和余弦定理典型例题(最新整理)

(完整版)正弦定理和余弦定理典型例题(最新整理)

【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)

根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .

正余弦定理典型例题

正余弦定理典型例题

正余弦定理典型例题一、正弦定理典型例题1. 例题1:已知两角和一边,求其他边和角题目:在△ ABC中,已知A = 30^∘,B = 45^∘,a = 2,求b,c和C。

解析:根据三角形内角和C=180^∘-A B,所以C = 180^∘-30^∘-45^∘=105^∘。

由正弦定理(a)/(sin A)=(b)/(sin B),已知a = 2,A = 30^∘,B = 45^∘,则b=(asin B)/(sin A)。

因为sin A=sin30^∘=(1)/(2),sin B=sin45^∘=(√(2))/(2),所以b=(2×frac{√(2))/(2)}{(1)/(2)} = 2√(2)。

再根据正弦定理(a)/(sin A)=(c)/(sin C),sin C=sin105^∘=sin(60^∘+45^∘)=sin60^∘cos45^∘+cos60^∘sin45^∘=(√(3))/(2)×(√(2))/(2)+(1)/(2)×(√(2))/(2)=(√(6)+√(2)) /(4)。

所以c=(asin C)/(sin A)=(2×frac{√(6)+√(2))/(4)}{(1)/(2)}=√(6)+√(2)。

2. 例题2:已知两边和其中一边的对角,求其他边和角(可能有两解)题目:在△ ABC中,a = 2√(3),b = 6,A = 30^∘,求B,C,c。

解析:由正弦定理(a)/(sin A)=(b)/(sin B),可得sin B=(bsin A)/(a)。

把a = 2√(3),b = 6,A = 30^∘代入,sinB=frac{6×sin30^∘}{2√(3)}=(6×frac{1)/(2)}{2√(3)}=(√(3))/(2)。

因为b > a,A = 30^∘,所以B = 60^∘或B = 120^∘。

当B = 60^∘时,C=180^∘-A B=180^∘-30^∘-60^∘=90^∘,再由(a)/(sinA)=(c)/(sin C),c=(asin C)/(sin A)=frac{2√(3)×sin90^∘}{sin30^∘} = 4√(3)。

正余弦定理在实际中的应用知识点总结(学案)附答案

正余弦定理在实际中的应用知识点总结(学案)附答案

正余弦定理在实际中的应用对实际应用问题中的一些名称、术语的含义的理解(1)坡角:坡向与⑧水平方向的夹角,如图.(2)仰角和俯角:在视线和水平线所成角中,视线在水平线⑨上方的角叫仰角,在水平线⑩下方的角叫俯角,如图.(3)方位角:指从正北方向⑪顺时针转到目标方向线所成的角,如图中B点的方位角为α.(4)方向角:从指定方向线到目标方向线所成的⑫小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°.[知识点一]测量距离问题[例1] (导学号:30280048)如图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为12 6 n mile,在A处看灯塔C在货轮的北偏西30°,距离为8 3 n mile,货轮由A处向正北航行到D处时,再看灯塔B在南偏东60°.求:(1)A处与D处之间的距离;(2)灯塔C与D处之间的距离.[思路索引]如图:(1)由∠BDA=60°,利用正弦定理计算AD.(2)由(1)知AD 长,利用余弦定理计算CD .[解] (1)在△ABD 中,∠ADB =60°,B =45°,由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24.(2)在△ADC 中,由余弦定理得 CD 2=AD 2+AC 2-2AD ·AC cos 30°, 解得CD =8 3.即C 处与D 处的距离为8 3 n mile.1.(导学号:30280049)(2016·西安一中)如图,从气球A 上测得其正前下方的河流两岸B ,C 的俯角分别为75°,30°,此时气球的高度AD 是60 m ,则河流的宽度BC 是( )A .240(3-1)mB .180(2-1) mC .120(3-1) mD .30(3+1) m解析:由题意知,在Rt △ADC 中,∠C =30°,AD =60 m ,∴AC =120 m .在△ABC 中,∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,由正弦定理,得BC =AC sin ∠BACsin ∠ABC =120×226+24=120(3-1)(m).答案:C[知识点二] 测量高度问题[例2] (导学号:30280050)某人在塔的正东沿着南偏西60°的方向前进40米以后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.[思路索引] 先画出图形,确定何时仰角最大,然后把已知和所求分别放置在一个或几个三角形中,并通过其公共元素联系起来,由正(余)弦定理解决.[解] 依题意画图(如图所示),某人在C 处,AB 为塔高,他沿CD 前进,CD =40米,此时∠DBF =45°.只有B 到CD 的距离最短时,从C 到D 所测塔的仰角才最大.tan ∠AEB =ABBE ,AB 为定值,要求出塔高AB ,必须先求BE ,而要求BE ,需先求BD (或BC ).在△BDC 中,CD =40,∠BCD =30°,∠DBC =135°, 由正弦定理,得CD sin ∠DBC =BD sin ∠DCB ,∴BD =40sin 30°sin 135°=20 2.在Rt △BED 中,∠BDE =180°-135°-30°=15°, ∴BE =DB sin 15°=202·6-24=10(3-1). 在Rt △ABE 中,∠AEB =30°, ∴AB =BE tan 30°=103(3-3). 故所求的塔高为103(3-3)米.[审题技巧] (1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)要根据题意正确画出图形,同时空间图形和平面图形要区分开,然后通过解三角形求解.2.(导学号:30280051)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.解析:在Rt △ABC 中,AC =BCsin 45°=100 2. 在△MAC 中,由正弦定理得AM sin 60°=ACsin 45°, ∴AM =1002×3222=100 3在Rt △ANM 中,MN =AM sin 60°=1003×32=150. 答案:150[知识点三] 测量角度问题[例3] (导学号:30280052)如图,在海岸A 处,发现北偏东45°方向,距离A 为(3-1)n mile 的B 处有一艘走私船,在A 处北偏西75°方向,距离A 为2 n mile 的C 处有一艘缉私艇奉命以10 3 n mile/h 的速度追截走私船,此时,走私船正以10 n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私艇沿什么方向行驶才能最快追上走私船,并求出所需时间.(结果保留根号,无需求近似值)[解] 如图,设缉私艇t 小时后在D 处追上走私船,BD =10t n mile ,CD =103t n mile.∵∠BAC =45°+75°=120°, ∴在△ABC 中,由余弦定理得 BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC=(3-1)2+22-2×(3-1)×2×cos 120°=6, ∴BC = 6. 由正弦定理得 sin ∠ABC =AC ·sin ∠BAC BC =2sin 120°6=22, ∴∠ABC =45°, ∴BC 为东西走向 ∴∠CBD =120°.在△BCD 中,由正弦定理得sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin 120°103t =12,∴∠BCD =30°,∴∠BDC =30°. ∴BD =BC =6,即10t =6,∴t =610(h). 答:缉私艇沿北偏东60°方向行驶才能最快追上走私船,这需610小时. 3.(导学号:30280053)甲船在A 处观察到乙船在它的北偏东60°的方向,两船相距a n mile ,乙船向正北行驶,若甲船的速度是乙船的3倍,问甲船应按什么方向前进才能尽快追上乙船?此时乙船行驶了多少?解:如图,设乙船行驶了x n mile ,则甲船行驶了3x n mile ,两船在C 处相遇. 在△ABC 中,∠ABC =180°-60°=120°,AB =a ,BC =x ,AC =3x , 由余弦定理得(3x )2=a 2+x 2-2ax cos 120°, 即2x 2-ax -a 2=0, ∴x =a (x =-a2舍去).故△ABC 为顶角为120°的等腰三角形,∴∠BAC =30°. ∴∠CAy =60°-30°=30°.故甲船应按北偏东30°方向前进才能追上乙船,此时乙船行驶了a n mile.。

高考数学题型全归纳:正余弦定理在解决三角形问题中的应用(含答案)

高考数学题型全归纳:正余弦定理在解决三角形问题中的应用(含答案)

正余弦定理在解决三角形问题中的应用典型例题分析:一、判定三角形的形状例1 根据下列条件判断三角形ABC 的形状:(1)若a 2tanB=b 2tanA ;解:由已知及正弦定理得(2RsinA)2Bcos B sin = (2RsinB)2Acos A sin 2sinAcosA=2sinBcosB sin2A=sin2B2cos(A + B)sin(A – B)=0∴ A + B=90o或 A – B=0所以△ABC 是等腰三角形或直角三角形.(2)b 2sin 2C + c 2sin 2B=2bccosBcosC; 解: 由正弦定理得sin 2Bsin 2C=sinBsinCcosBcosC∵ sinBsinC ≠0, ∴ sinBsinC=cosBcosC, 即 cos(B + C)=0,∴ B + C=90o, A=90o,故△ABC 是直角三角形. (3)(sinA + sinB + sinC) – (cosA + cosB + cosC)=1. 解:(sinA + sinB + sinC)– (cosA + cosB + cosC)=1[2sin2BA cos2BA + sin(A + B)] – [2cos2BA cos2BA + 2cos22C -1]=0[2sin2BA cos2BA + sin(A + B)] – 2cos2BA cos2BA -2sin22BA =0(sin 2B A - cos 2B A )(cos2BA - sin2BA )=0sin(2BA -4)sin4BC Asin4CB A=0△ABC 是Rt △。

二、三角形中的求角或求边长问题例2、△ABC 中,已知:AB=2,BC=1,CA=,分别在边AB 、BC 、CA 上取点D 、E 、F ,使△DEF 是等边三角形(如图1)。

设∠FEC=α,问sin α为何值时,△DEF 的边长最短?并求出最短边的长。

图 1分析:要求最短边的长,需建立边长关于角α的目标函数。

高考数学题型全归纳:正余弦定理的应用知识归纳(含答案)

高考数学题型全归纳:正余弦定理的应用知识归纳(含答案)

高考数学题型全归纳:正余弦定理的应用知识归纳(含答案)正余弦定理在解决三角形问题中的应用知识点归纳:1.正弦定理:形式一:R 2Csin c B sin b A sin a ===;形式二:R 2a A sin =;R 2b B sin =;R 2c C sin =;(角到边的转换)形式三:A sin R 2a ?=,B sin R 2b ?=,C sin R 2c ?=;(边到角的转换)形式四:B sin ac 2 1A sin bc 21C sin ab 21S ===;(求三角形的面积)解决以下两类问题:1)、已知两角和任一边,求其他两边和一角;(唯一解)2)、已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角)。

若给出A ,b a ,那么解的个数为:无解(A sin b a <);一解(A sin b a A sin b a ≥=或者);两解(b a A sin b <<);2.余弦定理:形式一:A cos bc 2c b a 222?-+=,B cos ac 2c a b 222?-+=,C cos ab 2b a c 222?-+= 形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)解决以下两类问题:1)、已知三边,求三个角;(唯一解)2)、已知两边和它们得夹角,求第三边和其他两个角;(唯一解)3、角平分线定理:DCAD BC AB = ;其中BD 为角B 的角平分线。

规律方法总结:1、要正确区分两个定理的不同作用,围绕三角形面积公式及三角形外接圆直径展开三角形问题的求解。

2、两个定理可以实现将“边、角混合”的等式转化成“边或角的单一”等式。

3、记住一些结论:1,,,sin 2A B C A B C S ab C π++==均为正角;等。

4、余弦定理的数量积表示式:cos ||||BA CA A BA CA ?= 。

正、余弦定理在高考题中运用

正、余弦定理在高考题中运用

和正弦定理,余弦定理相关高考题型类型1:正、余定理的边角转换,求值。

正、余定理的边角转换,求值。

方法:(1)边转化成角,(2)角转化成边,(3)边、角混合转化成边或角, (4)复合角的先化简。

例1. 在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且的对边,且2sin (2)sin (2)sin a A b c B c b C =+++(Ⅰ)求A 的大小;的大小;(Ⅱ)求sin sin B C +的最大值答案:答案:A=120°sinB+sinC 取得最大值1。

例2.2.设设ABC D 的内角A 、B 、C 的对边长分别为a 、b 、c,c,且且32b +32c -32a =42bc . (Ⅰ) ) 求求sinA 的值;的值;(Ⅱ)求2sin()sin()441cos 2AB C Ap p +++-的值的值. . 例3. 设ABC D 的内角A 、B 、C 的对边长分别为a 、b 、c ,3cos()cos 2A C B -+=,2b ac =,求B 。

例4.已知,,a b c 分别是内角,,A B C 所对边长,0sin 3cos =--+c b C a C a ,(1)求A, (2)若ABC a D =,2的面积为3,求b, c.方法一。

化角0s i n 2s i n 2s i n s i n 23s i n 2=--+C R B R C A R AC O S C R , 由sinB=sin(A+C)sinB=sin(A+C),,方法二。

化边,sin 32222c b C a ab c b a a+=+-+ bc b C ab c b a 22sin 322222+=+-+练习: 1.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足2223()4S a b c =+-。

(Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正、余弦定理在实际生活中的应用
正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题.求解此类问题的大概步骤为:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等;(2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答.
1.测量中正、余弦定理的应用
例1 某观测站C 在目标南偏西25︒方向,从出发有一条南偏东35︒走向的公路,在C 处测得公路上与C 相距31千米的处有一人正沿此公路向走去,走20千米到达,此时测得CD 距离为21千米,求此人所在处距还有多少千米?
分析:根据已知作出示意图,分析已知及所求,解CBD ∆,求角.再解ABC ∆,求出AC ,再求出AB ,从而求出AD (即为所求).
解:由图知,60CAD ∠=︒.
22222231202123cos 22312031BD BC CD B BC BD +-+-===
⋅⨯⨯,
sin B =
. 在ABC ∆中,sin 24sin BC B
AC A
⋅=
=.
由余弦定理,得2222cos BC AC AB AC AB A =+-⋅⋅. 即2223124224cos 60AB AB =+-⋅⋅⋅︒.
整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米). 答:此人所在处距还有15千米.
评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理.
2.航海中正、余弦定理的应用
A C
D 31
21
B
20
20 35︒
25︒ 东

例2 在海岸处,发现北偏东45︒
1海里的处有一艘走私船,在处北偏西75︒方向,
距为2海里的C
处的缉私船奉命以海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从处向北偏东30︒方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间?
分析:注意到最快追上走私船,且两船所用时间相等,可画出示意图,需求CD 的方位角及由C 到所需的航行时间.
解:设缉私船追上走私船所需时间为小时,则有
CD =,10BD t =.
在ABC △中,
∵1AB =-,2AC =,
4575120BAC ∠=︒+︒=︒,
根据余弦定理可得BC =
=
根据正弦定理可得sin120sin AC ABC BC

∠=
=
=.
∴45ABC ∠=︒,易知CB 方向与正北方向垂直,从而9030120CBD ∠=︒+︒=︒. 在BCD △
中,根据正弦定理可得:sin 1
sin 2BD CBD BCD CD ∠∠=
==,
∴30BCD =︒△,30BDC ∠=︒
,∴BD BC ==,
则有10t =
,0.245t =
=小时14.7=分钟. 所以缉私船沿北偏东060方向,需14.7分钟才能追上走私船.
评注:认真分析问题的构成,三角形中边角关系的分析,可为解题的方向提供依据.明确方位角是应用的前提,此题边角关系较复杂要注意正余弦定理的联用.
3.航测中正、余弦定理的应用
例3 飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m ,速度为
45︒
75︒ 30︒
A
C
B
180km/h ,飞行员先看到山顶的俯角为'1830︒,经过120秒后又看到山顶的俯角为81︒,求山
顶的海拔高度(精确到m ).
分析:首先根据题意画出图形,如图,这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离,然后再根据航线的海拔高度求得山顶的海拔高度.
解:设飞行员的两次观测点依次为和,山顶为M ,山顶到直线的距离为MD .
如图,在ABM △中,由已知,得
1830'A ∠=︒,99ABM ∠=︒,6230'AMB ∠=︒.
又120
18066060
AB =⨯
=⨯(km ),
根据正弦定理,可得6sin1830'
sin 6230'
BM ︒=︒,
进而求得6sin1830'sin 81sin 6230'
MD ︒︒
=︒,∴2120MD ≈(m ),
可得山顶的海拔高度为20250212018130-=(m ).
评注:解题中要认真分析与问题有关的三角形,正确运用正、余弦定理有序地解相关的三角形,从而得到问题的答案.
4.炮兵观测中正、余弦定理的应用
例 4 我炮兵阵地位于地面处,两观察所分别位于地面点C 和处,已知6000CD =米,
45ACD ∠=︒,75ADC ∠=︒,目标出现于地面点处时,测得30BCD ∠=︒,15BDC ∠=︒
(如图),求炮兵阵地到目标的距离(结果保留根号).
分析:根据题意画出图形,如图,题中的四点、、C 、可构成四个三角形.要求AB 的长,由于751590ADB ∠=︒+︒=︒,只需知道AD 和BD 的长,这样可选择在ACD ∆和BCD ∆中应用定理求解.
解:在ACD △中,18060CAD ACD ADC ∠=︒-∠-∠=︒,
6000CD =,45ACD ∠=︒,
根据正弦定理有sin 45sin 60CD AD ︒==︒,




BCD
△中,
A B D
M
30︒ 45︒ 75︒
A
C D 15︒
180135CBD BCD BDC ∠=︒-∠-∠=︒, 6000CD =,30BCD ∠=︒,
根据正弦定理有sin 30sin135CD BD ︒=
=︒.
又在ABD ∆中,90ADB ADC BDC ∠=∠+∠=︒,
根据勾股定理有:AB =
=
==.
所以炮兵阵地到目标的距离为米.
评注:应用正、余弦定理求解问题时,要将实际问题转化为数学问题,而此类问题又可归结为解斜三角形问题,因此,解题的关键是正确寻求边、角关系,方能正确求解.
5.下料中正余弦定理的应用
例5 已知扇形铁板的半径为,圆心角为60︒,要从中截取一个面积最大的矩形,应怎样划线?
分析:要使截取矩形面积最大,必须使矩形的四个顶点都在扇形的边界上,即为扇形的
内接矩形,如图所示.
解:在图(1)中,在AB 上取一点,过作PN OA ⊥于N ,过作PQ PN ⊥交OB 于Q ,再过Q 作QM OA ⊥于M .
设AOP x ∠=,sin PN R x =.在POQ △中,由正弦定理,得
A
C
D
31
21 B
20 20 35︒
25︒ 东

sin(18060)sin(60)
OP PQ x =︒-︒︒-.∴sin(60)PQ R x =︒-.
于是[]22
sin sin(60)cos(260)cos 60S PN PQ R x x R x =⋅=
⋅︒-=-︒-︒
22
1(1)2R ≤
-=.
当cos(260)1x -︒=即30x =︒时,S 2
. 在图(2)中,取AB 中点C ,连结OC ,在AB 上取一点,过作//PQ OC 交OB 于Q ,过作PN PQ ⊥交AB 于N ,过Q 作QM PQ ⊥交CA 于M ,连结MN 得矩形MNPQ ,设
POC x ∠=,则sin PD R x =.
在POQ △中,由正弦定理得:
sin(18030)sin(30)
R R
x =
︒-︒︒-, ∴2sin(30)PQ R x =︒-.
∴[]2
2
24sin sin(30)2cos(230)cos30S PD PQ R x x R
x =⋅=⋅︒-=-︒-︒
222(1cos30)(2R R ≤-︒=(当15x =︒时取“”).
∴当15x =︒时,S 取得最大值2(2R .

2
2(2R >, ∴作30AOP ∠=︒,按图(1)划线所截得的矩形面积最大.
评注:此题属于探索性问题,需要我们自己寻求参数,建立目标函数,这需要有扎实的基本功,在平时学习中要有意识训练这方面的能力.
综上,通过对以上例题的分析,要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地,灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.。

相关文档
最新文档