用正弦定理证明三重向量积

合集下载

正弦定理的几种证明方法

正弦定理的几种证明方法

正弦定理的几种证明方法正弦定理是三角学中的重要定理,它可以用于求解任何三角形中的未知边和角,下面将介绍几种证明正弦定理的方法:证明方法一:三角形的面积法设三角形ABC的三边长度分别为a、b、c,对应的角度分别为A、B、C。

根据三角形面积公式,可以得到:S(三角形ABC)=0.5*a*h1=0.5*b*h2=0.5*c*h3其中h1、h2、h3分别为三角形ABC对应边的高,可以通过正弦函数关系得到:h1 = b * sinCh2 = c * sinAh3 = a * sinB代入前面的面积公式,得到:S(三角形ABC) = 0.5 * a * b * sinC = 0.5 * b * c * sinA = 0.5 * c * a * sinB移项整理后得到正弦定理:a / sinA =b / sinB =c / sinC证明方法二:向量法在平面直角坐标系中,设三角形ABC的三个顶点的坐标分别为A(x1,y1),B(x2,y2),C(x3,y3)。

根据向量的定义,可以得到:\vec{AB} = \vec{B} - \vec{A} = (x2 - x1, y2 - y1)\vec{AC} = \vec{C} - \vec{A} = (x3 - x1, y3 - y1)根据向量的数量积公式,可以得到:\vec{AB}, = \sqrt{(x2 - x1)^2 + (y2 - y1)^2} = a\vec{AC}, = \sqrt{(x3 - x1)^2 + (y3 - y1)^2} = c又根据向量的叉积公式,可以得到:而叉积的模也可以通过坐标计算得到:综上,可以得到正弦定理的向量形式:证明方法三:海伦公式法根据海伦公式,三角形ABC的面积S可以通过三角形的周长p和三条边的长度a、b、c计算得到:S = \sqrt{p \cdot (p - a) \cdot (p - b) \cdot (p - c)}其中p=(a+b+c)/2、又根据三角形面积的定义,可以得到:S = 0.5 \cdot a \cdot b \cdot \sin\angle C将前面两个公式等式右边进行等式转换,得到:\sqrt{p \cdot (p - a) \cdot (p - b) \cdot (p - c)} = 0.5\cdot a \cdot b \cdot \sin\angle C两边平方,整理得到:16p^2 \cdot (p - a) \cdot (p - b) \cdot (p - c) = a^2 \cdot b^2 \cdot \sin^2\angle C整理后得到:16(p-a)(p-b)(p-c)p = a^2 b^2 \cdot \sin^2\angle C再根据赫罗定理,可以得到:p(p-a)(p-b)(p-c)=S^2将上面两个等式联立,整理得到:16S^2 = a^2 b^2 \cdot \sin^2\angle C再开更号,得到:2S = ab \cdot \sin\angle C即得正弦定理。

正弦定理的19种证明

正弦定理的19种证明

正弦定理的19种证明一、正弦定理正弦定理是一个数学定理,说明每一个三角形的内角与临边之间的关系,为了方便研究,其通常使用三大正弦的另外三个隐函数的缩写形式的等式形式表示,即:sin A/a = sin B/b = sin C/c二、正弦定理的19种证明1、积分技巧。

积分是比较常见的证明正弦定理的方法,它涉及解决三角形的三角函数内角A和B之间关系的非线性微分方程,以及三元正弦定理的性质,例如通过解决变量θ的积分,以获得正弦定理的证明。

2、几何图形对比。

通过对比几何形状来证明正弦定理,即A与C有同样的形状,C与B也有相同的形状。

显然,相应两个角度之间的正弦值不变,因此就有了正弦定理。

3、证明三角形三条边的关系。

正弦定理证明三角形三条边有特定的关系,具体来说,通过三条边之间的一个三角几何关系,基于一对对比几何象限将三条边映射到三个内角,然后进一步推出正弦定理。

4、斜率技巧。

斜率技巧也是证明正弦定理的常用手段。

可以把三个内角中的两个角的Wrangel公式(斜率相等为例)结合起来,然后将此结果用三角函数表示出来,并用它们三个内角之间的正弦值对比实现等式证明。

5、角平分线公式。

角平分线公式也是常用的证明正弦定理的方法,即证明一个给定的三角形的外角等于两个内角的和,并用此结论建立正弦和余弦的三角函数,由此将正弦定理证明出来。

6、椭圆公式。

椭圆公式也是证明正弦定理的手段之一。

它依赖于椭圆的对称性,将椭圆抽象为三角形的形式,从而推进正弦定理的证明。

7、按照等式技术。

这种证明方法最常见,首先用角平分线技术证明一个给定的三角形的外角等于两个内角的和,然后将结论进行三角函数表示,建立正弦和余弦的三角函数,最后用斜率技术将等式推进,从而证明正弦定理的真实性。

8、解三角形的相交技巧。

使用相交技巧作为证明正弦定理的方法,首先从三角形的基本定义出发,将三角形中所有的点都定义一次,三角形中角A、B、C所在直线两边各定义一次,最后证明三角形中角A、B、C所在直线相交,并用此结论来证明正弦定理。

向量积分配律的证明(精选多篇)

向量积分配律的证明(精选多篇)

向量积分配律的证明(精选多篇)第一篇:向量积分配律的证明向量积分配律的证明三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。

下面把向量外积定义为:a×b=|a|·|b|·sin.分配律的几何证明方法很繁琐,大意是用作图的方法验证。

有兴趣的话请自己参阅参考文献中的证明。

下面给出代数方法。

我们假定已经知道了:1)外积的反对称性:a×b=-b×a.这由外积的定义是显然的。

2)内积(即数积、点积)的分配律:a·(b+c)=a·b+a·c,(a+b)·c=a·c+b·c.这由内积的定义a·b=|a|·|b|·cos,用投影的方法不难得到证明。

3)混合积的性质:定义(a×b)·c为矢量a,b,c的混合积,容易证明:i)(a×b)·c的绝对值正是以a,b,c为三条邻棱的平行六面体的体积,其正负号由a,b,c的定向决定(右手系为正,左手系为负)。

从而就推出:ii)(a×b)·c=a·(b×c)所以我们可以记a,b,c的混合积为(a,b,c).由i)还可以推出:iii)(a,b,c)=(b,c,a)=(c,a,b)我们还有下面的一条显然的结论:iv)若一个矢量a同时垂直于三个不共面矢a1,a2,a3,则a必为零矢量。

下面我们就用上面的1)2)3)来证明外积的分配律。

设r为空间任意矢量,在r·(a×(b+c))里,交替两次利用3)的ii)、iii)和数积分配律2),就有r·(a×(b+c))=(r×a)·(b+c)=(r×a)·b+(r×a)·c=r·(a×b)+r·(a×c)=r·(a×b+a×c)移项,再利用数积分配律,得r·(a×(b+c)-(a×b+a×c))=0这说明矢量a×(b+c)-(a×b+a×c)垂直于任意一个矢量。

三重积分的计算方法

三重积分的计算方法

三重积分的计算方法三重积分是多元函数积分的一种,它是对三维空间内的函数进行积分运算。

在物理学、工程学和数学等领域都有着广泛的应用。

在进行三重积分的计算时,我们需要掌握一定的方法和技巧,下面将介绍三重积分的计算方法。

首先,我们来看看三重积分的计算公式。

对于函数f(x, y, z),其在空间区域V 上的三重积分可以表示为:∭f(x, y, z)dV。

其中,∭表示三重积分的符号,f(x, y, z)是被积函数,dV表示体积元素。

在直角坐标系中,体积元素dV可表示为dxdydz,因此三重积分可以表示为:∭f(x, y, z)dxdydz。

接下来,我们将介绍三种常见的计算方法,直角坐标系下的三重积分、柱坐标系下的三重积分和球坐标系下的三重积分。

在直角坐标系下的三重积分中,我们需要将被积函数表示为x、y、z的函数,然后按照一定的积分次序进行计算。

通常情况下,我们会先对z进行积分,再对y 进行积分,最后对x进行积分。

这样可以将三重积分转化为三次一重积分的计算,简化计算过程。

在柱坐标系下的三重积分中,我们需要将被积函数表示为ρ、θ、z的函数,其中ρ表示点到z轴的距离,θ表示点在xy平面上的极角。

通过变量替换和雅可比行列式的计算,我们可以将直角坐标系下的三重积分转化为柱坐标系下的三重积分,从而简化计算。

在球坐标系下的三重积分中,我们需要将被积函数表示为r、θ、φ的函数,其中r表示点到原点的距离,θ表示点在xy平面上的极角,φ表示点与z轴的夹角。

通过变量替换和雅可比行列式的计算,我们可以将直角坐标系下的三重积分转化为球坐标系下的三重积分,从而简化计算。

除了上述的常见计算方法外,我们在进行三重积分的计算时,还需要注意积分区域的确定、被积函数的合理选择、积分次序的调整等问题。

在实际应用中,我们还可以利用对称性、奇偶性等性质简化计算过程。

总之,三重积分是多元函数积分的一种重要形式,它在实际问题中有着广泛的应用。

掌握三重积分的计算方法,对于深入理解多元函数的性质和解决实际问题具有重要意义。

正弦定理的几种证明方法

正弦定理的几种证明方法

正弦定理的几种证明方法1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。

由此,得sin sin abAB =,同理可得sin sin cbCB=,故有sin sin ab=sin c=.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。

由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin ab=sin c=.1’用知识的最近生长点来证明:实际应用问题中,我们常遇到问题:已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即:在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b解:过C 作CD ⊥AB 交AB 于D ,则cos AD c A =sin sin cos sin tan sin cos BD c A c A CDC C C C C ===sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c Bb AC AD DCc A C C C+==+=+==推论:sin sin b c B C = 同理可证:sin sin sin a b cA B C==ab DABCAB CDba2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为 D. 则Rt △ADB中,ABAD B =sin , ∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=∙. 同理,可证 S △ABC =A bc C ab sin 21sin 21=.∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21==. ∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==. 即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于,则j 与的夹角为90°-A ,j 与的夹角为90°-C . 由向量的加法原则可得 =+,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到j j ∙=+∙)( 由分配律可得j j ∙=∙+. B∴|j |Co s90°+|j Co s(90°-C )=|j Co s(90°-A ). j∴asinC=csinA. ∴CcA a sin sin =. A 另外,过点C 作与垂直的单位向量j ,则j 与的夹角为90°+C ,j 与的夹角为90°+B ,可得BbC c sin sin =. (此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与的夹角为90°-C ,j 与的夹角为90°-B ) ∴CcB b A a sin sin sin ==.(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与垂直的单位向量j ,则j与的夹角为A -90°,j 与的夹角为90°-C .由=+,得j · +j ·=j ·, j即a·Cos(90°-C)=c·Cos(A-90°), ∴asinC=csinA. ∴CcA a sin sin =D C BA AC CBA另外,过点C 作与垂直的单位向量j ,则j 与的夹角为90°+C ,j 与夹角为 90°+B .同理,可得C cB b sin sin =. ∴ Cc B b simA a sin sin == 4.外接圆证明正弦定理在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=R c B C 2sin sin ='=. ∴R Cc2sin =. 同理,可得R B b R A a 2sin ,2sin ==. ∴R CcB b A a 2sin sin sin ===. 这就是说,对于任意的三角形,我们得到等式 CcB b A a sin sin sin ==.。

正弦定理常见证明

正弦定理常见证明

正弦定理常见证明正弦定理是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即 a/sinA = b/sinB = c/sinC = 2r=D(r为外接圆半径,D为直径)。

以下是正弦定理的几种常见证明方法:方法一:外接圆证明只需证明任意三角形内,任一角的边与它所对应的正弦之比值为该三角形外接圆直径即可。

设AB长度为c。

若∠C为锐角,则C'与C落于AB的同侧,此时∠C'=∠C(同弧所对的圆周角相等)。

在Rt△ABC'中,有若∠C为钝角,则C'与C落于AB的异侧,BC的对边为a,此时∠C'=∠A,亦可推出。

故对任意三角形,定理得证。

方法二:向量证明若△ABC为锐角三角形,过点A作单位向量j⊥,则j与的夹角为90°-∠A,j 与的夹角为90°-∠C。

由向量的加法原则可得为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到∴|j| ||Cos90°+|j| || Cos(90°-C)=|j| ||Cos(90°-A) .∴asinC=csinA 即同理,过点C作与垂直的单位向量j,则j与的夹角为90°+∠C,j与的夹角为90°+∠B,可得。

方法三:三角函数证明做一个边长为a,b,c的三角形,对应角分别是A,B,C。

从角C向c边做垂线,得到一个长度为h的垂线和两个直角三角形。

显然有sinC=h/c和sinB=h/b,而a/c=sinB/sinC=b/b=b/sinB=2r(r为外接圆半径),从而证明了正弦定理。

以上是正弦定理的常见证明方法,不同的证明方法涉及不同的数学知识和技巧,建议根据个人情况进行选择和学习。

三向量的混合积

三向量的混合积

B
C
[ AB AC AD ]
3 1 9
5 4 2 2 0 14 16
A
D
故 A , B , C , D 四点共面 .
内容小结
设 a (a x , a y , a z ) , b (bx , by , bz ) , c (c x , c y , c z ) 1. 向量运算 加减: 数乘: 点积: 叉积:
a , b , c 共面
( ab )c 0
ax a y az b x b y bz 0 cx c y cz
思考与练习
1. 设 a i 2 j k , b i j , 计算 a b 及 a b , 并求 a , b 夹角 的正弦与余弦 . 答案: a b 1 ,
1 6
x2 x1 y2 y1 z2 z1 x3 x1 y3 y1 z3 z1 x4 x1 y4 y1 z4 z1
例1. 证明四点 A(1,1,1) , B( 4 , 5 , 6 ), C ( 2 , 3 , 3 ) ,
D(10 ,15 ,17 ) 共面 .
解: 因
a b (a x bx , a y by , a z bz )
a ( a x , a y , a z )
a b a x bx a y by a z bz
i j k a b ax a y az
bx b y bz
ax a y az 混合积: a b c ( a b ) c bx b y bz cx c y cz 2. 向量关系: bx b y bz ab 0 ax a y az a x bx a y by a z bz 0
ab

向量法证明正弦定理(完整版)

向量法证明正弦定理(完整版)

向量法证明正弦定理向量法证明正弦定理三级记向量i,使i垂直于a于,△ab三边ab,b,接着得到正弦定理其他步骤在锐角△ab中,证明asina=bsinb=sin=2r:任意三角形ab,4过三角形ab的顶点a作b边上的高,垂足为d.当d落在边b上时,向量ab与向量ad的夹角为90°-b,向量a与向量ad的夹角为90°-,由于向量ab、向量a在向量ad方向上的射影相等,有数量积的几何意义可知向量ab*向量ad=向量a*向量ad即向量ab的绝对值*向量ad的绝对值*os=向量的a绝对值*向量ad的绝对值*os所以sinb=bsin即bsinb=sin当d落在b的延长线上时,同样可以证得第五篇:用正弦定理证明三重向量积用正弦定理证明三重向量积作者:光信1002班李立内容:通过对问题的讨论和转化,最后用正弦定理来证明三重向量积的公式——?a?b。

首先,根据叉乘的定义,a、b、a?b可以构成一个右手系,而且对公式的观察与分析我们发现,在公式中,a与b是等价的,所以我们不妨把a、b、a?b放在一个空间直角坐标系中,让a与b处于ox面上,a?b与z轴同向。

如草图所示:其中,向量可以沿着z轴方向与平行于ox平面的方向分解,即:?z?x将式子带入三重向量积的公式中,发现,化简得:(a?b)?xab这两个式子等价现在我们考虑?刚好被a与b反向夹住的情况,其他的角度情况以此类推。

由图易得,?与a、b共面,a与b不共线,不妨设??xa?b,a,x?,b,x?,所以:在三角形中使用正弦定理,得a?b)?sin?sin??b,x?又因为a?b)??absina,b所以,解得k=ab,于是解得:x= bxosb,xaxosa,x?b?x a?x由图示和假定的条件,?在a和b方向上的投影皆为负值,所以x,都取负值,所以,(a?b)?xab其他的相对角度关系,以此类推,也能得到相同的答案,所以:?a?b,命题得证。

正弦定理的证明(1)

正弦定理的证明(1)

正弦定理的证明正弦定理(Sine Rule)是三角学中常用的一个定理,它描述了一个三角形中各边与其对应的角之间的关系。

在本文档中,我们将给出正弦定理的证明。

定理表述设在一个三角形ABC中,a、b 和 c 分别表示三角形的三条边的长度,而 A、B 和 C 分别表示相应的三个角的大小。

那么,正弦定理可表述如下:a/sin(A) = b/sin(B) = c/sin(C)证明为了证明正弦定理,我们将使用向量和三角函数的相关性质。

考虑一个三角形ABC,我们可以将向量AB和AC表示为:AB = BA = b * uAC = CA = c * v其中 u 和 v 是单位向量。

我们可以将向量 BC 表示为:BC = AC - AB = (c * v) - (b * u) = (c * v) + (-b * u)由于向量 BC 可以被表示为两个非零向量的和,我们可以利用三角恒等式来求解这个向量。

将向量 BC 表达为向量 u 和 v 的线性组合之后,我们可以使用三角函数的定义来分解这个向量。

对向量 u 和 v 进行正弦分解,我们可以得到:BC = c * sin(C) * v + (-b * sin(B) * u)其中 sin(B) 表示∠B 的正弦,sin(C) 表示∠C 的正弦。

由于 BC 的两个方向分量与三角形的两个角的正弦值有关,我们可以比较向量BC 的模与其分解后两个分量的模的关系。

根据向量的模定义,我们有:|BC| = sqrt((c * sin(C))^2 + (-b * sin(B))^2)另一方面,我们可以计算出向量 BC 的模为:|BC| = a因此,我们可以得到以下等式:a = sqrt((c * sin(C))^2 + (-b * sin(B))^2)继续化简等式,我们有:a = sqrt(c^2 * sin^2(C) + b^2 * sin^2(B))a^2 = c^2 * sin^2(C) + b^2 * sin^2(B)将等式两边同时除以 b^2 * c^2,我们得到:(a^2) / (b^2 * c^2) = (sin^2(C)) / (sin^2(B)) + 1应用三角恒等式sin^2(x) + cos^2(x) = 1,我们可以改写上述等式为:(a^2) / (b^2 * c^2) = (sin^2(C)) / (sin^2(B)) + (1 - cos^2(C)) / (1 - cos^2(B))根据余弦定理cos^2(x) = 1 - sin^2(x),我们可以将等式继续化简:(a^2) / (b^2 * c^2) = (sin^2(C)) / (sin^2(B)) + (sin^2(C)) / (sin^2 (B))(a^2) / (b^2 * c^2) = 2 * (sin^2(C)) / (sin^2(B))将等式两边同时乘以(b^2 * c^2) / 2,我们有:(a^2) * (b^2 * c^2) = 2 * b^2 * (sin^2(C)) * c^2 / (sin^2(B))进一步化简,我们得到:a^2 * b^2 * c^2 = 2 * b^2 * (sin^2(C)) * c^2a^2 = 2 * (b^2 * (sin^2(C)) * c^2) / (b^2 * c^2)a^2 = 2 * (sin^2(C))对等式两边同时开根号,我们最终得到正弦定理的证明:a = sqrt(2 * (sin^2(C)))a / sin(C) = sqrt(2)a / sqrt(2) = sin(C)同理,我们可以得到以下两个等式:b / sin(B) = sqrt(2)c / sin(A) = sqrt(2)由此,我们可以证明正弦定理。

(经典)正弦定理、余弦定理知识点总结及最全证明

(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、 余弦定理,并能解决一些简单的三角形胸怀问题.2.能够运用正弦定理、 余弦定理等知识和方法解决一些与丈量和几何计算相关的实质问题.主要考察相关定理的应用、三角恒等变换的能力、运算能力及转变的数学思想.解三角形经常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一同求距离、高度以及角度等问题,且多以应用题的形式出现.1. 正弦定理(1) 正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即 .其 中 R 是三角形外接圆的半径.(2) 正弦定理的其余形式:, c① a = R A , b =2 sin=;a②sin A =2R , sin B =,sin C = ;③a ∶b ∶c =______________________.2. 余弦定理——王彦文 青铜峡一中(1) 余弦定理:三角形中任何一边的平方等于其余两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=,b 2=,c 2=.,即为勾若令 C =°,则 c 2=90股定理.(2) 余 弦 定 理 的 变 形 : cosA= , cosB = ,cosC = .若 C 为锐角,则 cosC>0,即 a 2+ b 2 ______c 2;若 C 为钝角,则 cosC<0,即 a 2+b 2______c 2. 故由 a 2 +b 2 与 c 2 值的大小比较,能够判断 C 为锐角、钝角或直角.(3) 正、余弦定理的一个重要作用是实现边角____________,余弦定理亦能够写成 sin 2A= sin 2B + sin 2C - 2sin Bsin CcosA ,近似地,sin 2B = ____________ ; sin 2C =__________________.注意式中隐含条件 A + B +C =π.3. 解斜三角形的种类(1) 已知三角形的随意两个角与一边,用____________定理.只有一解.(2) 已知三角形的随意两边与此中一边的对 角 , 用 ____________ 定 理 , 可 能 有___________________.如在△ ABC 中,已知 a , b 和 A 时,解的状况如表:A 为钝角A 为锐角或直角图 形关 a = b A aa ≥b a b 系 b A sin <b> 式 sin <解 的 ① ② ③ ④ 个 数(3) 已知三边,用 ____________定理.有1解时,只有一解.(4) 已知两边及夹角,用 ____________定理,必有一解.4. 三角形中的常用公式或变式(1) 三角形面积公式 S △= == ____________ = ____________ =____________.此中 R ,r 分别为三角形外接圆、内切圆半径.,(2) A + B + C =π,则 A =__________A= __________ , 从 而sin A =2____________,cosA = ____________ , tan A =____________;A Asin 2= __________, cos 2=__________,Atan 2 = ________.tan A + tan B + tan C =__________.(3) 若三角形三边 a ,b ,c 成等差数列,则b =____________? 2sin B =____________?2B A -C A + C A - C A2sin 2= cos2 ? 2cos 2 = cos 2 ? tan 2C 1tan 2=3.【自查自纠】. a bc R1(1)sin A = sin B =sin C = 2R BRC ② bc(2) ①2 si2 siRR2 2③ s in A ∶sin B ∶sin C2. (1) b 2+c 2-2bccosA c 2+a 2- 2cacosB a 2 +b 2-2abcosC a 2+ b 2b 2 +c 2-a 2c 2+a 2-b 2a 2 +b 2-c 2>(2)2ca2ab2bc<(3) 互化sin 2C +sin 2A -2sin Csin AcosBsin 2A + sin 2B -2sin Asin BcosC3.(1) 正弦 (2) 正弦 一解、两解或无解①一解 ②二解 ③一解 ④一解 (3) 余弦 (4) 余弦.11 1 abc(1) ab sin C bc s inA ac s in B2 22R412( a +b +c) rπ B +C(2) π- ( B + C)2 - 2sin( B +C-cos( B +C) )- tan( B + C cos B +CsinB + C) 2 21 B +Ctan 2A B C (3)a + csin A + sin C tan tan tan2在△ABC中, A B 是A B 的()>sin >sinA.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选 C.在△ABC中,已知 b=, c=,B=°,则61030解此三角形的结果有 ()A.无解B.一解C.两解D.一解或两解解:由正弦定理知 sin C=c·sin B5b=6,又由c>b>csin B知, C有两解.也可依已知条件,画出△ ABC,由图知有两解.应选 C.( 2013·陕西 ) 设△ ABC的内角 A, B, C所对的边分别为 a, b, c,若b cos C+ c cos B=a sin A,则△ ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确立C+解:由已知和正弦定理可得BC B =A· A ,即sin cos=sin sin sin sin( B +C cos A)sinA A,亦即sinA=A因为Aπ,sin sin sin.0< <π所以 sin A=1,所以 A= 2.所以三角形为直角三角形.应选.B( 2012·陕西 ) 在△ ABC中,角 A,B,C 所对的π边分别为 a,b,c. 若 a=2,B=6,c=23,则 b=________.解:由余弦定理知b2=a2+c2- 2accosB=π222 +( 23)-2×2×2 3×cos 6= 4, b= 2.在△ABC中,角A,B,C 所对的边分别为a,b,c,若 a= 2,b=2,sin B+cosB= 2,则角 A 的大小为 ________.解:∵ sin B+ cosB=2,ππ∴2sin B+4= 2,即 sin B+4=1.πππ又∵ B∈(0 ,π ) ,∴ B+4=2, B=4 .a b依据正弦定理sin A=sin B,可得sin A=asin B1=.b2ππ∵a<b,∴ A<B. ∴ A=6 . 故填6 .种类一正弦定理的应用△ABC的内角A,B,C的对边分别为a,b,c,已知 A- C=90°, a+ c= 2b,求 C.解:由 a+c= b 及正弦定理可得sinA2+s in C= 2sin B.又因为 A- C=90°, B=180°- ( A+ C) ,故 cosC+ sin C= sin A+sin C= 2sin( A+ C) =2sin(90 °+ 2C) = 2sin2(45 °+ C) .∴2 sin(45° +C=2 2 sin(45° +)C)cos(45 °+ C) ,41即 cos(45 °+ C) =2.又∵ 0°< C<90°,∴ 45°+ C=60°,C =15°.【评析】利用正弦定理将边边关系转变为角角关系,这是解本题的重点.( 2012·江西 ) 在△ ABC中,角 A,B,C 的对边分别为a, b,c已知 A=π,bsinπ+C -.44c sinπ+B =a4.π(1)求证: B-C=2;(2)若 a= 2,求△ ABC的面积.解:(1)证明:对bπ+C-sin4csin π+ B= a应用正弦定理得4B π+ C -sinCπ+B =sinA,sin sin4sin422即sin B2 sin C+2 cosC-sinC222,整理得 B C2 sin B+2 cosB =2sin cos -s in CcosB= 1,即 sin ( B-C)=1.3ππ因为 B,C∈ 0,4,∴ B-C=2 .3π,又由 (1)知 B-C(2) ∵ B+ C=π- A=4π=2,5ππ∴B=8,C=8.∵a=2,A=πb=,∴由正弦定理知4a Bπa Cπsin5sinsin A= 2sin8,c=sin A=2sin 8 .115ππ∴S△ABC=2bcsin A=2×2sin8×2sin 8×225ππππ2= 2sin8 sin 8= 2cos8 sin8=2π 1sin 4=2.种类二 余弦定理的应用1 3 3∴S △ABC =2acsin B = 4 .【评析】①依据所给等式的构造特色利用余弦定理将角化边进行变形是快速解答本题的 重点.②娴熟运用余弦定理及其推论,同时还 要注意整体思想、方程思想在解题过程中的运 用.在△ ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,cosBb且cosC =- 2a +c .(1) 求 B 的大小;(2) 若 b = 13,a +c =4,求△ ABC 的面积.a 2+ c 2-b 2, 解:(1) 由余弦定理知, cosB =ac2cosC = a 2+b 2- c 2cosB b 2ab ,将上式代入cos C =- a +c2 得a 2 +c 2-b 2 abb2=- a +c , ac·a 2+b 2-c22整理得 a 2+c 2- b 2=- ac.a 2+c 2-b 2 -ac 1 ∴cosB = ac = ac =- .22 22∵B 为三角形的内角,∴ B = 3π.(2) 将 b = 13,a +c =4,B =23π 代入 b 2=a 2+ c 2-2accosB ,得 13=42- 2ac -2accos 2 3π,解得 ac =3.若△ ABC 的内角 A ,B ,C 所对的边 a ,b ,c 知足( a +b) 2- c 2=4,且 C =60°,则 ab 的值为 ( )4A. 3B .8-4 3C . 12D.3解:由余弦定理得 c 2= a 2 +b 2-2abcosC =a 2+b 2-ab ,代入 ( a + b) 2- c 2 =4 中得 ( a + b) 24- ( a 2+b 2-ab) = 4,即 3ab = 4,∴ ab =3. 应选A.6种类三正、余弦定理的综合应用以用余弦定理化边后用不等式求最值.( 2013·全国新课标Ⅱ ) △ ABC的内角A、B、 C的对边分别为 a,b,c,已知 a=bcosC+ csin B.(1)求 B;(2)若 b=2,求△ ABC面积的最大值.解: (1) 由已知及正弦定理得 sin A=sin BcosC+ sin Csin B. ①又 A=π- ( B+ C) ,故sin A = sin( B + C) = sin BcosC +cosBsin C. ②由①,②和 C∈(0 ,π ) 得 sin B= cosB.π又 B∈(0 ,π ) ,所以 B=4 .12(2) △ ABC的面积 S=2acsin B=4 ac.由已知及余弦定理得 4 = a2+ c2-π2accos 4 .又 a2+ c2≥2ac,故 ac≤4,2- 2当且仅当 a=c 时,等号成立.所以△ ABC面积的最大值为2+1.【评析】(1) 化边为角与和角或差角公式的正向或反向多次联用是常用的技巧; (2) 已知边及其对角求三角形面积最值是高考取考过多次的问题,既可用三角函数求最值,也可( 2013·山东 ) 设△ ABC的内角 A,B,C 所对的边分别为a,b,c,且 a+ c= 6, b= 2, cosB7=9.(1)求 a,c 的值;(2)求 sin( A- B) 的值.解: (1) 由余弦定理 b2=a2+ c2-2accosB,得 b2=( a+c) 2-2ac(1 +cosB) ,又 a+ c =6,b=2,7cosB=9,所以 ac=9,解得 a=3,c=3.242(2) 在△ ABC中, sin B= 1-cos B=9 ,asin B 22由正弦定理得 sin A=b= 3 .因为 a=c,所以 A 为锐角,21所以 cosA=1-sin A=3.所以 sin( A-B) =sin AcosB- cosAsin B=10 227.种类四 判断三角形的形状后进行三角函数式的恒等变形,找出角之间的 关系;或将角都化成边,而后进行代数恒等变 形,可一题多解,多角度思虑问题,进而达到 对知识的娴熟掌握.在三角形 ABC 中,若 tan A ∶tan B =a 2∶b 2,试判断三角形 ABC 的形状.a 2 sin 2A解法一:由正弦定理,得 b 2=sin 2B , tan A sin 2 A所以 tan B =sin 2 B ,A Bsin 2AA = Bsin cos2 ,即sin2所以cosAsin B =sinB sin2 . 所以 A = B ,或2 A +B =π,所以 A =B2 22π或 A + B = 2 ,进而△ ABC 是等腰三角形或直角三角形.a2sin 2A解法二:由正弦定理,得 b 2= sin 2B ,所以tan A sin 2A cosB sin Atan B =sin 2B,所以 cosA = sin B,再由正、余弦a 2+ c 2 -b 2aca a 2- b2c 2-定理,得 2 22 2 )( b + c -a = b ,化简得 (2bca 2-b 2 )= ,即 a 2= b 2 或c 2= a 2 +b 2. 进而△ ABC 是等腰三角形或直角三角形.【评析】由已知条件,可先将切化弦,再联合正弦定理,将该恒等式的边都化为角,然( 2012·上海 ) 在 △ABC 中 , 若 sin 2A +sin 2B 2C ,则△ ABC 的形状是 ( )<sin A .锐角三角形 B .直角三角形C .钝角三角形D .不可以确立解:在△ ABC 中,∵ sin 2A +sin 2 B<sin 2C ,∴由正弦定理知 a 2 +b 2<c 2. ∴cos C = a 2+b 2-c 22ab<0,即∠ C 为钝角,△ ABC 为钝角三角形. 应选 C.种类五 解三角形应用举例某港口 O 要将一件重要物件用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口 O北偏西 30°且与该港口相距20 n mile的A 处,并以 30 n mile/h的航行速度沿正东方向匀速行驶.假定该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过 t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假定小艇的最高航行速度只好达到 30 n mile/h ,试设计航行方案 ( 即确立航行方向和航行速度的大小 ) ,使得小艇能以最短时间与轮船相遇,并说明原因.解法一:(1) 设相遇时小艇航行的距离为 S n mile ,则S=900t 2+400-2·30t ·20·cos(90°- 30°)=t2-t +400=900600900 t -123+300,1103故当 t =3时,S min=103,此时 v=1=3 303.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在 B 处相遇,则v2 t 2=400+t 2-900 2·20·30t ·cos(90 °- 30°) ,2600400故 v = 900-t+t2.v≤,∴6004002-+≤,即∵0<30900t t900t3-t≤0,22解得 t ≥3. 又 t =3时,v=30. 故 v= 30 时,2t 获得最小值,且最小值等于3.此时,在△ OAB中,有 OA=OB=AB=20,故可设计航行方案以下:航行方向为北偏东30°,航行速度为 30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1) 若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C处相遇.在 Rt△OAC中, OC=20cos30°= 10 3,AC=20sin30 °= 10.又 AC=30t ,OC=vt ,101103此时,轮船航行时间 t =30=3,v=1=330 3.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)假定 v= 30 时,小艇能以最短时间与轮船在 D处相遇,此时 AD=DO=30t .又∠ OAD=60°,所以 AD= DO=OA=20,2解得 t =3.据此可设计航行方案以下:航行方向为北偏东 30°,航行速度的大小为30 n mile/h. 这样,小艇能以最短时间与轮船相遇.证明以下:如图,由 (1) 得 OC=103, AC=10,故 OC>AC,且关于线段 AC上随意点 P,有OP≥ OC>AC.而小艇的最高航行速度只好达到30 n mile/h ,故小艇与轮船不行能在 A,C 之间 ( 包括 C) 的随意地点相遇.设∠ COD=θ (0 °<θ<90°) ,则在 Rt△COD 中,103CD=103tan θ, OD=cosθ .因为从出发到相遇,轮船与小艇所需要的10+10 3tan θ和 t =103,时间分别为 t =30vcosθ10+10 3tan θ10 3所以30=vcosθ.153由此可得,v=sin (θ+30°).3又 v≤30,故 sin( θ+30°) ≥2,进而,30°≤ θ<90°.因为θ=30°时, tan θ获得最小值,且3最小值为3 .10+103tan θ于是,当θ=30°时,t =302获得最小值,且最小值为3.【评析】①这是一道相关解三角形的实质应用题,解题的重点是把实质问题抽象成纯数学识题,依据题目供给的信息,找出三角形中的数目关系,而后利用正、余弦定理求解.②解三角形的方法在实质问题中,有宽泛的应用.在物理学中,相关向量的计算也要用到解三角形的方法.最近几年的高考取我们发现以解三角形为背景的应用题开始成为热门问题之一.③不论是什么种类的三角应用问题,解决的重点都是充足理解题意,将问题中的语言表达弄理解,画出帮助剖析问题的草图,再将其归纳为属于哪种可解的三角形.④本题用几何方法求解也较简易.10( 2012·武汉 5月模拟 ) 如图,渔船甲位于岛屿A的南偏西 60°方向的 B 处,且与岛屿 A 相距 12 海里,渔船乙以 10 海里 / 小时的速度从岛屿 A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,恰好用2 小时追上.(1)求渔船甲的速度;(2)求 sin α的值.解: (1)依题意,∠BAC=°,A B=,12012 AC=× =2,在△ ABC中,由余弦定理知 BC 1022022∠ BAC=2+2-=AB+ AC- AB·AC·12202cos2×12×20×cos120°= 784,BC= 28.所以渔船甲的速度为 v=28=14( 海里 / 小2时) .(2)在△ ABC中, AB=12,∠ BAC=120°,BC= 28,AB ∠BCA=α,由正弦定理得sinα=BC12=28,进而 sin α=,即sin120 °sin ∠ BAC sin α12sin120 °3328=14.1.已知两边及此中一边的对角解三角形时,要注意解的状况,提防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转变为角角关系 ( 注意应用 A+ B+ C=π 这个结论 ) 或边边关系,再用三角变换或代数式的恒等变形( 如因式分解、配方等 ) 求解,注意等式两边的公因式不要约掉,要移项提取公因式,不然有可能遗漏一种形状.3.要熟记一些常有结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与引诱公式联合产生的结论:sin A= sin( BA B+C +C) ,cosA=- cos( B+ C) ,sin 2=cos 2,sin2 A=- sin2( B+C) ,cos2A= cos2( B+C) 等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)剖析:理解题意,分清已知与未知,画出表示图;(2)建模:依据已知条件与求解目标,把已11知量与求解量尽量集中到一个三角形中,成立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)查验:查验上述所求得的解能否切合实际意义,进而得出实质问题的解.5.正、余弦定理是应用极为宽泛的两个定理,它将三角形的边和角有机地联系起来,进而使三角与几何产生联系,为求与三角形相关的量( 如面积、外接圆、内切圆半径和面积等 ) 供给了理论依照,也是判断三角形形状、证明三角形中相关等式的重要依照.主要方法有:化角法,化边法,面积法,运用初等几何法.注意领会此中蕴涵的函数与方程思想、等价转变思想及分类议论思想.12。

向量三重积公式证明

向量三重积公式证明

向量三重积公式证明下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!标题:向量三重积公式的证明与应用一、引言在数学,尤其是向量代数中,向量三重积是一个重要的概念,它涉及到三个向量的乘积。

用向量法证明正弦定理

用向量法证明正弦定理

用向量法证明正弦定理正弦定理又称为正弦法则,是指在任意三角形中,三条边的长度之间的关系可以用正弦函数表示。

具体地,如果在三角形 ABC 中,a、b、c 分别表示三条边的长度,A、B、C 分别表示三个角,则其正弦定理可以表述为:$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$$下面我们使用向量法来证明正弦定理。

假设向量 $\vec{a}$、$\vec{b}$、$\vec{c}$ 分别表示三条边的方向和长度,则三角形的三个顶点可以用向量表示为:$$\vec{A}=\vec{0}$$$$\vec{B}=\vec{a}$$$$\vec{C}=\vec{a}+\vec{b}$$根据三角形余弦定理可得:$$\cosA=\frac{\vec{b}\cdot\vec{c}}{|\vec{b}|\cdot|\vec{c}|}=\frac {(\vec{a}+\vec{b})\cdot\vec{a}}{|\vec{a}+\vec{b}|\cdot|\vec {a}|}=\frac{\vec{a}\cdot\vec{a}+\vec{a}\cdot\vec{b}}{|\vec{ a}+\vec{b}|\cdot|\vec{a}|}$$移项得:$$\vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\cdot\cos A-|\vec{a}|^2$$同理,可以得到:$$\vec{b}\cdot\vec{c}=|\vec{b}|\cdot|\vec{c}|\cdot\cos B-|\vec{b}|^2$$$$\vec{c}\cdot\vec{a}=|\vec{c}|\cdot|\vec{a}|\cdot\cos C-|\vec{a}+\vec{b}|^2$$将三个式子分别代入正弦定理中:$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$$得到:$$\frac{|\vec{a}|}{\sin A}=\frac{|\vec{b}|}{\sinB}=\frac{|\vec{c}|}{\sin C}$$由于 $\vec{a}$、$\vec{b}$、$\vec{c}$ 可以任意选取方向,因此可以将它们都转化为长度相等的单位向量。

向量双重向量积10三向量的双重向量积

向量双重向量积10三向量的双重向量积

表示方法
01
向量三重积可以用行列式表示,即a × b × c = |ijkabc|。
02
也可以用叉乘表示,即a × b × 三个向量a、b、c围成一
个平行六面体,向量三重积的方向由右手定则确定。
表示方法
01
向量三重积可以用行列式表示,即a × b × c = |ijkabc|。
结合律
总结词
向量三重积满足结合律,即(a×b)×c=(a×c)×b。
详细描述
结合律是指向量三重积满足(a×b)×c=(a×c)×b。根据向量三重积的定义,(a×b)×c表示的是向量a和b的叉积与 向量c的数量积,而(a×c)×b表示的是向量a和c的叉积与向量b的数量积。由于叉积满足结合律,因此 (a×b)×c=(a×c)×b。
几何意义
向量三重积的几何意义是一个平行六 面体的有向面积,其中向量 $mathbf{A}$、$mathbf{B}$和 $mathbf{C}$分别表示平行六面体的 三个相邻棱。
计算方法
定义
向量三重积定义为三个向量 $mathbf{A}$、$mathbf{B}$和 $mathbf{C}$的混合积,记作 $mathbf{A} times mathbf{B} times mathbf{C}$。
计算公式
$mathbf{A} times mathbf{B} times mathbf{C} = |mathbf{A} times mathbf{B}| cdot mathbf{C}$,其中 $mathbf{A} times mathbf{B}$表示向 量$mathbf{A}$和$mathbf{B}$的叉积, $|mathbf{A} times mathbf{B}|$表示 叉积结果的模长。
利用坐标系计算

向量法证明正弦定理(完整版)

向量法证明正弦定理(完整版)

向量法证明正弦定理向量法证明正弦定理三级记向量i,使i垂直于a于,△ab三边ab,b,接着得到正弦定理其他步骤在锐角△ab中,证明asina=bsinb=sin=2r:任意三角形ab,4过三角形ab的顶点a作b边上的高,垂足为d.当d落在边b上时,向量ab与向量ad的夹角为90°-b,向量a与向量ad的夹角为90°-,由于向量ab、向量a在向量ad方向上的射影相等,有数量积的几何意义可知向量ab*向量ad=向量a*向量ad即向量ab的绝对值*向量ad的绝对值*os=向量的a绝对值*向量ad的绝对值*os所以sinb=bsin即bsinb=sin当d落在b的延长线上时,同样可以证得第五篇:用正弦定理证明三重向量积用正弦定理证明三重向量积作者:光信1002班李立内容:通过对问题的讨论和转化,最后用正弦定理来证明三重向量积的公式——?a?b。

首先,根据叉乘的定义,a、b、a?b可以构成一个右手系,而且对公式的观察与分析我们发现,在公式中,a与b是等价的,所以我们不妨把a、b、a?b放在一个空间直角坐标系中,让a与b处于ox面上,a?b与z轴同向。

如草图所示:其中,向量可以沿着z轴方向与平行于ox平面的方向分解,即:?z?x将式子带入三重向量积的公式中,发现,化简得:(a?b)?xab这两个式子等价现在我们考虑?刚好被a与b反向夹住的情况,其他的角度情况以此类推。

由图易得,?与a、b共面,a与b不共线,不妨设??xa?b,a,x?,b,x?,所以:在三角形中使用正弦定理,得a?b)?sin?sin??b,x?又因为a?b)??absina,b所以,解得k=ab,于是解得:x= bxosb,xaxosa,x?b?x a?x由图示和假定的条件,?在a和b方向上的投影皆为负值,所以x,都取负值,所以,(a?b)?xab其他的相对角度关系,以此类推,也能得到相同的答案,所以:?a?b,命题得证。

正弦定理的证明方法

正弦定理的证明方法

正弦定理的证明方法正弦定理证明方法方法1:用三角形外接圆证明:任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。

∴a/sinA=b/sinB=c/sinC=2R方法2:用直角三角形证明:在锐角△ABC中,设BC=a,AC=b,AB=c。

作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC 在直角三角形中,在钝角三角形中(略)。

方法3:用向量证明:记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c=a·cos(180-(C-90))+0+c·cos(90-A)=-asinC+csinA=0∴a/sinA=c/sinC(b与i垂直,i·b=0)方法4:用三角形面积公式证明:在△ABC中,设BC=a,AC=b,AB=c。

作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得证正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC证明如下:在三角形的外接圆里证明会比较方便例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:2RsinD=BC(R为三角形外接圆半径)角A=角D得到:2RsinA=BC同理:2RsinB=AC,2RsinC=AB这样就得到正弦定理了2一种是用三角证asinB=bsinA用面积证用几何法,画三角形的外接圆听说能用向量证,咋么证呢?三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,因为AB+BC+CA=0即j*AB+J*BC+J*CA=0|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0 所以asinB=bsinA3用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得证用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得证4满意答案好评率:100%正弦定理步骤1.在锐角△ABC中,设BC=a,AC=b,AB=c。

向量法证明正弦定理(精选多篇)

向量法证明正弦定理(精选多篇)

向量法证明正弦定理(精选多篇)第一篇:向量法证明正弦定理向量法证明正弦定理证明a/sina=b/sinb=c/sinc=2r:任意三角形abc,作abc的外接圆o.作直径bd交⊙o于d.连接da.因为直径所对的圆周角是直角,所以∠dab=90度因为同弧所对的圆周角相等,所以∠d等于∠c.所以c/sinc=c/sind=bd=2r2如图1,△abc为锐角三角形,过点a作单位向量j垂直于向量ac,则j与向量ab 的夹角为90°-a,j与向量cb的夹角为90°-c由图1,ac+cb=ab(向量符号打不出)在向量等式两边同乘向量j,得·j·ac+cb=j·ab∴│j││ac│co(更多请搜索)s90°+│j││cb│cos(90°-c)=│j││ab│cos(90°-a)∴asinc=csina∴a/sina=c/sinc同理,过点c作与向量cb垂直的单位向量j,可得c/sinc=b/sinb∴a/sina=b/sinb=c/sinc2步骤1记向量i,使i垂直于ac于c,△abc三边ab,bc,ca为向量a,b,c∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c=a·cos(180-(c-90))+b·0+c·cos(90-a)=-asinc+csina=0接着得到正弦定理其他步骤2.在锐角△abc中,设bc=a,ac=b,ab=c。

作ch⊥ab垂足为点hch=a·sinbch=b·sina∴a·sinb=b·sina得到a/sina=b/sinb同理,在△abc中,b/sinb=c/sinc步骤3.证明a/sina=b/sinb=c/sinc=2r:任意三角形abc,作abc的外接圆o.作直径bd交⊙o于d.连接da.因为直径所对的圆周角是直角,所以∠dab=90度因为同弧所对的圆周角相等,所以∠d等于∠c.所以c/sinc=c/sind=bd=2r类似可证其余两个等式。

用向量证明推导正弦定理

用向量证明推导正弦定理

用向量证明推导正弦定理正弦定理是一个不错的数学定理,这该怎么用向量来证明呢?下面就是给大家的用向量证明正弦定理内容,希望大家喜欢。

如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C 由图1,AC+CB=AB(向量符号打不出)在向量等式两边同乘向量j,得·j·AC+CB=j·AB∴│j││AC│cos90°+│j││CB│cos(90°-C)=│j││AB│cos(90°-A)∴asinC=csinA∴a/sinA=c/sinC同理,过点C作与向量CB垂直的单位向量j,可得c/sinC=b/sinB∴a/sinA=b/sinB=c/sinC记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c=a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0接着得到正弦定理其他在锐角△ABC中,设BC=a,AC=b,AB=c。

作CH⊥AB垂足为点H CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。

用向量叉乘表示面积则s=CB叉乘CA=AC叉乘AB=>absinC=bcsinA(这部可以直接出来哈哈,不过为了符合向量的做法)=>a/sinA=c/sinCxx-7-1817:16jinren92|三级记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2.在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,正弦定理(TheLawofSines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)。

三个向量混合积的几何意义

三个向量混合积的几何意义

三个向量混合积的几何意义三个向量的混合积(也称为三重积或标量三重积)是向量代数中的一种运算。

它用于描述三个向量的共面性。

混合积的几何意义包括体积、平面和四面体的方向。

混合积的计算方法如下:对于具有三个向量的集合(a,b,c),它的混合积定义为标量量a·(b×c),其中“·”代表点乘(内积),而“×”代表向量乘法(叉积)。

1.体积:混合积的最常见的几何含义之一是体积。

例如,考虑三个不共面的向量a,b和c。

以它们为边的平行六面体的体积等于混合积的绝对值,即V=,a·(b×c)。

这也可以看作是以三个向量作为边的平行四面体的体积。

当混合积为正时,意味着向量a,b和c的方向是右手法则确定的顺序。

当混合积为负时,意味着向量的方向是按照左手法则确定的顺序。

2.平面:三个向量的混合积还可以用来描述三个向量形成的平面。

如果混合积为零,表示三个向量a,b和c在同一个平面上。

这可以通过证明a·(b×c)=0来实现,即混合积等于零。

3.四面体的方向:混合积还可以用来描述四个点形成的四面体的方向。

如果混合积为正,则四面体的方向是按照右手法则确定的。

如果混合积为负,则四面体的方向是按照左手法则确定的。

混合积的几何意义可以通过一个具体的例子来说明。

考虑一个三维空间中的向量a=(1,2,3),b=(4,5,6)和c=(7,8,9)。

首先计算向量b×c得到向量(-3,6,-3),然后计算向量a·(-3,6,-3)得到-3、因此,这三个向量的混合积为-3深入研究混合积的几何意义时,会发现它与向量的共线性、共面性和方向等特性密切相关。

根据混合积的值可以得出向量组是否共线、共面以及四面体的方向。

这些几何属性对于许多应用非常重要,例如在物理学、工程学和几何学等领域。

总结起来,三个向量的混合积的几何意义包括体积、平面和四面体的方向。

它可以用来描述三个向量的共面性,以及体积、平面和四面体的方向。

矢量三重积的几何意义

矢量三重积的几何意义

矢量三重积的几何意义一、矢量三重积的定义设→a,→b,→c 为三个向量,则矢量三重积定义为→a×(→b×→c)。

二、几何意义1. 与平行六面体体积的关系(间接联系)- 我们知道向量的叉乘→b×→c 的模长等于以→b 和→c 为邻边的平行四边形的面积,设这个面积为 S,即 |→b×→c| = S。

- 而→a×(→b×→c) 的结果是一个向量。

这个向量与→b×→c 垂直,并且它的模长与→a 在垂直于→b×→c 方向上的投影分量有关。

- 如果我们考虑由→a,→b,→c 构成的平行六面体,虽然矢量三重积本身不是平行六面体的体积,但它与平行六面体的构建元素(向量)之间存在着基于向量运算规则的联系。

2. 向量的分解与投影- →b×→c 是一个垂直于→b 和→c 所确定平面的向量。

- 当计算→a×(→b×→c) 时,从几何上可以看作是将→a 分解为平行于→b×→c 的分量和垂直于→b×→c 的分量。

- 然后根据向量叉乘的性质,→a×(→b×→c) 的结果向量位于→b 和→c 所确定的平面内。

它的方向和大小取决于→a 在这个平面上的投影情况以及→b 和→c 的关系。

- 具体来说,→a×(→b×→c) 可以表示为 (→a·→c)→b-(→a·→b)→c(这一公式是矢量三重积的重要展开式,可以通过向量运算的规则推导得出)。

从几何上看,(→a·→c)→b 表示→a 在→c 方向上的投影与→b 的乘积(一种按比例缩放→b 的操作), - (→a·→b)→c 表示→a 在→b 方向上的投影与→c 的乘积(按比例缩放→c 并取反方向),它们的差就是矢量三重积的结果向量。

这种分解和投影的几何意义有助于在解决一些涉及空间向量关系的几何问题和物理问题(如力的分解、磁场对电流的作用等在三维空间中的分析)时,更好地理解向量之间的相互作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用正弦定理证明三重向量积
作者:光信1002班 李立
内容:通过对问题的讨论和转化,最后用正弦定理来证明三重向量积的公式——b )()b ()(a c a c c b a ∙+∙-=⨯⨯。

首先,根据叉乘的定义,a 、b 、b a ⨯可以构成一个右手系,而且对公式的观察与分析我们发现,在公式中,a 与b 是等价的,所以我们不妨把a 、b 、b a ⨯放在一个空间直角坐标系中,让a 与b 处于oxy 面上,b a ⨯与z 轴同向。

如草图所示:
其中,向量c 可以沿着z 轴方向与平行于oxy 平面的方向分解,即:
xy z c c c +=
将式子带入三重向量积的公式中,发现,化简得:
b )
c (a )(c b a xy xy ∙∙+∙-=⨯⨯a b c xy )( 这两个式子等价
现在我们考虑c b a ⨯⨯)(刚好被a 与b 反向夹住的情况,其他的角度情况以此类推。

由图易得,c b a ⨯⨯)(与a 、b 共面,a 与b 不共线,不妨设yb xa c b a +=⨯⨯)(,)2
,0(,),,2(c ,π
ππ⊆⊆xy xy c b a ,所以:
在三角形中使用正弦定理,得 b a Sin c b a k c a Sin b y c b Sin a x xy xy ,c b a ]2
,[],2[]b a,-Sin[c
b a =⨯⨯=-=-=
⨯⨯)(又因为)(πππ
所以,解得k=c b a ,
于是解得:
xy xy xy c b c b Cos c ∙=,b =x
xy xy xy c a c a Cos c a y ∙-=-=,
由图示和假定的条件,c b a ⨯⨯)(在a 和b 方向上的投影皆为负值,所以x ,y 都取负值,
所以,
b )
c (a )(c b a xy xy ∙∙+∙-=⨯⨯a b c xy )(
其他的相对角度关系,以此类推,也能得到相同的答案,所以:
b )()()(a
c a b c c b a ∙+∙-=⨯⨯,命题得证。

小结论:当直观解答有困难时,可以通过分析转化的方法来轻松地解决。

相关文档
最新文档