2019-2020学年上海市黄浦区高二上学期期末数学试卷
上海市黄浦区2019-2020学年度高二数学第一学期期末考试(详解版)
黄浦区2019学年度第一学期高二年级期终调研测试数学试卷2020.01本试卷共21道试题,满分100分;考试时间90分钟.一、填空题(本大题满分36分)本大题共有12题,1. 已知点(1,2)(3,4)A B --、,则向量BA = .2. 计算1002222lim 100n n n n→∞-=- . 3. 已知直线l 经过(0,1)(1,2)P Q -、两点,则直线l 的一个法向量是 (答案不唯一). 4. 已知直线:20l x ay +-=经过圆22:2430Cx y x y +-+-=的圆心,则直线l 的倾斜角的大小是 (结果用反三角函数值表示).5. 已知向量(1,1) (1,1)αβ=-=-、,则向量α在向量β方向上的投影的数值是 . 6. 已知直线1:210l ax y -+=、 2:(1)30l x a a y ++-=, 若12l l ⊥,则实数a = .7. 已知数列{}*(N )n a n ∈满足11a =,且11n n na a n +=+,则通项公式n a = .8. 若等比数列{}*(N )n a n ∈各项的和为4,则首项1a 的取值范围是 .9. 过点(2,2)P -作直线l 与圆22:(1)(1)2C x y ++-=相切,则直线l 的一般式方程是 .10. 已知等差数列{}*(N )n a n ∈中,若10100a =,则等式12122019n n a a a a a a -+++=+++*(2019,N )n n <∈恒成立;运用类比思想方法,可知在等比数列{}*(N )n b n ∈中,若1001b =,则与此相应的等式 恒成立.11. 已知点(,0)(0,)A a B b 、,椭圆2222:1(0)x y C a b a b+=>>经过点(2,D -,点F 为椭圆的右焦点,若FAB ∆的一个内角为0120,则椭圆C 的方程是 .12. 已知点(1,0)M -、(1,0)N ,若直线l 的图像上存在点P ,使得||||4PM PN +=成立,则说直线l 是“T 型直线”.给出下列直线:(1) :20l y +=; (2) :250l x -=; (3) :240l x y --=; (4) :330l x y ++=; (5) :(21)10(R)l m x y m +++=∈常数. 其中代表“T 型直线”的序号是 .(要求写出所有T 型直线的序号) 二、选择题(本大题满分12分)本大题共有4题,每题有且只有一个正确答案13. 平面直角坐标系上动点(,)M x y ,满足6=,则动点M 的轨迹是 ( ). A . 直线 B. 线段 C. 圆 D. 椭圆14. 已知*1111()1(N )23313n nf n n =+++++∈-,记*()(1,N )P f k k k =≥∈,若(1)f k P Q +=+,则Q = ( ).A .113k + B. 1111313k k +++-C.1111113132313k kk k ++++++++- D. 111131323k k k +++++15. 已知R a ∈,若不论a 为何值时,直线:(12)(32)0l a x a y a -++-=总经过一个定点,则这个定点的坐标是 ( ).A .(2,1)- B. (1,0)- C.21(,)77-D. 12(,)77- 16.已知平面直角坐标系内曲线1:(,)0C F x y =,曲线200:(,)(,)0C F x y F x y -=,若点00(,)P x y 不在曲线1C 上,则下列说法正确的是 ( ).A .曲线1C 与2C 无公共点 B. 曲线1C 与2C 至少有一个公共点 C. 曲线1C 与2C 至多有一个公共点 D. 曲线1C 与2C 的公共点的个数无法确定 三、解答题(本大题满分52分)本大题共有5题17.(本题满分10分)本题共有2个小题,第1小题满分5分,第2小题满分5分. 已知向量(1,1) (0,1)αβ=--=、.(1)若向量()()t t αβαβ⋅++⋅,求实数t 的值;(2)若向量(,)c x y =满足(1)c y x αβ=-⋅+-⋅,求||c 的值.18.(本题满分10分)本题共有2个小题,第1小题满分5分,第2小题满分5分.已知(11)(2,2)(3,1)M N P -,、、,圆C 经过M N P 、、三点. (1)求圆C 的方程,并写出圆心坐标和半径的值; (2)若过点(1,1)Q 的直线l 与圆C 交于A B 、两点,求弦AB 的长度||AB 的取值范围.19.(本题满分10分)本题共有2个小题,第1小题满分5分,第2小题满分5分.已知数列{}n a 满足1a a =,*121(N )n n a a n +=+∈.(1)若数列{}n a 是等差数列,求通项公式n a ;(2)已知2a =,求证数列{}1n a +是等比数列,并求通项公式n a .20.(本题满分10分)本题共有2个小题,第1小题满分5分,第2小题满分5分.已知各项为正数的数列{}n a 的前n 项和为nS,且*1(N )n a a n =+∈.(1)求1a 的值,并求1n a +的解析式(用含n a 的式子表示);(2)若对于一切正整数n ,有3n n S a λ+≤恒成立,求实数λ的取值范围.21.(本题满分12分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分4分. 已知直线1:4l x =,点(1,0)F , 点(,)M x y 是平面直角坐标系内的动点,且点M 到直线1l 的距离是点M 到点F 的距离的2倍.记动点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点F 的直线2l 与曲线C 交于A B 、两点,若OAB ∆(O 是坐标系原点)求直线2l 的方程;(3)若(2)中过点F 的直线2l 是倾斜角不为0的任意直线,仍记2l 与曲线C 的交点为A B 、,设点G 为线段AB 的中点,直线OG 与直线1l 交于点D ,求DFB ∠的大小.黄浦区2019学年度第一学期高二年级期终调研测试数学试卷参考答案和评分标准 (2020.01)一、填空题.1.(4,6)-; 2.2-; 3.(3,)(0,R)t t t t -≠∈; 4.arctan2; 5.6.0或12-;7.*1(N )n n ∈; 8.(0,4)(4,8) ; 9.40x y -+=;10.*12112199(199,N )n n n b b b b b b b n n --=<∈; 11.22186x y +=; 12.(3)(4)(5)、、.二、选择题.13.B 14.C 15.C 16.A 三、解答题(本大题满分48分)本大题共有5题 17.(本题满分10分)第1小题满分5分,第2小题满分5分. 【解析】(1)(1,1) (0,1)αβ=--=、,(,1)t t t αβ∴+=--, 1分 (1,1)t t αβ+=--. 2分()()t t αβαβ⋅++⋅,(1)(1)0t t t ∴---=, 3分 解得1t =或1t =-. 5分(2)(1)c y x αβ=-⋅+-⋅,(,)(,1)x y y y x ∴=+-, 2分 即,1,x yy y x =⎧⎨=+-⎩ 解得1,1.x y =⎧⎨=⎩. 4分∴2||c x y =+ . 5分18.(本题满分10分)第1小题满分5分,第2小题满分5分.【解析】(1)设圆C :220x y Dx Ey F ++++=. 1分圆C 过M N P 、、三点, 110,44220,9130,D E F D E F D E F ++-+=⎧⎪∴++++=⎨⎪++++=⎩2分 解得3,1,0.D E F =-⎧⎪=-⎨⎪=⎩3分∴圆C :2230x y x y +--=,圆心131,22O ⎛⎫⎪⎝⎭,半径2r =. 5分(2)设圆心到直线l 的距离为d .点(1,1)Q 到圆心的距离为1||O Q r =<=.∴点Q 在圆内. 1分||AB ∴= 2分结合图形,可知0d ≤≤1||2O Q =(l 过圆心时,0d =;1l O Q ⊥时,2d =). 3分||AB ∴≤ 5分19.(本题满分10分)本题共有2个小题,第1小题满分5分,第2小题满分5分. 【解析】(1)数列{}n a 是等差数列,1a a =,*121(N )n n a a n +=+∈,设数列的公差为d ,则(1)n a a n d =+-. 1分2((1))1a nd a n d ∴+=+-+,即21nd d a =--对*N n ∈成立,于是0d =. 3分 ∴n a a =,且21a a =+,解得1a =-. 4分∴*1(N )n a n =-∈. 5分(2)证明:2a =,*121(N )n n a a n +=+∈,∴*112(1)(N )n n a a n ++=+∈. 1分1130a +=≠, 2分∴数列{}1n a +是以1(1)a +为首项,公比为2的等比数列. 3分111(1)2n n a a -∴+=+⋅,11(21)2n n a -+=+⋅. 4分 ∴1321n n a -=⋅-*(N )n ∈ . 5分20.(本题满分10分)本题共有2个小题,第1小题满分5分,第2小题满分5分. 【解析】(1)0n a >,*1(N )n a a n =+∈,∴当1n =时,1111()a a S a =+=,解得11a =. 1分由1n a a =+,得2421n n n S a a =++. 2分2111421n n n S a a +++∴=++.22111422n n n n n a a a a a +++∴=-+-,即2211220n n n n a a a a ++---=.∴11(2)()0n n n n a a a a ++--+=(0n a >),即12n n a a +-=. 4分*12(N )n n a a n +∴=+∈. 5分(2)由(1)可知,数列{}n a 是首项为1a ,公差为2的等差数列,*1(1)21(N )n a a n d n n ∴=+-=-∈. 2分21()2n n a a nS n +⋅∴==. 3分由3n n S a λ+≤,得2213n n λ+-≤,即242n nλ≤-对一切正整数n 恒成立.2min 42n n λ⎛⎫∴≤- ⎪⎝⎭.令242t n n =-,则2*2421114()(N )44t n n n n =-=--∈.∴当4n =时,min 14t =-. 4分14λ∴≤-. 5分【解析】(1)根据题意,可知1|4|2x =-, 1分 化简得 22143x y +=. 3分22C: 143x y ∴+=. 4分(2)因为直线2l 过焦点F ,故直线与椭圆总交于1122(,)(,)A x y B x y 、两点. 若直线2l 与x 轴垂直,可算得||3AB =,32OAB S ∆=≠. 1分 于是, 所求直线的斜率存在.设直线2l 的斜率为k ,即2:(1)l y k x =-.联立方程组221,43x y y kx k ⎧+=⎪⎨⎪=-⎩得2222(34)84120(0)k x k x k +-+-=∆>此时恒成立. 212221228,34412.34k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩2分||AB ∴==, 点2(0,0)O l 到的距离为d ==, 3分 解得12k =±. 4分∴所求直线2l 11:22y x =-或1122y x =-+. (或表示为一般式方程)(3)若直线2l 的斜率不存在,即垂直x 轴,根据椭圆的对称性,知点G 与点F 重合,点(4,0)D ,此时,有2DFB π∠=. 1分若直线2l 的斜率存在,设2:(1)l y k x =-.由(2)可得,21221228,346.34k x x k k y y k ⎧+=⎪⎪+⎨-⎪+=⎪+⎩ 22243(,)3434k k G k k -∴++. l 0k ≠3:OG y x ∴=-3(4,)D ∴-法1:算得3(3,)FD k =-. 又直线2l 法向量为(1,)d k =,且330FD d k k⋅=-⋅=. FD l ∴⊥. 3分 2DFB π∴∠=. (多想少算)综上,不论直线2l 的斜率存在与否,总有2DFB π∠=. 4分法2:算得3(3,)FD k=-,2l 与1l 的交点为(4,3)H k ,(3,3)FH k =.∴可得向量FD 与FH 的夹角满足cos 0||||FH FDHFD FH FD ⋅∠==,即2HFD π∠=. 3分FD l ∴⊥. 2DFB π∴∠=.综上,不论直线2l 的斜率存在与否,总有2DFB π∠=. 4分。
上海市黄浦区2019年数学高二年级上学期期末检测试题
上海市黄浦区2019年数学高二年级上学期期末检测试题一、选择题1.已知随机变量ξ服从正态分布2(1,)N σ,若(3)0.031P x >=,则(13)P x -<<=( ) A .0.031B .0.969C .0.062D .0.9382.如图所示的长方形的长为2,宽为1,在长方形内撒一把豆子(豆子大小忽略不计),然后统计知豆子的总数为m 粒,其中落在飞鸟图案中的豆子有n 粒,据此请你估计图中飞鸟图案的面积约为( )A.n mB.2n mC.m nD.2m n3.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是( )A.它们的焦距相等B.它们的焦点在同一个圆上C.它们的渐近线方程相同D.它们的离心率相等4.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为( ) A .[1,1]- B .(1,1)- C .(,1)-∞- D .(1,)+∞5.函数y=的定义域是( )A .(﹣∞,1)B .(﹣∞,1]C .(1,+∞)D .[1,+∞)6.在复平面上,复数(2)z i i =-+的对应点所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知0x >,函数4y x x=+的最小值是 ( ) A .5B .4C .8D .68.只用1,2,3,4四个数字组成一个五位数,规定这四个数字必须同时使用,且同一数字不能相邻出现,这样的五位数有( ) A.96B.144C.240D.2889.若复数z 满足22i 1iz -=+ ,其中i 为虚数单位,则z = A .1i -B .1i +C .1i -+D .1i --10.若2x =-是函数2()(1)xf x x ax e =+-⋅的极值点,则()f x 的极小值为( )A.1-B.32e --C.e -D.111.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( ) A .都不大于2-B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2-12.下列函数中与函数y x =相同的是( )A .2y x = B .y =C .y =D .2x y x=二、填空题13.已知向量(1,2)a =,(,1)b x =-,若()a a b -,则a b ⋅=__________.14.已知数列{}n a 的前n 项和为n S ,11a =.当2n ≥时,12n n a S n -+=,则2019S =_______ 15.如图,E 是正方体1111ABCD A B C D -的棱11C D 上的一点,且1//BD 平面1B CE ,则异面直线1BD 与CE 所成角的余弦值为______.16.已知()(421a x +的展开式的所有项系数的和为192,则展开式中2x项的系数是______.三、解答题 17.设函数.(1)当时,求不等式的解集;(2)若,使得成立,求实数的取值范围. 18.已知函数.(1)若,求函数的单调递减区间; (2)若,求函数在区间上的最大值;(3)若在区间上恒成立,求的最大值.19.已知圆,点,点是圆上任意一点,线段的中垂线与交于点.(Ⅰ)求点的轨迹的方程.(Ⅱ)斜率不为0的动直线过点且与轨迹交于,两点,为坐标原点.是否存在常数,使得为定值?若存在,求出这个定值;若不存在,请说明理由.20.请您设计一个帐篷.它下部的形状是高为的正六棱柱,上部的形状是侧棱长为的正六棱锥(如图所示).试问当帐篷的顶点到底面中心的距离为多少时,帐篷的体积最大?21.已知函数一段图像如图所示.(1)求函数的解析式;(2)在中,,求的取值范围.22.已知函数,. (1)当时,求的单调区间;(2)当时,若对任意,都有成立,求的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题13.5 214.101015.516.45三、解答题17.(1);(2)【解析】分析(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得等式的解集;(2)因为R,使得成立,所以,将函数写成分段函数形式,研究其单调性,可得,由,结合,可得结果.详解:(1)当时,或或或或或,所以原不等式解集为.(2)因为R,使得成立,所以,因为所以在上单调递减,在上单调递增,所以,所以,所以,又,所以实数的取值范围.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.18.(1)单调递减区间是(2)见解析(3)1【解析】试题分析:(1)第(1)问,直接利用导数求函数的减区间. (2) 利用导数求函数的单调性,从而求出函数的最大值,需要分类讨论. (3)利用第(2)问的结论,即,求出a的最大值.试题解析:(1)当时,.令.所以函数的单调递减区间是.(2).令,由,解得.当,即时,在区间上,函数是减函数.所以函数在区间上的最大值为;当,即时,x在上变化时,的变化情况如下表所以函数在区间上的最大值为.综上所述:当时,函数在区间上的最大值为;当时,函数在区间上的最大值为.(3)由(Ⅱ)可知:当时,在区间上恒成立;当时,由于在区间上是增函数,所以 ,即在区间上存在使得.综上所述,a的最大值为1.点睛:本题的难点在于第(2)问为什么要分类讨论,怎么分类讨论?它之所以要分类讨论,主要是因为与区间的左端点1的大小不确定,所以要分类讨论. 分类讨论是高中数学一种重要的思想,注意分类讨论的起因、标准、过程和结果.19.(Ⅰ)(Ⅱ)见解析【解析】【分析】(1)化圆的一般方程为标准方程,求出圆心和半径,结合已知可得点的轨迹是以,为焦点,且长轴长为的椭圆,进而求出b,a,即可求得答案(2)联立直线方程和椭圆方程,求出和的表达式,然后结合题意中为定值计算出结果【详解】(Ⅰ)由,得,所以,半径为4.因为线段的中垂线与交于点,所以,所以.所以点的轨迹是以,为焦点,且长轴长为的椭圆,所以.所以点的轨迹的方程为.(Ⅱ)设直线,,.联立化简整理得,所以,.因为,,所以.当,即时,取定值.【点睛】本题主要考查了椭圆的简单性质以及直线与圆的位置关系,在计算过程中需要注意方法,设而不求,给出点坐标后进行计算,需要一定的计算能力,属于中档题20.为2m时,帐篷的体积最大【解析】【分析】先设为m,则,根据题意表示出帐篷的体积为,再由导数方法求其最值即可得出结果.【详解】设为m,则,由题设可得正六棱锥底面边长为(单位:),于是底面正六边形的面积为(单位:m2).帐篷的体积为(单位:m3)求导数,得令,解得(不合题意,舍去),.当时,为增函数;当时,为减函数.所以当时,最大,答:当为2m时,帐篷的体积最大.【点睛】本题主要考查导数在生活中的应用问题,根据题意求出函数解析式,用导数方法求最值即可,属于常考题型.21.(1)(2)【解析】【分析】(1)由图中数据列方程即可求出周期及振幅A,由时,函数取得最大值求得,问题得解。
3mjt-上海交通大学附属中学2019—2020学年高二上学期期末考试数学卷(解析版)
上海交通大学附属中学2019—2020学年高二上学期期末考试数学卷一、填空题1.复数z 满足i •z =1.则Imz = . 2.已知抛物线y =4x 2,则焦点的坐标为 .3.若z =|a a 12|(i 为虚数单位,a >0),|z 3|=5√5,则a 的值为 .4.直线{a =2+2aa =3+a(参数t ∈R )的倾斜角为 .5.若方程(k ﹣1)x 2+(5﹣2k )y 2=1表示的曲线为双曲线,则实数k 的取值范围为 . 6.若双曲线的渐近线方程为y =±3x ,且过点A (1,√10),则双曲线的方程是 .7.点P 为直线3x +4y +4=0上的动点,点Q 为圆C :x 2+y 2﹣2x ﹣4y +4=0上的动点,则|PQ |的最小值为 . 8.已知F 1、F 2是椭圆C :a 2a 2+a 2a 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且aa 1→⊥aa 2→,若△PF 1F 2的面积为4,则b = .9.已知a ,b ∈R +,若直线x +2y +3=0与直线(a ﹣1)x +by =2互相垂直,则ab 的最大值等于 . 10.已知曲线Γ:{a =2aaaa a =aaaa,(θ∈[0,5a 6])上一动点P ,曲线Γ与直线x =1交于点Q .则aa →•aa →的最大值是 .11.在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1a (x >0)图象上一动点,若点P ,A 之间的最短距离为2√2,则满足条件的实数a 的所有值为 . 12.已知椭圆Γ:a 29+a 24=1和圆O :x 2+y 2=r 2(r >0),设点A 为椭圆Γ上的任一点,过A 作圆O 的两条切线,分别交椭圆Γ于B ,C 两点,若直线BC 与圆O 相切,则r = .二、选择题13.设z 为非零复数,则“z +1a ∈R “是|z |=1”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件14.如图,与复平面中的阴影部分(含边界)对应的复数集合是( )A .{a |,|a |=1,aaa ≥12,a ∈a }B .{a |,|a |≤1,aaa ≥12,a ∈a } C .{a |,|a |=1,aaa ≥12,a ∈a }D .{a |,|a |≤1,aaa ≥12,a ∈a }15.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( ) A .有且仅有一条 B .有且仅有两条C .有无穷多条D .不存在16.曲线Γ:(a 24−a 25−1)√a 2+a 2−9=0,要使直线y =m (m ∈R )与曲线Γ有四个不同的交点,则实数m 的取值范围是( ) A .(−53,53) B .(﹣3,3)C .(﹣3,−53)∪(53,3)D .(﹣3,−53)∪(−53,53)∪(53,3) 三、解答题17.已知实系数一元二次方程x 2+ax +b =0(a ,b ∈R )的一根为﹣2i (i 为虚数单位),另一根为复数z . (1)求复数z ,以及实数a ,b 的值;(2)设复数z 的一个平方根为λ,记λ、λ2、λ﹣λ2在复平面上对应点分别为A 、B 、C ,求(aa→+aa →)•aa→的值. 18.如图,某野生保护区监测中心设置在点O 处,正西、正东、正北处有三个监测点A 、B 、C ,且|OA |=|OB |=|OC |=30km ,一名野生动物观察员在保护区遇险,发出求教信号,三个监测点均收到求救信号,A 点接收到信号的时间比B 点接收到信号的时间早40a 0秒(注:信号每秒传播V 0千米).(1)以O 为原点,直线AB 为x 轴建立平面直角坐标系(如题),根据题设条件求观察员所有可能出现的位置的轨迹方程:(2)若已知C 点与A 点接收到信号的时间相同,求观察员遇险地点坐标,以及与监测中心O 的距离: (3)若C 点监测点信号失灵,现立即以监测点C 为圆心进行“圆形”红外扫描,为保证有救援希望,扫描半径r 至少是多少公里?19.已知椭圆Γ:a 2a +1+a 2a=1,过点D (﹣1,0)的直线l :y =k (x +1)与椭圆Γ交于M 、N 两点(M 点在N 点的右侧),与y 轴交于点E .(1)当m =1且k =1时,求点M 、N 的坐标;(2)当m =2时,设aa→=aaa →,aa →=aaa →,求证:λ+μ为定值,并求出该值; 20.设抛物线Γ:y 2=2px (p >0),D (x 0,y 0)满足y 02>2px 0,过点D 作抛物线Γ的切线,切点分别为A (x 1,y 1),B (x 2.y 2).(1)求证:直线yy 1=p (x +x 1)与抛物线Γ相切:(2)若点A 坐标为(4,4),点D 在抛物线Γ的准线上,求点B 的坐标:(3)设点D 在直线x +p =0上运动,直线AB 是否恒过定点?若恒过定点,求出定点坐标:若不存在,请说明理由. 21.已知椭圆Ω:a 216+a 212=1.双曲线Γ的实轴顶点就是椭圆Ω的焦点,双曲线Γ的焦距等于椭圆Ω的长轴长.(1)求双曲线Γ的标准方程;(2)设直线1经过点E (3,0)与椭圆Ω交于A 、B 两点,求△OAB 的面积的最大值;(3)设直线1:y =kx +m (其中k ,m 为整数)与椭圆Ω交于不同两点A 、B ,与双曲线Γ交于不同两点C 、D ,问是否存在直线l ,使得向量aa →+aa →=0→,若存在,指出这样的直线有多少条?若存在,请说明理由.一、填空题1.【详解详析】由i •z =1,得z =1a =−a−a 2=−a , ∴Imz =﹣1. 故答案为:﹣1.2.【详解详析】抛物线y =4x 2的标准方程为x 2=14y ,焦点在y 轴的正半轴上,p =18,a 2=116, 故焦点坐标为(0,116), 故答案为:(0,116).3.【详解详析】z =|a a12|=2a ﹣i ,由|z 3|=5√5,得|a |3=(√4a 2+1)3=5√5,即4a 2+1=5,得a =1(a >0). 故答案为:1. 4.【详解详析】直线{a =2+2aa =3+a(参数t ∈R )转换为直角坐标方程为:x ﹣2y =2﹣6,即x ﹣2y +4=0,故直线的斜率为k =12,所以直线的倾斜角为aaaaaa 12. 故答案为:aaaaaa 125.【详解详析】方程(k ﹣1)x 2+(5﹣2k )y 2=1表示的曲线为双曲线, 可得(k ﹣1)•(5﹣2k )<0,解得k <1或k >52. 故答案为:(﹣∞,1)∪(52,+∞).6.【详解详析】由题意可知,可设双曲线的方程是x 2−a 29=k ,把点(1,√10)代入方程解得 k =−19,故所求的双曲线的方程是y 2﹣9x 2=1, 故答案为:y 2﹣9x 2=1.7.【详解详析】由圆的标准方程(x ﹣1)2+(y ﹣2)2=1得圆心坐标为C (1,2),半径R =1, 圆心到直线的距离d =31424√22=155=3,在|PQ |的最小值为d ﹣R =2; 故答案为:28.【详解详析】∵F 1、F 2是椭圆C :a 2a 2+a 2a 2=1(a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1⊥PF 2,∴|PF 1|+|PF 2|=2a ,|PF 1|2+|PF 2|2=4c 2,12|PF 1|•|PF 2|=4, ∴(|PF 1|+|PF 2|)2=4c 2+2|PF 1||PF 2|=4a 2,∴16=4(a 2﹣c 2)=4b 2, ∴b =2. 故答案为:2.9.【详解详析】根据题意,若直线x +2y +3=0与直线(a ﹣1)x +by =2互相垂直, 则有(a ﹣1)+2b =0,变形可得a +2b =1, 则ab =12(a ×2b )≤12×(a +2a 2)2=18,当且仅当a =2b =12时,等号成立;即ab 的最大值为18, 故答案为:18. 10.【详解详析】曲线Γ:{a =2aaaa a =aaaa,(θ∈[0,5a 6])上一动点P ,曲线Γ与直线x =1交于点Q .2cos θ=1⇒cos θ=12⇒θ=a3; ∴sin a =√32;即Q (1,√32);∴aa →•aa →=(2cos θ,sin θ)•(1,√32)=2cos θ+√32sin θ=√192sin (θ+φ);tan φ=4√34;φ∈(0,a2); ∴θ+φ∈(φ,φ+5a 6); ∴θ+φ=a 2时,aa→•aa →取最大值且最大值为√192;故答案为:√19211.【详解详析】设点P (a,1a )(a>0),则|PA |=√(a −a )2+(1a −a )2=√a 2+1a 2−2a (a +1a )+2a 2=√(a +1a )2−2a (a +1a )+2a 2−2,令a =a +1a ,∵x >0,∴t ≥2,令g (t )=t 2﹣2at +2a 2﹣2=(t ﹣a )2+a 2﹣2,①当a ≤2时,t =2时g (t )取得最小值g (2)=2﹣4a +2a 2=(2√2)2,解得a =﹣1;②当a >2时,g (t )在区间[2,a )上单调递减,在(a ,+∞)单调递增,∴t =a ,g (t )取得最小值g (a )=a 2﹣2,∴a 2﹣2=(2√2)2,解得a =√10.综上可知:a =﹣1或√10.故答案为﹣1或√10.12.【详解详析】不妨取A为椭圆左顶点,则A(﹣3,0),BC方程为x=r,代入椭圆Γ:a29+a24=1,得y=±23√9−a2.设B(r,23√9−a2),则AB的方程为:23√=a+3a+3,整理得:2√9−a2a−3(a+3)a+6√9−a2=0.由√2√49a29a32=a,得(5r﹣6)(r3+12r2+45r+54)=0,则r=65.故答案为:65.二、选择题13.【详解详析】设z=x+yi(x,y∈R,不同时为0),则z+1a =x+yi+1a+aa=x+1a2+a2+y(1−1a2+a2)i∈R,∴y(1−1a2+a2)=0,∴y=0,x≠0;或x2+y2=1即|z|=1.∴“z+1a∈R“是|z|=1”的必要不充分条件.故选:B.14.【详解详析】由图形可知,满足条件的复数在单位圆内(含边界),且复数对应点的纵坐标大于或等于12,故有|z|≤1,Imz≥12,故选:D.15.【详解详析】过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,若直线AB的斜率不存在,则横坐标之和等于2,适合.故设直线AB的斜率为k,则直线AB方程为y=k(x﹣1)代入抛物线y2=4x得,k2x2﹣2(k2+2)x+k2=0∵A、B两点的横坐标之和等于2,∴2(a 2+2)a2=2,∴方程无解,∴这样的直线不存在.故选:A.16.【详解详析】曲线Γ:(a 24−a25−1)√a2+a2−9=0,可知x,y∈[﹣3,3],图形如图:是一个圆与双曲线的一部分,由{a 2+a 2=95a 2−4a 2=20,解得y =±53, 曲线Γ:(a 24−a 25−1)√a 2+a 2−9=0,要使直线y =m (m ∈R )与曲线Γ有四个不同的交点,可得m ∈(﹣3,−53)∪(53,3). 故选:C .三、解答题17.【详解详析】(1)由实系数的一元二次方程两根互为共轭复数,得z =2i ; 利用根与系数的关系,得a =﹣2i +2i =0,b =﹣2i •2i =4; (2)复数z =2i ,则λ2=2i ; 设λ=x +yi ,x 、y ∈R ; 所以x 2﹣y 2+2xyi =2i ,即{a 2−a 2=02aa =2,解得x =y =1或x =y =﹣1; 所以λ=1+i ,或λ=﹣1﹣i ;当λ=1+i 时,λ2=2i ,λ﹣λ2=1﹣i ; 所以A (1,1),B (0,2),C (1,﹣1),所以(aa →+aa →)•aa →=(1,3)•(1,﹣1)=1﹣3=﹣2; 当λ=﹣1﹣i 时,λ2=2i ,λ﹣λ2=﹣1﹣3i , 所以A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),所以(aa →+aa →)•aa →=(﹣1,1)•(﹣1,﹣3)=1﹣3=﹣2; 综上知,(aa →+aa →)•aa→的值为﹣2. 18.【详解详析】(1)以O 为原点,直线AB 为x 轴建立平面直角坐标系,A 点接收到信号的时间比B 点接收到信号的时间早40a 0秒,可知野生动物观察员在保护区遇险,发出求教信号的位置,在以AB 为焦点的双曲线的左支,所以c =30,2a =40,所以a =20,则b =10√5, 所以观察员所有可能出现的位置的轨迹方程:a 2400−a 2500=1,x ≤0.(2)已知C 点与A 点接收到信号的时间相同,则观察员遇险地点既在双曲线上,又在y =﹣x (x <0)上,所以{a =−aa 2400−a 2500=1,可得x =﹣10√20,y =10√20,观察员遇险地点坐标(﹣10√20,10√20),观察员遇险地点与监测中心O 的距离:√2000+2000=20√10.(3)由题意可得以监测点C 为圆心进行“圆形”红外扫描,可得x 2+(y ﹣30)2=r 2,与a 2400−a 2500=1,x≤0.联立,消去x 可得:9y 2﹣300y +6500﹣5r 2≥0,△=90000﹣36(6500﹣5r 2)≥0,解得r ≥20√2. 为保证有救援希望,扫描半径r 至少是20√2公里. 19.【详解详析】(1)当m =1且k =1时,椭圆Γ方程为:a 22+a 2=1,直线l 方程为:y =x +1,联立方程{a 22+a 2=1a =a +1,消去y 得:3x 2+4x =0,解得:x =0或−43, ∵M 点在N 点的右侧, ∴M (0,1),N (−43,−13); (2)当m =2时,椭圆Γ方程为:a 23+a 22=1,联立方程{a 23+a 22=1a =a (a +1),消去y 得:(2+3k 2)x 2+6k 2x +3k 2﹣6=0,设点M (x 1,y 1),N (x 2,y 2), ∴a 1+a 2=−6a 22+3a 2,a 1a 2=3a 2−62+3a 2, ∵E (0,k ),D (﹣1,0),∴aa →=(a 1,a 1−a ),aa →=(a 1+1,a 1),aa →=(a 2,a 2−a ),aa →=(a 2+1,a 2), 又∵aa→=aaa →,aa →=aaa →, ∴x 1=λ(x 1+1),x 2=μ(x 2+1), ∴a =a 1a1+1,a =a 2a2+1,∴λ+μ=a 1a1+1+a 2a 2+1=a 1(a 2+1)+a 2(a 1+1)(a 1+1)(a 2+1)=2a 1a 2+(a 1+a 2)a1a 2+(a 1+a 2)+1=−122+3a 2×2+3a 2−4=3,故λ+μ为定值3.20.【详解详析】(1)由方法一:抛物线Γ:y 2=2px (p >0),求导,2yy ′=2p ,即a 1=aa, 所以在A (x 1,y 1)点的切线的斜率a =a′|a =a 1=aa 1, 所以切线方程为a −a 1=aa 1(a −a 1),由y 12=2px 1,整理得yy 1=p (x +x 1),所以直线yy 1=p (x +x 1)与抛物线Γ相切; 方法二:由题意可知,{aa 1=a (a +a 1)a 2=2aa,消去x ,整理得y 2﹣2y 1y +2px 1=0, 则△=(2a 1)2−4×2aa 1=4a 12−8aa 1=0, 所以直线yy 1=p (x +x 1)与抛物线Γ相切;(2)方法一:由A (4,4)在抛物线上,则抛物线的方程y 2=4x , 由D 在抛物线的准线上,所以直线AB 过抛物线的焦点F (1,0), 所以x 1x 2=a 24=1,y 1y 2=﹣1,所以x 2=14,y 2=﹣1,所以B (14,﹣1);方法二:由A (4,4)在抛物线上,则抛物线的方程y 2=4x ,由(1)可知,直线AD 的方程4y =2(x +4),即y =12(x +4),则D (﹣1,32), 直线BD 的方程yy 2=p (x +x 2),所以{32a 2=2(−1+a 2)a 22=4a 2,解得{a 2=14a 2=−1,所以B (14,﹣1);(3)AB 恒过定点(p ,0),理由如下:方法一:设D (﹣p ,y 0),由(1)可知直线AD 的方程为a −a 1=aa 1(a −a 1),即a =a 1a a −a 122a直线BD 的方程a =a 2aa −a 222a , 将D (﹣p ,y 0)代入切线方程a 122a −a 1aa 0−a =0,a 222a −a 2aa 0−a =0,所以y 1,y 2是方程a 22a −a0a a −a=0的两根,所以y 1+y 2=2y 0,y 1y 2=﹣2p 2.直线AB 的斜率a =a 1−a2a 1−a 2=2aa1+a 2,直线AB 的方程x ﹣x 1=a 1+a 22a(y ﹣y 1), 即a =a 1+a 22a a −a 1a 22a=a 0aa +a ,所以直线AB 恒过定点(p ,0).方法二:设D (﹣p ,y 0),由抛物线的极点极线的性质,可知直线AB 的方程为yy 0=p (x ﹣p ),所以直线AB 恒过定点(p ,0).21.【详解详析】(1)椭圆的焦点坐标为(±2,0),长轴长为8,设双曲线的方程a 2a 2−a 2a 2=1(a>0,a>0),则a =2,c =4,则b 2=12,双曲线的方程a 24−a 212=1;(2)由题意可知过点M 的直线斜率存在且不等于0,设直线l 方程为x =my +3,A (x 1,y 1),B (x 2,y 2),联立方程组{a =aa +3a 216+a 212=1,消去x ,得(3m 2+4)y 2+18my ﹣21=0,y 1+y 2=−18a 3a +4,y 1y 2=−213a +4,所以S △OAB =12×|OE |×|y 1﹣y 2|=12×3×√(a 1+a 2)2−4a 1a 2=12×3×4√3√12a 2+7(3a 2+4)2=6√3√12a 2+7(3a 2+4)2,令12m 2+7=t ≥7,则a 2=a −712, 所以12a 2+7(3a 2+4)2=16a a 2+18a +81=16a +81a +18≤2√a ×a +18=49,当且仅当t =9,即a 2=16时,取等号, 则S △OAB =6√3√12a 2+7(3a 2+4)2≤6√3×23=4√3, 所以△OAB 面积的最大值为4√3. (3)存在这样的直线y =kx +m ,使得向量aa→+aa→=0→成立,且这样的直线有9条.由{a =aa +a a 216+a 212=1,消去y ,整理得(3+4k 2)x 2+8kmx +4m 2﹣48=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=−8aa3+4a 2,△1=(8km )2﹣4(3+4k 2)(4m 2﹣48)>0,①由{a =aa +a a 24−a 212=1,消去y ,整理得(3﹣k 2)x 2﹣2kmx ﹣m 2﹣12=0,设C (x 3,y 4),D (x 4,y 4), 则x 3+x 4=2aa 3−a 2,△2=(﹣2km )2+4(3﹣k 2)(m 2+12)>0,② 因为aa →+aa→=0→,所以(y 4﹣y 2)+(y 3﹣y 1)=0. 由x 1+x 2=x 3+x 4得−8aa3+4a 2=2aa3−a 2. 所以2km =0或−43+4a 2=13−a 2. 由上式解得k =0或m =0.当k =0时, 由①和②得﹣2√3<m <2√3.因为m 是整数,所以m 的值为﹣3,﹣2,﹣1,0,1,2,3.当m=0,由①和②得−√3<k<√3.因为k是整数,所以k=﹣1,0,1.于是满足条件的直线共有9条.11。
2019-2020学年上海市上海中学高二上学期期末数学试题(解析版)
2019-2020学年上海市上海中学高二上学期期末数学试题一、单选题1.“1k <-”是“方程221324x y k k +=++表示焦点在x 轴上的椭圆”的( )条件A .充分非必要B .必要非充分C .充分必要D .既非充分又非必要 【答案】B【解析】先化简条件“方程221324x y k k +=++表示焦点在x 轴上的椭圆”,结合k 的范围进行判定. 【详解】因为方程221324x y k k +=++表示焦点在x 轴上的椭圆,所以3240k k +>+>,解得21k -<<-;因为211k k -<<-⇒<-,反之不成立,所以“1k <-”是“方程221324x y k k +=++表示焦点在x 轴上的椭圆”的必要非充分条件. 故选:B. 【点睛】本题主要考查充分必要条件的判定,把复杂的已知条件进行化简,结合推出关系可以进行判定,侧重考查逻辑推理的核心素养.2.双曲线221kx y -=的一条渐近线与直线210x y ++=垂直,则此双曲线的离心率是( )A .BCD .2【答案】C【解析】根据双曲线的一条渐近线与直线210x y ++=垂直可求k ,进而可求双曲线的离心率. 【详解】由题意可知0k >,因为双曲线221kx y -=的渐近线为y =,且一条渐近线与直线210x y ++=垂直,12=,即14k =;此时双曲线为2214x y -=,224,5a c ==,. 故选:C. 【点睛】本题主要考查双曲线的性质,双曲线的离心率求解主要是明确,,a b c 的关系式,或者,,a b c 的值,侧重考查数学运算的核心素养.3.给出下列四个命题:①若复数1z ,2z 满足120z z -=,则12z z =;②若复数1z ,2z 满足1212z z z z +=-,则120z z ⋅=;③若复数z 满足22z z =-,则z 是纯虚数;④若复数z 满足z z =,则z 是实数,其中真命题的个数是( ) A .1个 B .2个C .3个D .4个【答案】B【解析】设出复数的代数形式进行验证,或者利用反例进行排除可得. 【详解】对于①:设111222,z x y z x y i i =+=+,1212,,,x x y y 均为实数,由120z z -=可得()()1122220x x y y -+-=,所以1212,x x y y ==,即12z z =,故①正确;对于②:当11z =,2z i =时,满足1212z z z z +=-,但是120z z ⋅≠,故②不正确; 对于③:当0z =时,满足22z z =-,但是z 不是纯虚数,故③不正确;对于④:设,,z x yi x y R =+∈,由z z =可得i =x y +0y =,故④正确. 故选:B. 【点睛】本题主要考查复数的性质及运算,待定系数法是解决复数问题的有效方法,侧重考查数学运算的核心素养.4.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=u u u v u u u v(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A .2 B .3 CD【答案】B【解析】【详解】试题分析:据题意得1(,0)4F ,设1122(,),(,)A x y B x y ,则221122,x y x y ==,221212122,2y y y y y y +==-或121y y =,因为,A B 位于x 轴两侧所以.所以122y y =-两面积之和为12211111224S x y x y y =-+⨯⨯221221121111112248y y y y y y y y =-+⨯⨯=-+⨯111218y y y =++⨯11298y y =+112938y y =+≥.二、填空题5.若复数()1231i z i +=-,则z =______.【解析】先化简求解z ,然后再求解模长. 【详解】因为()1231i z i +=-,所以()()()()3i 112i 3i 155i1i 12i 12i 12i 5z ---+====+++-,所以z ==【点睛】本题主要考查复数的运算及模长,求解复数模长时一般是先把复数进行化简,然后结合模长的公式求解,侧重考查数学运算的核心素养. 6.抛物线2y x =的准线方程为________.【答案】14x =-【解析】抛物线2y x =的准线方程为14x =-;故填14x =-. 7.椭圆2236x y +=的焦距是______. 【答案】4【解析】先把椭圆方程化为标准形式,结合,,a b c 的关系可求焦距. 【详解】2236x y +=可化为22162x y +=,所以226,2a b ==,因为2224c a b =-=,所以2c =,焦距24c =. 故答案为:4. 【点睛】本题主要考查利用椭圆的方程求解焦距,从给定的方程中求解,,a b c 是关键,侧重考查数学运算的核心素养.8.已知复数a ,b 满足集合{}{}2,,1a b a b -=+,则ab =______.【答案】1【解析】根据集合相等的含义,分别求解复数,a b ,然后可求ab . 【详解】因为1b b ≠+,{}{}2,,1a b a b -=+,所以21a b b a-=+⎧⎨=⎩, 即有210a a ++=,解得12212a i b ⎧=-+⎪⎪⎨⎪=--⎪⎩或12212a b ⎧=--⎪⎪⎨⎪=-+⎪⎩, 所以1ab =. 故答案为:1. 【点睛】本题主要考查复数的运算,复数方程的根可以借助求根公式来进行,侧重考查数学运算的核心素养.9.计算:239123410i i i i ++++⋅⋅⋅+=______. 【答案】56i +【解析】先求解n i ,然后再根据复数的加法规则进行求解. 【详解】因为2349i 1,i i,i 1,,i i =-=-==L ,所以23912i 3i 4i 10i 12i 34i 10i =5+6i ++++⋅⋅⋅+=+--+⋅⋅⋅+.故答案为:56i +. 【点睛】本题主要考查复数的运算,明确4414243i 1,i i,i 1,i i nn n n +++===-=-是求解的关键,侧重考查数学运算的核心素养.10.已知抛物线C :24y x =,过焦点F 作直线l 与抛物线C 交于P 、Q 两点,则PQ 的取值范围是______. 【答案】[)4,+∞【解析】设出直线方程,联立抛物线的方程,结合韦达定理可得12y y +,然后把PQ 用12y y +表示出来,结合表达式的特点求解范围.【详解】由题意可得焦点(1,0)F ,设1122(,),(,)P x y Q x y ,直线:1l x ty =+,联立241y x x ty ⎧=⎨=+⎩得2440y ty --=,12124,4y y t y y +==-,22112212()41441P y Q x x x x t y t ++=++===++++;因为20t ≥,所以4PQ ≥. 故答案为:[)4,+∞. 【点睛】本题主要考查直线和抛物线的位置关系,联立方程,结合韦达定理,表示出目标式是求解的关键,侧重考查数学运算的核心素养.11.已知P 为双曲线221x y -=右支上的一个动点,若点P 到直线2y x =+的距离大于m 恒成立,则实数m 的取值范围是______.【答案】(-∞【解析】把所求问题转化为求点P 到直线2y x =+的最小距离,结合平行线间的距离公式可求. 【详解】双曲线221x y -=的渐近线方程为y x =±,而直线2y x =+与y x =平行,平行线间的距离d ==由题意可知点P 到直线2y x =+;所以m ≤故答案为:(-∞. 【点睛】本题主要考查直线与双曲线的位置关系,双曲线上的点到直线的距离转化为平行直线间的距离,是这类问题的主要求解方向,侧重考查数学运算的核心素养.12.平面上一台机器人在运行中始终保持到点()2,0P -的距离比到点()2,0Q 的距离大2,若机器人接触不到....过点)M 且斜率为k 的直线,则k 的取值范围是______.【答案】【解析】先求解机器人的运动轨迹,结合直线和曲线的位置关系可求. 【详解】由题意可得机器人的运动轨迹是双曲线的一支,由1,2a c ==可得23b =,所以机器人的运动轨迹方程为221(1)3y x x -=≥;直线3(y k x -=,即(3y k x =+,联立22(313y k x y x ⎧=-+⎪⎨-=⎪⎩得2222(3)6)3120k x k k x -+-+--=, 当230k -=时,若k =则此时直线(3y k x =-+=恰好是双曲线的渐近线,符合题意;若k =.当230k -≠时,由∆<0得22226)4(3312)0k k k -----<,k <<综上可得k的取值范围是.故答案为:. 【点睛】本题主要考查直线与双曲线的位置关系,直线与双曲线的位置关系一般转化为方程解的情况,通过判别式及韦达定理进行求解,侧重考查数学运算的核心素养.13.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,P 为椭圆C 上一点,且123F PF π∠=,若1F 关于12F PF ∠平分线的对称点在椭圆C 上,则该椭圆的离心率为______. 【答案】3 【解析】根据椭圆的定义与几何性质判断1F PQ ∆为正三角形,且PQ x ⊥轴,设2PF t =,可得1122,3PF t F F t ==,从而可得结果.【详解】因为1F 关于12F PF ∠的对称点Q 在椭圆C 上,则1PF PQ =,160F PQ ∠=oQ ,1F PQ ∴∆为正三角形,11F Q F P ∴=,又1212222,FQ F Q F P F P a F Q F P +=+=∴=Q , 所以PQ x ⊥轴,设2PF t =,则1122,3PF t F F t=, 即2332323323c c t c t e a a t a t⎧=⎪⇒====⎨=⎪⎩,故答案为33. 【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.14.已知一族双曲线22:2019n nE x y -=(*n N ∈,且2019n ≤),设直线2x =与nE 在第一象限内的交点为n A ,点n A 在n E 的两条渐近线上的射影分别为n B ,n C .记n n n A B C ∆的面积为n a ,则1232019a a a a +++⋯+=__________.【答案】5052【解析】设点坐标()00,n A x y ,表示出n n n A B C V 的面积,得到n a 的通项,然后对其求前2019项的和. 【详解】 设()00,n A x y , 双曲线22:2019n nE x y -=的渐近线为0,0x y x y +=-=,互相垂直. 点()00,n A x y 在两条渐近线上的射影为,n n B C,则n n n n A B A C ==易知n n n A B C V为直角三角形,22001=2420194n n nA B C x y nS -==⨯V 即20194n na =⨯为等差数列,其前2019项的和为()12019201912019201920195052019420194=222a a S ⎛⎫+⨯ ⎪+⨯⨯⨯⎝⎭==【点睛】本题利用三角形的面积将双曲线相关内容与数列相结合,综合性较强的题目,属于难题.15.已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u v =2PB u u u v ,则当m =___________时,点B 横坐标的绝对值最大. 【答案】5【解析】分析:先根据条件得到A ,B 坐标间的关系,代入椭圆方程解得B 的纵坐标,即得B 的横坐标关于m 的函数关系,最后根据二次函数性质确定最值取法. 详解:设1122(,),(,)A x y B x y ,由2AP PB =u u u r u u u r得1212122,12(1),23,x x y y y y -=-=-∴-=-因为A ,B 在椭圆上,所以22221212,,44x x y m y m +=+=2222222243(23),()4424x x m y m y ∴+-=∴+-=,与22224x y m +=对应相减得222231,(109)444m y x m m +==--+≤,当且仅当5m =时取最大值.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.16.已知椭圆C :)222106x y m m+=>>左、右焦点分别为1F ,2F ,短轴的两个端点分别为1B ,2B ,点P 在椭圆C 上,且满足1212PF PF PB PB +=+,当m 变化时,给出下列四个命题:①点P 的轨迹关于y 轴对称;②存在m 使得椭圆C 上满足条件的点P 仅有两个;③OP 的最小值为2;④OP ,其中正确命题的序号是______. 【答案】①③【解析】利用椭圆的定义先求解P 的轨迹,即可判定①正确,②不正确;结合轨迹方程进行验证,可得③正确,④不正确. 【详解】由题意,点P 在椭圆C :)222106x y m m+=>>上,所以1212PF PF PB PB +=+=所以点P 也在以12,B B 为焦点的椭圆222166y x m+=-上, 所以点P 为椭圆C :22216x y m +=与椭圆222166y x m +=-的交点,共4个,故①正确,②错误;点P 靠近坐标轴时(0m →或m →,OP 越大,点P 远离坐标轴时,OP 越小,易得23m =时,取得最小值,此时C :22163x y +=, 22163y x +=,两方程相加得222222x y +=⇒=,即OP 的最小值为2,③正确;椭圆上的点到中心的距离小于等于a ,由于点P 不在坐标轴上,所以OP ,④错误.故答案为:①③.【点睛】本题主要考查椭圆的定义及性质,椭圆有关的最值问题常常借助其几何性质进行求解,侧重考查直观想象和数学运算的核心素养.三、解答题17.已知复数z 满足2274z z i -=+,求z . 【答案】32z i =+或12z i =-+.【解析】设出复数,,z a bi a b R =+∈,代入已知条件,利用复数相等的含义可求. 【详解】设,,z a bi a b R =+∈,222i,z z a a b b =-=+, 因为2274z z i -=+,所以222(i)=7+4i a a b b +--,2227a b a +-=且24b =,解得2b =,1a =-或3,所以32z i =+或12z i =-+. 【点睛】本题主要考查复数的相关概念及运算,待定系数法是解决这类问题的关键,侧重考查数学运算的核心素养.18.已知复数()221iz i m i =++-(其中i 是虚数单位,m R ∈). (1)若复数z 是纯虚数,求m 的值;(2)求1z -的取值范围.【答案】(1)12m =-;(2)1z -55≥. 【解析】(1)先对复数进行化简,然后结合z 是纯虚数可求m 的值; (2)结合复数的模长公式,表示出1z -,利用二次函数的知识求解. 【详解】(1)()()()()()2i i 12i2i 2i i 1i 1i 1z m m +=++=++--+ ()()2i i i 121(1)i m m m =+-+=++-,若复数z 是纯虚数,则210,10m m +=-≠,所以12m =-. (2)由(1)得21(1)i z m m =++-,12(1)i z m m -=+-,22214(1)521z m m m m -=+-=-+,因为2521y m m =-+是开口向上的抛物线,有最小值45; 所以1z -25≥. 【点睛】本题主要考查复数的分类及运算,纯虚数需要满足两个条件,即实部为零,虚部不为零,模长范围问题一般是先求解模长的表达式,结合表达式的特点求解最值,侧重考查数学运算的核心素养.19.假定一个弹珠(设为质点P ,半径忽略不计)的运行轨迹是以小球(半径1R =)的中心F 为右焦点的椭圆C ,已知椭圆的右端点A 到小球表面最近的距离是1,椭圆的左端点B 到小球表面最近的距离是5..(1)求如图给定的坐标系下椭圆C 的标准方程;(2)弹珠由点A 开始绕椭圆轨道逆时针运行,第一次与轨道中心O 13弹珠由于外力作用发生变轨,变轨后的轨道是一条直线,称该直线的斜率k 为“变轨系数”,求k 的取值范围,使弹珠和小球不会..发生碰撞. 【答案】(1)2211612x y +=;(2)(22,22k ∈-. 【解析】(1)根据题意可得2,6a c a c -=+=,从而可求椭圆C 的标准方程; (2)根据与轨道中心O 13P 的坐标,进而设出直线方程,利用直线与圆相离可求k 的取值范围. 【详解】(1)由题意,2462a c a C a c c ⎧-==⎧⇒⇒⎨⎨+==⎩⎩:2211612x y +=;(2)设()(),,0P x y x y >,联立2211612x y +=与2213x y +=,可求出()2,3P ,设直线方程为()32y k x -=-,即320kx y k -+-=,弹珠和小球不会发生碰撞,说明圆心()2,0到直线320kx y k -+-=的距离大于圆半径1,1>,解得(k ∈-.【点睛】本题主要考查椭圆的方程及直线与圆的位置关系,椭圆的方程的求解的关键是构建关于,,a b c 的等量关系式,直线与圆的位置关系一般通过圆心到直线的距离与半径的关系求解.20.已知曲线C的参数方程是2412x t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(参数t R ∈).(1)曲线C 的普通方程;(2)过点()2,1A 的直线与该曲线交于P ,Q 两点,求线段PQ 中点M 的轨迹方程.【答案】(1)2212y x -=;(2)22240x x y y --+=. 【解析】(1)先把24x t=+12t t =+,然后两式平方相减可得曲线C 的普通方程;(2)设出点的坐标,代入方程,作差,结合中点公式和斜率公式可求. 【详解】 (1)因为24x t=+12t t =+,所以有2222221121,144t t x t y t =++=+-,两式相减可得2222x y -=,即2212y x -=.(2)设1122(,),(,),(,)P x y Q x y M x y ,则222212121,122y y x x -=-=,两式相减得12121212()()()()02y y y y x x x x -+-+-=,即121212122()x x y y y y x x +-=+-. 因为M 为PQ 的中点,所以12122,2x x x y y y +=+=,因为,M A 均在直线上,所以121212y y y x x x --=--,整理可得22240x x y y --+=,经检验知符合题意,即线段PQ 中点M 的轨迹方程22240x x y y --+=. 【点睛】本题主要考查参数方程化为普通方程及轨迹方程的求解,参数方程化为普通的关键是消去参数,点差法是求解有关弦中点问题的首选方法,侧重考查数学运算的核心素养. 21.由半圆()2210x y y +=≤和部分抛物线()()210,0y a x y a =-≥>合成的曲线C称为“羽毛球形线”,且曲线C 经过点()2,3M .(1)求a 的值;(2)设()1,0A ,()1,0B -,过A 且斜率为k 的直线与“羽毛球形线”相交于P ,A ,Q 三点,是否存在实数k ,使得QBA PBA ∠=∠,若存在,求出k 的值;若不存在,请说明理由.【答案】(1)1a =;(2)存在实数12k =+QBA PBA ∠=∠. 【解析】(1)通过点()2,3M 在曲线()()210,0y a x y a =-≥>上可求a 的值;(2)根据题意得出1QB QA k k ⋅=,结合斜率公式即可求出k 的值. 【详解】(1)由题意易知,点()2,3M 在曲线()()210,0y a x y a =-≥>上,所以()2321a =-,即1a =.(2)假设存在,由题意可知QBA PBA ∠=∠,90APB ∠=︒, 所以90QBA BAP ∠+∠=︒,所以1QB QA k k ⋅=.设()200,1Q x x -,其中00x >,22000000111,111QBQA x x k x k x x x --==-==++-, 所以2011QB QA k k x ⋅=-=, 因为00,x >所以0x =所以1QA k k ==+.故存在实数实数1k =+QBA PBA ∠=∠. 【点睛】本题主要考查直线和抛物线的位置关系,角度关系一般转化为斜率问题进行求解,侧重考查数学运算的核心素养.22.已知椭圆C :()222210x y a b a b +=>>经过点1,2M ⎛ ⎝⎭,()0,1N -,直线l :y kx m =+与椭圆C 相交于A ,B 两点,与圆2223x y +=相切与点T . (1)求椭圆C 的方程;(2)以线段OA ,OB 为邻边作平行四边形OAPB ,若点Q 在椭圆C 上,且满足OP OQ λ=u u u r u u u r(O 是坐标原点),求实数λ的取值范围; (3)AT BT ⋅是否为定值,如果是,求AT BT ⋅的值;如果不是,求AT BT ⋅的取值范围.【答案】(1)2212x y +=;(2)λ⎡∈⎢⎣⎭⎝⎦U ;(3)是定值,23AT BT ⋅=. 【解析】(1)把两点M ⎛ ⎝⎭,()0,1N -代入方程可得椭圆C 的方程; (2)先根据直线和圆相切,求出223220m k --=,然后联立方程,结合韦达定理求出1212,x x y y ++,结合平行四边形性质和Q 在椭圆上可得实数λ的取值范围; (3)根据直线和圆相切可以表示出切点坐标,把AT BT ⋅转化为AT TB ⋅u u u r u u r,结合向量运算及韦达定理可求. 【详解】(1)因为椭圆C :()222210x y a b a b +=>>经过点M ⎛ ⎝⎭,()0,1N -, 所以222121411a b b ⎧+=⎪⎪⎨⎪=⎪⎩,解得1a b ==,所以椭圆C 的方程为2212x y +=.(2)因为直线l :y kx m =+与圆2223x y +=3=, 即223220m k --=①.由2222y kx m x y =+⎧⎨+=⎩得()222124220k x kmx m +++-=. 设()()1122,,,A x y B x y ,则2121222422,1212km m x x x x k k-+=-=++, ()()1212y y kx m kx m =++++()122x x m k =++2212mk =+.由向量加法的平行四边形法则,得OA OB OP +=u u u r u u u r u u u r, 因为,OP OQ λ=u u u r u u u r 所以OA OB OQ λ+=u u u r u u u r u u u r .由题意易知0λ≠,设00(,)Q x y ,则()()()112200,,,x y x y x y λ+=,()()0121211x x x y y y λλ⎧=+⎪⎪⎨⎪=+⎪⎩,即()()0202412 212km x k m y k λλ-⎧=⎪+⎪⎨⎪=⎪+⎩.因为00(,)Q x y 在椭圆上,所以()()222242221212kmmk k λλ⎡⎤⎡⎤-⎢⎥⎢⎥+=++⎢⎥⎢⎥⎣⎦⎣⎦, 整理得()222412m k λ=+②由>0∆可得2212k m +>,所以2224m m λ>, 204λ<<,即20λ-<<或02λ<<.由①②可得2228(1)3(12)k k λ+=+,令212t k =+,则2811()322t λ=+, 因为0,t ≥所以24833λ<≤,解得33λ-≤<-或33λ<≤,综上可得λ⎡∈⎢⎣⎭⎝⎦U . (3)由(2)知223220m k --=,()()1212y y kx m kx m =++()221212k x x km x x m =+++222212m k k -=+设33(,)T x y ,则33y kx m =+,由T 为切点可知OT AB ⊥,所以330x ky +=, 解得321kmx k =-+. ()()31312323,,AT BT AT TB x x y y x x y y ⋅=⋅=--⋅--u u u r u u r()()31212121222333x x x y x x x y y y y y ++--+=--22332243222123my kmx m k k --++=-+ 22232222()22221123123kmm km m kmx k k k ---+=-=-++ 222242213333m k =-=-=+.所以AT BT 是定值且定值为23. 【点睛】本题主要考查椭圆方程的求解及椭圆中的定值问题,范围问题,范围问题一般是根据条件及曲线的几何性质构建参数满足的不等关系,通过求解不等式求得参数范围,侧重考查数学运算的核心素养.。
(3份试卷汇总)2019-2020学年上海市黄浦区高二数学下学期期末综合测试试题
提高练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .62.若复数()()211 i z a a a R =-++∈是纯虚数,则a =( ) A .0B .1C .1-D .±13.两个半径都是()1r r >的球1O 和球2O 相切,且均与直二面角l αβ--的两个半平面都相切,另有一个半径为1的小球O 与这二面角的两个半平面也都相切,同时与球1O 和球2O 都外切,则r 的值为( ) A1B3C.12D.324.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 5.为了得到cos 24y x π⎛⎫=+⎪⎝⎭的图象,只需将函数sin 2y x =的图象( ) A .向右平移34π个单位 B .向右平移38π个单位 C .向左平移34π个单位 D .向左平移38π个单位 6.下列命题中,正确的命题是( ) A .若1212,0z z C z z ∈->、,则12z z > B .若z R ∈,则2||z z z ⋅=不成立C .1212,,0z z C z z ∈⋅=,则10z =或20z =D .221212,0z z C z z ∈+=、,则10z =且20z =7.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( ) A .243-B .242-C .162-D .2438.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种9.某校组织《最强大脑》PK 赛,最终A 、B 两队讲入决赛,两队各由3名选手组成,每局两队各派一名洗手PK ,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为() A .827 B .49 C .1627 D .202710.已知某人每天早晨乘坐的某一班公共汽车的准时到站的概率为35,则他在3天乘车中,此班车恰有2天准时到站的概率为( ) A .36125B .54125C .81125D .2712511.若存在实数a ,b ,使不等式24ln 22e x ax b x ≤+≤+对一切正数x 都成立(其中e 为自然对数的底数),则实数a 的最小值是( ). A .2eB .4C .eD .212.若函数()(0x x f x ka a a -=->且1)a ≠在(,)-∞+∞上既是奇函数又是增函数,则()log ()a g x x k =+的图象是( )A .B .C .D .二、填空题:本题共4小题 13.若π1sin()43α+=,则sin 2α=________. 14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,P 为椭圆C 上一点,且123F PF π∠=,若1F 关于12F PF ∠平分线的对称点在椭圆C 上,则该椭圆的离心率为______.15.设直线l :x+y ﹣2=0的倾斜角为α,则α的大小为_____.16.若直线2y kx =-与圆222x y +=相交于P.Q 两点,且∠POQ=120°(其中O 为原点),则k 的值为________.三、解答题:解答应写出文字说明、证明过程或演算步骤。
2019--2020高二上期末7校联考答案
12019—2020学年(上)期末考试 高2021级数学试题参考答案及评分标准一.选择题二.填空题13.2- 14.315.316.r ∈ 三.解答题17.解:(1)由题意圆心C 为AB 中点,所以圆心(2,0)C 半径||r AC ===所以圆C 的方程为22(2)10x y -+=;………….5分 (2)圆心到直线MN 的距离d 所以2MN ==||MN =.10分18.(1)证明:90ACB ∠= BC AC ∴⊥三棱柱侧棱垂直于底面 11CC ABC CC BC ∴⊥⊥面,故,1111,CC AC C BC ACC A BC C D =∴⊥∴⊥面,211111D AA C DC C D ∆===为中点,在中,222111,CD CC C D CD CD C D ==∴=+∴⊥ 1111C D BDC C D BDC BDC BDC ∴⊥⊂∴⊥面,面,面面6分(也可用111145,45,90,A DC ADC CDC CD C D ∠=∠=∠=⊥得从而证明:) (2)依题意可知:直线1,,CA CB CC 两两垂直∴以C 为原点,建立如图所示坐标系 设11,2AC BC CC ===,(1,0,1),(0,0,0),(1,0,1),D C CD ∴=11(0,1,0),(0,0,2),(1,1,1),(0,1,2)B C BD BC =-=-设面1BDC 的法向量为(,,)m x y z =100(1,2,1)200m BD x y z m y z m BC ⎧⋅=-+=⎧⎪∴⇒⇒=⎨⎨-+=⋅=⎩⎪⎩cos 3CD m ∴<⋅>==,所以13CD BDC 与面12分19.(1)证明:,,PA PD O AD PO AD =∴⊥为中点60ABCD BAD ∠=四边形为菱形,,设222,22cos 60AO a AB a OAB OB AO AB AO AB ==∆=+-⋅⋅则,在中,由得OB =,,BO AO BO AD ∴⊥⊥即PO BO O = AD POB∴⊥平面5分3(2)连结AC BO Q MQ 交于,连接,//,PA MOB PA PAC PAC MOB MQ ⊂=面面,且面面 //PA MQ ∴12AQ AO AOQBCQ CQ BC ∆∆∴==,111,,233P MOB M POB C POB AQ PM PM V V V CQ CM PC ---∴===∴==在222,2POB PO PB PO BO PB ∆====∴+=中,PO OB ∴⊥,111333P MOB C POB POB V V S BC--∆∴==⨯⋅111233323=⨯⨯⨯⨯⨯=12分20.解:(1)设000(,)2pP x y PF y ∴=+, 依题意有:00()1,222p py y p +-==∴= 故抛物线方程为:24x y=4分(2)因为(0,2)M ,设直线AB 的方程为:2y kx =+,2224804y kx x kx x y=+⎧⇒--=⎨=⎩,设1122(,),(,)A x y B x y 12124,8x x k x x ∴+=⋅=-1212AOB AOM BOM S S S OM x x ∆∆∆=+=-=12x x -===解之可得:1k =±所以直线AB 的方程为:2y x =±+421.(1)证明:四边形ABCD 为矩形,//,//AD BC AD BCF AD BCF ∴⊄∴面,平面, //,,//DE CF DE BCF DE BCF ⊄∴面面, ,,AD DE D AD DE ADE =⊂面,////ADE BCF BF BCF BF ADE∴⊂∴面面,面面5分(说明:若用相交直线与相交直线分别平行来证明此题,不扣分)(2)解:由题意知:,,,AD CD DE CD ADE A CD F ⊥⊥∴∠--即为二面角的平面角60ADE ∴∠=,CD ADE ∴⊥面,在平面ADE 上过D 作,DP DE CD DP ⊥∴⊥ ∴,,DC DE DP 两两垂直,故以D 为原点,,,DC DE DP所在直线分别为,,x y z 轴建立如图所示直角坐标系设(16)CG t t =≤≤3,,0),(0,3,0)Gt B E ∴(DP EGD ⊥面,(0,0,1)EGD m =面法向量(7分)设面BEG 法向量为(,,),n x y z =(3,2,3),(3,30BE EG t ∴=--=-,)00n BE n EG ⎧⋅=⎪⎨⋅=⎪⎩得-3203(3)0x y x t y ⎧+=⎪⎨+-=⎪⎩ 令3y =-得,(3,)n t =--9分1cos 4m n ∴<⋅>==10分24484270t t -+=,解之可得:1239222t t ==,5922CG =(舍)32CG ∴=,12分(其他建系方式按照上述步骤给分,若有两解,未舍掉的扣一分) 22.(1)依题意可知:21==a c e ⇒c a 2= 21F DF ∆的周长=6222121=+=++c a F F DF DF33==+∴c c a 3,2,122=-===∴c a b a c∴椭圆C 的标准方程为13422=+y x ………………4分 (2)延长1MF 交椭圆C 于点P又由N F M F 21//,故N F P F 21//,且21,F F 关于原点对称N P ,点∴关于原点对称 )0,2(),0,2(),0,1(1B A F --设直线M F 1的方程为:1-=my x ,),(),(2211y x P y x M , ),(22y x N --∴………………5分22221(34)6903412x my m y my x y =-⎧⇒+--=⎨+=⎩ 439436221221+-=+=+m y y m m y y ,………………6分 12212222222211111+=+=---==+=+==∴my y x y x y k k my y x y k k BN AM , 0121323221121=+++=+my y my y k k 02352121=++⇒y y y my …………8分43273352222121+-=⇒=++∴m m y y y y y my ,43334362221+=-+=m my m m y621222233279134343424m m y y m m m m --∴=⋅=⇒=+++………………10分 M 在x 轴上方 01>∴y 0>∴m12m ∴=………………11分 直线M F 1的方程为:1x y =-,即0y -+=………………12分 (说明:未写成一般式不扣分)。
2019-2020学年度第一学期高二期末数学卷(PDF版)
轨迹的大致图形.
M
A
B
P
20.已知关于 x 的二次方程 a 1 i x2 1 a2i x a2 i 0 有实根,求实数 a 的值及相应的实根.
21.已知椭圆 x2 a2
y2 b2
1a
b
0
经过点
P
6 2
,
1 2
,
c a
2 ,动点 M 在直线 x 2 上, O 为坐标原点. 2
y
sec
t
x tant
D.
y
cot
t
15.设双曲线 x2 a2
y2 b2
1a 0,b 0 ,右焦点 F c, 0, c
a
2 ,方程 ax2 bx c 0 的两个实数根分别为 x1 , x2 ,
则点 P x1, x2 与 x2 y2 4 的位置关系是( )
D. 动点 M 到点 2,3 和到 2x y 1 0 的距离相等 4 ;
14.在平面直角坐标系 xOy 中,已知两圆 C1 : x2 y2 12 和 C2 : x2 y2 14 ,又点 A 坐标为 (3, 1) ,M 、N 是 C1
上的动点, Q 为 C2 上的动点,则四边形 AMQN 能构成矩形的个数为( )
19.我边防局接到情报,在两个海标 A,B 所在直线的一侧 M 处有走私团伙在进行交易活动,边防局迅速排出快艇 前去搜捕,如图,已知快艇出发位置码头 P 处,线段 AB 布满暗礁,已知 PA 8 公里,PB 10 公里,APB 60 ,
且 AM BM .
2019-2020学年上海市中学高二期末数学试题及答案
2019-2020学年上海市中学高二期末数学试题及答案一、单选题1.已知平面直角坐标系内的两个向量(1,2),(,32)a b m m ==-,且平面内的任一向量c 都可以唯一表示成c a b λμ=+(,λμ为实数),则实数m 的取值范围是( ) A .(,2)-∞ B .(2,)+∞ C .(,)-∞+∞D .(,2)(2,)-∞⋃+∞【答案】D【解析】根据平面向量基本定理只需,a b 不共线即可. 【详解】由题意得,平面内的任一向量c 都可以唯一表示成c a b λμ=+(,λμ为实数),则,a b 一定不共线,所以1(32)2m m ⨯-≠⨯,解得2m ≠, 所以m 的取值范围是(,2)(2,)-∞⋃+∞. 故选:D. 【点睛】此题考查平面向量基本定理的辨析,平面内一组基底必须不共线,求解参数只需考虑根据平面向量共线的坐标运算求出参数即可得解.2.椭圆22:1169x y C +=与直线:(21)(1)74,l m x m y m m R +++=+∈的交点情况是( )A .没有交点B .有一个交点C .有两个交点 D .由m 的取值而确定【答案】C【解析】先将(21)(1)74,+++=+m x m y m 转化为:()2730x y m x y +-++-=,令30,270xy x y +-=+-=,解出直线过定点()3,1A ,再将()3,1A 代入22:1169x y C +=,判断点与椭圆的位置关系. 【详解】已知(21)(1)74,+++=+m x m y m 可转化为:()2740x y m x y +-++-= ,令+-=+-=40,270xy x y ,解得3,1x y ==,所以直线过定点()3,1A ,将()3,1A 代入22:1169x y C += 可得911169+<,所以点()3,1A 在椭圆的内部, 所以直线与椭圆必相交, 所以必有两个交点. 故选:C 【点睛】本题主要考查了点与椭圆,直线与椭圆的位置关系,还考查了转化化归的思想和运算求解的能力,属于基础题.3.过点(1,1)P 作直线与双曲线2212yx -=交于,A B 两点,使点P为AB 的中点,则这样的直线( )A .存在一条,且方程为210x y --=B .存在无数条C .存在两条,且方程为2(1)0x y ±+=D .不存在 【答案】D【解析】分当直线的斜率不存在时,将直线方程为1x = 代入2212y x -=,得0y =,与双曲线只有一个交点,不符合题意;当直线的斜率存在时,设直线方程为()11y k x -=-代入2212y x -=,得()()222221320k x k k x k k ----+-=,分220k -=和22k -≠0两种情况讨论求解.【详解】当直线的斜率不存在时,直线方程为1x = 代入2212y x -=,得0y = ,与双曲线只有一个交点,不符合题意. 当直线的斜率存在时,设直线方程为()11y k x -=-,代入2212y x -=,得()()222221320k x k k x k k ----+-=,当220k -=时,直线()11y x -=-与双曲线只有一个交点,不符合题意.当22k -≠0时,因为点P 为AB 的中点, 由韦达定理得()1222122k k x x k-+==- ,解得2k = 而当2k =时,222[2(1)]4(2)(32)24160k k k k k k ∆=----+-=-<,所以直线与双曲线不相交. 故选:D 【点睛】本题主要考查了直线与双曲线的位置关系,还考查了分类讨论的思想方法,属于中档题.4.已知圆心为O ,半径为1的圆上有不同的三个点,,A B C ,其中0OA OB ⋅=,存在实数,λμ满足0OC OA uOB λ++=,则实数,λμ的关系为A .221λμ+=B .111λμ+= C .1λμ= D .1λμ+=【答案】A【解析】由题意得1OA OB OC ===,且0OA OB ⋅=.因为0OC OA uOB λ++=,即OC OA uOB λ=--.平方得:221λμ+=. 故选A.二、填空题5.直线l 的倾斜角范围是__________; 【答案】0,【解析】由直线的倾斜角定义来确定. 【详解】由直线倾斜角的定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.范围:倾斜角的取值范围是0°≤α<180°. 故答案为:0,【点睛】本题主要考查了直线倾斜角的定义及范围,还考查了理解辨析的能力,属于基础题.6.方程2214x y m+=表示焦点在y 轴上的椭圆,其焦点坐标是_________;【答案】(0,【解析】根据方程2214x y m +=表示焦点在y 轴上的椭圆,确定22,4a m b ==,再由,,a b c 的关系求出c ,写出坐标即可.【详解】因为方程2214x y m +=表示焦点在y 轴上的椭圆,所以22,4a m b == ,所以c==所以焦点坐标为:(0,.故答案为:(0,.【点睛】本题主要考查了椭圆的几何性质,还考查了理解辨析的能力,属于基础题.7.抛物线()20y ax a =<的焦点坐标为____________.【答案】10,4a ⎛⎫⎪⎝⎭【解析】将抛物线的方程化为标准方程,可得出该抛物线的焦点坐标. 【详解】抛物线的标准方程为21x y a=,因此,该抛物线的焦点坐标为10,4a ⎛⎫⎪⎝⎭. 故答案为:10,4a ⎛⎫⎪⎝⎭. 【点睛】本题考查抛物线焦点坐标的求解,解题的关键就是要将抛物线的方程表示为标准形式,考查计算能力,属于基础题. 8i -对应点的直线的倾斜角为_________; 【答案】56π【解析】先利用复数的几何意义,i -对应点的坐标,直线又经过原点()0,0,根据斜率公式求得斜率,再根据斜率与倾斜角的关系求解. 【详解】i -对应点)1- ,直线又经过原点()0,0 ,所以斜率103k ==-,所以tan α= ,又因为[0,)απ∈ , 所以56πα=.故答案为:56π.【点睛】本题主要考查了直线的斜率,倾斜角及其关系,还考查了运算求解的能力,属于基础题.9.下面四个命题:①,a b 是两个相等的实数,则()()a b a b i -++是纯虚数;②任何两个负数不能比较大小;③12,z z C ∈,且22120z z +=,则120z z ==;④两个共轭虚数的差为纯虚数.其中正确的序号为_________; 【答案】④【解析】①采用特殊值法,当,a b 都是零时来判断.②通过负数也是实数来判断.③采用特殊值法,当121,z z i ==时来判断.④根据题意,是两个共轭虚数,则虚部不为零来判断. 【详解】 当0ab 时,则()()0a b a b i -++=,不是纯虚数,故错误.②因为负数是实数,实数可以比较大小,故错误. ③当121,z z i ==时,符合12,z z C ∈,且22120z z +=,而120z z ==不成立,故错误.④因为是两个共轭虚数,所以设()0z a bi b =+≠ ,其共轭复数是()0za bib =-≠,则()20z z bi b -=≠所以是纯虚数,故正确. 故答案为:④ 【点睛】本题主要考查了复数的概念,还考查了理解辨析的能力,属于中档题.10.已知点A 为双曲线221x y -=的左顶点,点B 和点在C 双曲线的右支上,ABC ∆是等边三角形,则ABC ∆的面积为_________; 【答案】【解析】根据题意得()1,0A -,再根据双曲线和等边三角形的对称性,得到AB k =AB 的方程,求出点(B ,从而可求ABC ∆的面积. 【详解】由题意得,()1,0A - ,因为点B 和C 在双曲线的右分支上,ABC ∆是等边三角形,根据对称性得,AB k =,所以直线AB 的方程是)1y x =+ ,代入双曲线方程,得220x x --= , 解得2x = 或1x =- (舍去),所以(B , 所以1233332∆ABCS .故答案为:【点睛】本题主要考查双曲线的几何性质和三角形面积的计算,还考查了分析解决问题的能力,属于基础题.11.直线l 经过点()2,1P -,且点()1,2--A 到l 的距离为1,则直线l 的方程为______. 【答案】2x =-或4350x y ++=【解析】当直线l 斜率存在时,设出点斜式并利用点到直线的距离公式算出l 的方程为4350x y ++=;当直线与x 轴垂直时,l 方程为2x =-也符合题意.由此即可得到此直线l 的方程. 【详解】设直线l 的方程为()12y k x -=+,即210kx y k -++= ∵点()1,2--A 到l 的距离为1,1=,解之得43k =-, 得l 的方程为4350x y ++=.当直线与x 轴垂直时,方程为2x =-,点()1,2--A 到l 的距离为1,∴直线l 的方程为2x =-或4350x y ++=. 故答案为:2x =-或4350x y ++= 【点睛】本题主要考查求经过定点,且到定点的距离等于定长的直线l 方程,着重考查了直线的方程、点到直线的距离公式等知识,属于基础题. 12.直线2y k =与曲线2222918(,0)k x y k x k R k +=∈≠的公共点的个数为_________; 【答案】4个【解析】将直线方程2y k =与曲线方程2222918+=k x y k x联立得,291840xx -+= ,根据方程根的个数来判断.【详解】将直线方程2y k =与曲线方程2222918+=kx y k x 联立得,291840x x -+=,解得13x =-或13x =+,所以13x=-或13x =-或13x =+或13x=--,故直线与曲线的公共点有4个. 故答案为:4 【点睛】本题主要考查了直线与曲线的位置关系,还考查了运算求解的能力,属于基础题.13.当实数,a b 变化时,两直线1:(2)()()0l a b x a b y a b ++++-=与22:20l m x y n ++=都通过一个定点,则点(,)m n 所在曲线的方程为_________; 【答案】226n m =-【解析】将(2)()()0++++-=a b x a b y a b 变形为()()(2)()()2110++++-=++++-=a b x a b y a b x y a x y b ,令210x y ++=且10x y +-=,求得定点坐标,再代入直线2l 的方程求解. 【详解】因为()()(2)()()2110++++-=++++-=a b x a b y a b x y a x y b ,对任意的实数,a b 都成立,所以21010x y x y ++=⎧⎨+-=⎩,解得23x y =-⎧⎨=⎩,所以直线1:(2)()()0l a b x a b y a b ++++-=过定点()2,3-, 因为 2l 也通过定点()2,3-, 将()2,3-代入220++=m x y n , 得226n m =-. 故答案为:226n m =- 【点睛】本题主要考查了直线系及其应用,还考查了分析,解决问题的能力,属于基础题.14.动点P 到点(1,0)F -的距离比到它到y 轴的距离大1,动点P 的轨迹方程是_________;【答案】20,04,0x y x x >⎧=⎨-≤⎩【解析】设(),P x y 1x =+,两边平方化简,再去绝对值求解. 【详解】 设(),P x y ,1x =+, 两边平方化简整理得222y x x=- ,当0x > 时,20y =, 当0x ≤ 时,24y x =-,综上:20,04,0x y x x >⎧=⎨-≤⎩.故答案为:20,04,0x y x x >⎧=⎨-≤⎩【点睛】本题主要考查了动点轨迹方程的求解,还考查了运算求解的能力,属于中档题.15.椭圆2214x y +=的一个焦点是F ,动点P 是椭圆上的点,以线段PF 为直径的圆始终与一定圆相切,则定圆的方程是_________; 【答案】224x y +=【解析】先设1F 是椭圆的另一个焦点,M 是线段PF 的中点,根据三角形的中位线及椭圆的定义可得1111||||(2||)||222MO PF a PF a PF ==-=- ,再根据两圆的位置关系得到结论. 【详解】设1F 是椭圆的另一个焦点,M是线段PF 的中点,根据题意得,1111||||(2||)||222MO PF a PF a PF ==-=-,即以长轴长为直径的圆与以线段PF 为直径的圆相内切, 所以定圆的圆心是()0,0O ,半径r a 2== ,所以定圆的方程为224x y +=, 故答案为:224x y += 【点睛】本题主要考查了椭圆的定义及两圆的位置关系,还考查了数形结合的思想方法,属于中档题. 16.若实数x 、y 满足42x y x y -=-,则x 的取值范围是______.【答案】{}0[4,20]⋃ 【解析】【详解】 令(),0y a x y b a b =-=≥、,此时,()22x y x y a b =+-=+,且题设等式化为2242a b a b +-=. 于是,a b 、满足方程()()()222150a b a b -+-=≥、.如图,在aOb 平面内,点(),a b 的轨迹是以()1,2D 为圆心、5为半径的圆在0a b ≥、的部分,即点O 与弧ACB 并集. 故{}2202,25a b ⎡⎤+∈⋃⎣⎦.从而,{}[]2204,20x ab =+∈⋃.三、解答题17.已知x ∈R ,设22log (3)log (3)z x i x =++-,当x 为何值时: (1)在复平面上z 对应的点在第二象限? (2)在复平面上z 对应的点在直线20x y +-=上. 【答案】(1)32x -<<-;(2)5x =【解析】(1)由复平面上z 对应的点在第二象限,根据复数的几何意义,则有22log (3)0log (3)0x x +<⎧⎨->⎩求解.(2)由复平面上z 对应的点在直线20x y +-=上.,则复数对应点的坐标()22log (3),log (3)+-x x 在直线上,代入直线方程求解即可. 【详解】(1)因为复平面上z 对应的点在第二象限,所以22log (3)0log (3)0x x +<⎧⎨->⎩,所以03131x x <+<⎧⎨->⎩,解得32x -<<-.(2)因为在复平面上z 对应的点在直线20x y +-=上, 所以22log (3)(3)l 4og +-=x x ,所以3030(3)(3)4x x x x +>⎧⎪->⎨⎪+-=⎩,解得x =.【点睛】本题主要考查了复数的几何意义及对数方程和对数不等式的解法,还考查了运算求解的能力,属于中档题. 18.已知直线与抛物线交于两点.(1)求证:若直线l 过抛物线的焦点,则212y y p ⋅=-; (2)写出(1)的逆命题,判断真假,并证明你的判断. 【答案】(1)证明见解析;(2)逆命题:若212y y p =-,则直线过抛物线的焦点;真命题.见解析【解析】(1)不妨设抛物线方程为22y px = ,则焦点坐标为,02p ⎛⎫⎪⎝⎭,当直线的斜率不存在时,直线方程为2px =代入22y px =,验证.当直线的斜率存在时,设直线方程为()2py k x =- 代入22y px =,得2220ky py kp --=,再由韦达定理验证.(2)逆命题:直线l 过抛物线的焦点. 是真命题.证明:当直线的斜率不存在时,设直线方程为(),0xm m =>代入22y px =,解得12y y == ,再由212y y p ⋅=-,求解.当直线的斜率存在时,设直线方程为y kx b =+ 代入22y px =,得2220ky py pb -+= ,由韦达定理得122pby y k⋅=再由212y y p ⋅=-,求得k 与b 的关系现求解.【详解】(1)设抛物线方程为22y px = ,则焦点坐标为,02p ⎛⎫⎪⎝⎭, 两个交点()()1122,,,A x y B x y ,当直线的斜率不存在时,直线方程为2px =,代入22y px =,得1,2y p y p==- ,所以212y y p ⋅=-.当直线的斜率存在时,设直线方程为()2py k x =-, 代入22y px =, 得2220ky py kp --= ,由韦达定理得 212y y p ⋅=-.所以若直线l 过抛物线的焦点时,则212y y p ⋅=-.(2)逆命题:若212y y p ⋅=-,则直线l 过抛物线的焦点. 是真命题证明:当直线的斜率不存在时,设直线方程为(),0x m m =>代入22y px =得12y y ==因为212y y p ⋅=-,所以22p -=-,解得2pm =,所以直线过抛物线的焦点.当直线的斜率存在时,设直线方程为y kx b =+, 代入22y px =, 得2220ky py pb -+=,由韦达定理得122pby y k⋅=,又因为212y y p ⋅=-, 所以2pkb =-,所以直线的方程2p y kx b k x ⎛⎫=+=- ⎪⎝⎭, 所以直线过定点,02p ⎛⎫ ⎪⎝⎭即直线过抛物线的焦点. 【点睛】本题主要考查了直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.19.(1)若圆C 的方程是222x y r +=,求证:过圆C 上一点00(,)M x y 的切线方程为200x x y y r +=.(2)若圆C 的方程是222()()x a y b r -+-=,则过圆C 上一点00(,)M x y 的切线方程为_______,并证明你的结论.【答案】(1)证明见解析;(2)200()()()()x a x a y b y b r --+--=;证明见解析;【解析】(1)设(),P x y 为切线上任一点,则()()0000,,,PM x x y y CM x y =--=,再由点00(,)M x y 为圆上的切点,则有PM CM⊥ ,即有0PM CM ⋅=求解即可.(2)设(),P x y 为切线上任一点,则()()0000,,,PM x x y y CM x a y b =--=--由点00(,)M x y 为圆上的切点,则有PM CM⊥ ,即有0PM CM ⋅=求解即可.【详解】(1)设(),P x y 为切线上任一点, 有()()0000,,,PMx x y y CM x y =--= ,因为PM CM⊥ ,所以0PM CM ⋅= , 即()()0000,,0x x y y x y --⋅=,又点00(,)M x y 在圆上, 所以22200+=x y r 整理得200x x y y r +=.(2)设(),P x y 为切线上任一点, 则()()0000,,,PMx x y y CM x a y b =--=--,因为PMCM⊥ ,所以0PM CM ⋅= , 即()()0000,,0x x y y x a y b --⋅--=,又点00(,)M x y 在圆上, 所以22200()()-+-=xa yb r .整理得200()()()()x a x a y b y b r --+--=. 【点睛】本题主要考查了圆的切线方程问题,还考查推理论证的能力,属于中档题.20.已知双曲线2212x y -=的两焦点为12,F F ,P 为动点,若124PF PF +=.(1)求动点P 的轨迹E 方程;(2)若12(2,0),(2,0)(1,0)A A M -,设直线l 过点M ,且与轨迹E 交于R Q 、两点,直线1A R 与2A Q 交于S 点.试问:当直线l 在变化时,点S 是否恒在一条定直线上?若是,请写出这条定直线方程,并证明你的结论;若不是,请说明理由.【答案】(1)2214x y +=;(2)是,4x =【解析】(1)根据124PF PF +=,且124F F >,由椭圆的定义可知,动点P 的轨迹是以12,F F 为焦点的椭圆,再求出,a b ,写出方程.(2)先设直线的方程为1x my =+,如果存在,则对任意m 都成立,首先取特殊情况,当0m =时,探究出该直线为:4l x =,再通过一般性的证明即可. 【详解】(1)双曲线2212x y -=的两焦点为())12,F F ,设动点P (),x y , 因为124PF PF +=,且124F F > ,所以动点P 的轨迹E 是以12,F F 为焦点的椭圆.因为22,1ac b ===,所以的轨迹E 方程;2214x y +=.(2)由题意设直线的方程为1x my =+,取0m =,得,1,22R Q ⎛⎛- ⎪ ⎪⎝⎭⎝⎭, 直线1A R的方程是63y x =+,直线2A Q的方程是2y x =-交点为(1S .若1,,R Q ⎛⎛- ⎝⎭⎝⎭,由对称性可知:交点为(24,S .若点S 在同一条直线上,则该直线只能为:4l x =. 以下证明 对任意的m ,直线1A R 与2A Q 交点S 均在直线:4l x =上.由22114x my x y =+⎧⎪⎨+=⎪⎩得()224230m y my ++-= ,设()()1122,,,R x y Q x y ,由韦达定理得:12122223,44m y y y y m m +=-⋅=-++ 设直线1A R 与l 交点为()004,s y ,由011422y y x =++ ,得10162y y x =+.设直线1A R 与l 交点为()004,s y '' , 由022422y y x '=-- ,得20222y y x '=-,因为()()()12121200121246622222my y y y y y y y x x x x -+'-=-=+-+-,()()2212121244022m m m m x x ---++==+- .所以()004,s y 与()004,s y ''重合.所以当直线l 在变化时,点S 恒在直线:4l x =上. 【点睛】本题主要考查了椭圆的定义及直线与椭圆的位置关系,还考查了特殊与一般的思想,运算求解的能力,属于难题. 21.已知椭圆E 两焦点12(1,0),(1,0)F F -,并经过点. (1)求椭圆E 的标准方程;(2)设,M N 为椭圆E 上关于x 轴对称的不同两点,12(,0),(,0)A x B x 为x 轴上两点,且122x x =,证明:直线,AM NB 的交点P 仍在椭圆E 上;(3)你能否将(2)推广到一般椭圆中?写出你的结论即可.【答案】(1)2212x y +=;(2)证明见解析;(3)若椭圆22221x y a b +=,若212x x a =,则直线,AM NB 的交点P 仍在椭圆E 上; 【解析】(1)已知焦点12(1,0),(1,0)F F -,利用椭圆的定义,求得椭圆的长轴长,再求得2b ,写出方程即可.(2)设()(),,,M m n N m n -,得到直线AM 的方程为()11n y xx m x =--,直线BN的方程为()22n y x x X m=--,设设交点()00,P x y ,分别代入直线AM ,BN 的方程得()0100yn x my nx -=- ,()0200y n x my nx +=+,两式化简得到220022x y +=,说明交点在椭圆上.(3)根据(2)的论证过程,推知规律是212x x a =. 【详解】根据题意,椭圆的长轴长:2a =+,解得22a = , 又2211b a =-=,所以椭圆的方程是2212x y +=.(2)设()(),,,M m n N m n - ,则直线AM 的方程为()11n y x x m x =--①,直线BN的方程为()22ny xx X m=--②设交点()00,P x y ,代入①②得()0100y n x my nx -=-③,()0200yn x my nx +=+④,③与④两边分别相乘得()22222201200yn x x m y n x -=-,又因为2212m n +=,122x x =,所以220022x y +=,所以直线,AM NB 的交点P 的坐标适合椭圆的方程, 所以直线,AM NB 的交点P 仍在椭圆E 上.(3)若椭圆22221x y a b +=,若212x x a =,则直线,AM NB 的交点P 仍在椭圆E 上; 【点睛】本题主要考查了椭圆方程的求法,以及点与椭圆的位置关系,还考查了推理论证,运算求解的能力,属于难题.。
2019-2020学年上海市第二中学高二上学期期末数学试题(解析版)
2019-2020学年上海市第二中学高二上学期期末数学试题一、单选题1.设()()224522z t t t t i =-++++⋅,其中t ∈R ,则下列命题中正确的是( ) A .复数z 可能为纯虚数 B .复数z 可能是实数C .复数z 在复平面上对应的点在第一象限D .复数z 在复平面上对应的点在第四象限 【答案】C【分析】根据复数的实部和虚部的符号可确定复数z 在复平面上对应的点的特征,从而可得正确的选项.【详解】因为()2245210t t t -+=-+>,()2222110t t t ++=++>, 故ABD 均错误,C 正确. 故选:C.2.已知曲线C 的方程是(),0F x y =,则下列命题中错误的是( ) A .不在曲线C 上的点的坐标可以满足方程(),0F x y = B .曲线C 上的点的坐标都满足方程(),0F x y = C .坐标不满足方程(),0F x y =的点都不在曲线C 上 D .不在曲线C 上的点的坐标都不满足方程(),0F x y = 【答案】A【分析】根据曲线与方程的定义和关系进行判断即可.【详解】满足方程是(),0F x y =的解对应点都在曲线C 上, 曲线C 上的点的坐标都满足方程,则曲线是方程的曲线,方程是曲线的方程,则不在曲线C 上的点的坐标不可能满足方程 0(),F x y =,故A 错误. 故选:A.340y +-=和圆()2cos 022sin 1x y ϕϕπϕ=⎧≤<⎨=+⎩的位置关系为( )A .相交且过圆心B .相交但不过圆心C .相切D .相离【答案】B【分析】化为圆的标准方程,结合直线与圆的位置关系,即可求解. 【详解】由题意,圆()2cos 022sin 1x y ϕϕπϕ=⎧≤<⎨=+⎩,消去参数,可得22(1)4x y +-=,则圆心坐标为(0,1),半径为2r,又由圆心到直线340x y +-=的距离为221432(3)1d -==+,可得d r <, 又由圆心不适合直线340x y +-=方程, 所以直线与圆相交但不过圆心. 故选:B.4.如图,圆C 分别与x 轴正半轴,y 轴正半轴相切于点,A B ,过劣弧AB 上一点T 作圆C 的切线,分别交x 轴正半轴,y 轴正半轴于点,M N ,若点(2,1)Q 是切线上一点,则MON ∆周长的最小值为------------------------------------------------------------------A .10B .8C .45D .12【答案】A【详解】由题意,可设切线的斜率为k (k 必存在),圆C 的半径为r ,则切线的方程为()1200kx y k x r -+-=≤≤,2121kr r kr k-+-=+,()12y k x -=-,则点,M N的坐标分别为21,0k k -⎛⎫⎪⎝⎭,()012k -,,且210120k k k -⎧>⎪⎨⎪->⎩,,即0k <,所以MON C ∆=二、填空题5.i是虚数单位,1212ii+-的虚部是_______________.【答案】4 5【分析】根据复数的除法运算,化简12341255iii+=-+-,结合复数的概念,即可求解.【详解】由题意,复数()()()()1212123434 121212555i ii iii i i+++-+===-+--+,可得复数1212ii+-的虚部是45.故答案为:4 5 .6.复数21zi=-(i为虚数单位)的共轭复数是________.【答案】1i-【详解】复数21zi=-()()()21111iii i+==+-+,其共轭复数为1z i=-,故填1i-.7.双曲线2214xy-=的渐近线方程________.【答案】12 y x =±【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214xy-=的a=2,b=1,焦点在x轴上而双曲线22221x ya b-=的渐近线方程为y=±bxa∴双曲线2214xy-=的渐近线方程为y=±12x故答案为y=±1 2 x【点睛】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想8.设P是椭圆22153x y+=上的动点,则P到该椭圆的两个焦点的距离之和为_________.【答案】【分析】由椭圆方程求出a ,再根据椭圆的定义可求得结果.【详解】由22153x y +=得25a =,所以a =由椭圆的定义可得P 到该椭圆的两个焦点的距离之和为2a =.故答案为:9.抛物线2x y =的准线方程为_______. 【答案】14y =-【分析】由抛物线方程求出11224p p =⇒=,判断焦点位置,从而可得答案. 【详解】因为抛物线方程为2x y =, 所以11224p p =⇒=, 又因为抛物线焦点在y 轴上, 所以抛物线2x y =的准线方程为14y =-, 故答案为:14y =-. 【点睛】本题主要考查由抛物线方程求准线方程,属于基础题. 10.已知复数z 满足()117i z i +=-(i 是虚数单位),则z = . 【答案】5【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【详解】由(1+i )z=1﹣7i ,得()()()()1711768341112i i i iz i i i i -----====--++-,则5=. 故答案为5.【点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.11.已知双曲线22:145x y C ,则以双曲线C 的中心为顶点,以双曲线C 的右焦点为焦点的抛物线方程为_______________. 【答案】212y x =【分析】先求解出双曲线的右焦点坐标,然后设抛物线方程22(0)y px p =>,根据抛物线的焦点列式求解p .【详解】由双曲线的方程可得,双曲线的右焦点坐标为(3,0),因为抛物线以双曲线C 的右焦点为焦点,所以设抛物线方程为22(0)y px p =>,由32p ,得6p ,所以抛物线方程为212y x =. 故答案为:212y x =.12.已知直线l 过点()1,2且垂直于x 轴,若l 被抛物线24y ax =截得线段长为4,则抛物线的焦点坐标为_______________. 【答案】()1,0【分析】根据截得线段长可求a ,从而可求焦点坐标.【详解】在抛物线24y ax =的方程中令1x =,则y =±4=, 故1a =,所以抛物线的方程为:24y x =,故其焦点坐标为:()1,0.故答案为:()1,0.13.如果双曲线22145x y -=右支上一点P 到双曲线右焦点的距离是1,那么点P 到y 轴的距离是_______________. 【答案】2【分析】由题意可知点P 为双曲线的右顶点,由此可求得点P 到y 轴的距离.【详解】在双曲线22145x y -=中,2a =,b =3c ==,所以,双曲线22145x y -=的右焦点为()3,0F ,而双曲线22145x y -=的右顶点到F 的距离为1,则()2,0P ,因此,点P 到y 轴的距离是2. 故答案为:2.14.设椭圆22162x y +=和双曲线2221x y a-=的公共焦点为1F 、2F ,P 是两曲线的一个公共点,则12F F P S =△_______________. 【答案】2【分析】利用已知条件求出a ,运用椭圆和双曲线的定义,求解三角形的边长,然后求解三角形的面积.【详解】椭圆22162x y +=的焦点坐标(20),双曲线2221x y a-=的焦点坐标(20),所以3a =,设1||AF m =,2||AF n =,不妨P 在第一象限, 由椭圆的定义可得26m n +=,① 由双曲线的定义可得23m n -=,② 由①、②,可得63m =+,63n =-,1263626362161cos 32(63)(63)F PF ++++--∠==+-, 所以1222sin F PF ∠=. 所以三角形的面积为:121122sin (63)(63)222mn F PF ∠=⨯+-⨯=.故答案为:2.【点睛】关键点点睛:本题的关键是利用好椭圆与双曲线的定义,然后把问题转化为解三角形问题.15.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________. 【答案】94【详解】试题分析:由新定义可知,直线与曲线相离,圆的圆心到直线的距离为,此时直线与圆相离,根据新定义可知,曲线到直线的距离为,对函数求导得,令,故曲线在处的切线方程为,即,于是曲线到直线的距离为,则有,解得或,当时,直线与曲线相交,不合乎题意;当时,直线与曲线相离,合乎题意.综上所述,.【解析】1.新定义;2.直线与曲线的位置关系16.若a ∈R ,直线1:30l x ay a +-=与2:40l ax y a --=交于点P ,点P 的轨迹C 与x 、y 轴分别相交于A 、B 两点,O 为坐标原点(A 、B 异于原点O ),则满足PA PB OA OB -=-的位于第一象限内的点P 坐标为_______________.【答案】7296,2525⎛⎫⎪⎝⎭【分析】分别求得直线1l 过定点(0,3)M ,直线1l 过定点(4,0)N ,且12l l ⊥,根据MP NP ⊥,求得点P 的轨迹方程22325(2)()24x y -+-=,得到(4,0),(0,3)A B ,联立方程组,求得4PA =,再结合两点间的距离公式和圆的方程,联立方程组,即可求得点P 的坐标.【详解】由题意,将直线1:30l x ay a +-=变形为(3)0x a y +-=,由030x y =⎧⎨-=⎩,解得03x y =⎧⎨=⎩,即直线1l 过定点(0,3)M ,同理可得直线1l 过定点(4,0)N ,且12l l ⊥, 设点P 的坐标为(,)x y ,则MP NP ⊥, 由(,3),(4,)MP x y NP x y =-=-,可得(,3)(4,)(4)(3)0MP NP x y x y x x y y ⋅=-⋅-=-+-=, 整理得22325(2)()24x y -+-=, 令0y =,可得4x =,令0x =,可得3y =,即(4,0),(0,3)A B , 所以AB 时点P 的轨迹圆的一条直径,则90APB ∠=, 由勾股定理,可得2225PA PB +=,联立方程组22125PA PB OA OB PA PB ⎧-=-=⎪⎨+=⎪⎩ ,解得4,3PA PB ==, 由于点P 在第一象限,则0,0x y >>,由两点间的距离公式,可得222(4)16PA x y =-+=,联立方程组()()22224163252240,0x y x y x y ⎧-+=⎪⎪⎛⎫-+-=⎨ ⎪⎝⎭⎪⎪>>⎩,解得7296,2525x y ==,即点P 的坐标为7296(,)2525. 故答案为:7296(,)2525.【点睛】方法点睛:本题解答的关键在于找出直线所过的顶点,以及垂直条件,求得点P 的轨迹方程,以及结合题设条件联立方程组进行求解.三、解答题17.若z 是关于x 的方程2x x 50++=的一个虚根,求z 的值.【分析】先设复数(),,z a bi a b R =+∈,根据实系数一元二次方程有虚根的情况及系数关系判断5z z ⋅=,得到22a b +,再计算z =即可【详解】设复数(),,z a bi a b R =+∈,因为z 是关于x 的方程2x x 50++=的一个虚根,所以其共轭复数z a bi =-也是该方程的根,根据两根之积5z z ⋅=,可知225a b +=,故z ==18.在平面直角坐标系xOy 中,抛物线()2:20C y px p =>的焦点为()1,0F ,准线为l ,P 为抛物线C 上一点,PA l ⊥,A 为垂足. (1)求抛物线C 的方程及准线l 的方程;(2)若直线AF 的斜率k =PF 的长. 【答案】(1)2:4C y x =,:1l x =-;(2)4.【分析】(1)由抛物线的焦点坐标可求得p 的值,可得出抛物线C 的方程,进而可求得抛物线C 的准线l 的方程;(2)利用斜率公式求出点A 的坐标,由PA l ⊥以及点P 在抛物线C 上可求得点P 的坐标,利用抛物线的定义可求得线段PF 的长.【详解】(1)由于抛物线()2:20C y px p =>的焦点为()1,0F ,则12p=,可得2p =,所以,抛物线C 的方程为24y x =,该抛物线的准线l 的方程为1x =-;(2)设点()1,A t -,则2tk ==-,可得t =,即点(1,A -,设点()00,P x y ,PA l ⊥,则0y =,20034y x ∴==,即点(3,P ,因此,014PF x =+=.【点睛】关键点点睛:本题考查利用抛物线的定义求焦半径,解题的关键就是求出点P 的坐标,注意到PA l ⊥,可以通过点A 与点P 之间的关系来求解. 19.已知点()3,1在双曲线()222:0C x y aa -=>上.(1)求正数a 的值;(2)求双曲线C 上的动点P 到定点()8,0A 的距离的最小值.【答案】(1)(2)【分析】(1)把点()3,1代入双曲线的方程,直接求出a 的值;(2)设点()00,P x y ,由两点的距离公式表示出2PA ,然后化简得关于0x 的二次函数,利用二次函数的性质求解最小值.【详解】(1)由题意,将点()3,1代入双曲线方程得,222318-==a ,又0a >,所以a =(2)由(1)知,228x y -=,设点()00,P x y ,则22008-=x y ,且0≤-x 或0x ≥则()()22222220000000888216562(4)+24=-+=-+-=-+=-PA x y x x x x x ,所以当04x =时,2PA 取得最小值为24,所以PA 的最小值为20.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||DM m DA =(0m >且1m ≠),当点A 在单位圆上运动时,记点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)判断曲线C 为何种圆锥曲线,并求其焦点坐标.【答案】(1)2221y x m+=(0m >且1m ≠);(2)当01m <<时,曲线C 是焦点在x轴上的椭圆,两焦点分别为(),);当1m 时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,,(.【分析】(1)首先设出点M 和点A 的坐标,利用||||DM m DA =,确定点M 和点A 坐标之间的关系,再利用点A 在单位圆221x y +=上运动,即可求得曲线C 的方程; (2)根据(1)中曲线C 的方程,分别分析01m <<和1m 两种情况下曲线C 为何种圆锥曲线,再根据曲线的方程求出焦点坐标. 【详解】(1)设00(,),(,)M x y A x y ,因为点M 和点A 满足||||DM m DA =(0m >且1m ≠),所以00,==x x y m y ①,又因为点A 在单位圆221x y +=上,所以22001x y +=②,将①代入②可得曲线C 的方程为2221y x m+=(0m >且1m ≠);(2)因为0m >且1m ≠,所以当01m <<时,曲线C 是焦点在x 轴上的椭圆,两焦点分别为(),);当1m 时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,,(.【点睛】关于动点轨迹方程的求解,一般比较常用的方法是定义法、代入法以及相关点法,关于定义法需要掌握几种曲线的定义表示并判断题干条件符合哪个曲线的定义;代入法则直接代入计算,但需要注意定义域;相关点法的应用则需要寻找不同动点之间的关系列式,然后写出轨迹方程.21.已知椭圆()2222:10x y a b a bΓ+=>>的左、右焦点分别为12F F 、,点()0,B b ,过点B 且与2BF 垂直的直线交x 轴负半轴于点D ,112DF F F = (1)求证:b =; (2)若过2,,B D F 三点的圆与直线:0l x y +=相交于,E F 两点,且EF =求Γ的方程;(3)若2a ,=过2F 且不与坐标轴垂直的直线与Γ交于,P Q 两点,点M 是点P 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得,,M Q N 三点共线?若存在,求出点N 的坐标;若不存在,请说明理由.【答案】(1)见解析;(2) 22186x y +;(3)存在,(4,0)N【分析】(1)根据直角三角形中,斜边上的中线等于斜边一半得到答案.(2) 过2,,B D F 三点的圆,半径为2c ,圆心(,0)c -,圆心到直线0x y +=的距离为:d =,再根据垂径定理得到答案. (3) 设直线为:1x ky =+ 112211(,),(,),(,)P x y Q x y M x y -,联立方程,根据韦达定理得到:122122634934k y y k y y k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,直线MQ l :212221()y y y x x y x x +=-+-,取0y =化简得到答案.【详解】(1)在2Rt BDF ∆中,112DF F F =,1F 是2DF 中点,故1212BF DF =14222a c c b =⨯=∴= (2) 过2,,B D F 三点的圆,半径为2c ,圆心(,0)c -圆心到直线0x y +=的距离为:d =根据垂径定理得到:222(2)c=+解得:c=根据(1)知:a b==Γ的方程为:22186x y+(3) 存在定点,(4,0)N22143x y+=,2(1,0)F,设直线为:1x ky=+112211(,),(,),(,)P x y Q x y M x y-221431x yx ky⎧+=⎪⎨⎪=+⎩得到:22(34)690k y ky++-=, 2F在椭圆内,一定有两个交点.故122122634934ky yky yk-⎧+=⎪⎪+⎨-⎪=⎪+⎩直线MQl:212221()y yy x x yx x+=-+-取0y=得到222121212212 2222212121()11 x x k y y ky ky y ky ky yx y x y kyy y y y y y---+++=-+=-++=+ +++12212181146ky y ky y k-=+=+=+-故存在定点(4,0)N【点睛】本题考查了椭圆方程,直线与椭圆的位置关系,定点问题,综合性大,技巧性强,意在考查学生的计算能力和综合应用能力.。
上海市上海中学2019-2020学年高二上学期期末数学试题
上海中学高二上期末数学试卷2020.01一、填空题1. 若复数()1231i z i +=-,则z =______.2. 抛物线2y x =的准线方程是______.3. 椭圆2236x y +=的焦距是______.4. 已知复数a ,b 满足集合{}{}2,,1a b a b -=+,则ab =______.5. 计算:239123410i i i i ++++⋅⋅⋅+=______.6. 已知抛物线C :24y x =,过焦点F 作直线l 与抛物线C 交于P 、Q 两点,则PQ 的取值范围是______.7. 已知P 为双曲线221x y -=右支上的一个动点,若点P 到直线2y x =+的距离大于m 恒成立,则实数m 的取值范围是______.8. 平面上一台机器人在运行中始终保持到点()2,0P -的距离比到点()2,0Q 的距离大2,若机器人接触不...到.过点)M 且斜率为k 的直线,则k 的取值范围是______.9. 1F ,2F 分别为椭圆C :()222210x y a b a b+=>>的左右焦点,P 为椭圆C 上一点,且1260F PF ∠=︒,若1F 关于12F PF ∠平分线的对称点在椭圆C 上,则椭圆的离心率是______.10. 已知一族双曲线n E :()22*,20192019nx y n N n -=∈≤,设直线2x =与n E 在第一象限内的交点为n A ,n A 在n E 的两条渐近线上的射影分别是n B ,n C ,记n n n A B C ∆的面积是n a ,则122019a a a ++⋅⋅⋅+=______. 11. 已知点()0,1P ,椭圆()2214x y m m +=>上两点A ,B 满足2AP PB =u u u r u u u r ,当m =______时,点B 横坐标的绝对值最大.12. 已知椭圆C :)222106x y m m+=>>左、右焦点分别为1F ,2F ,短轴的两个端点分别为1B ,2B ,点P 在椭圆C 上,且满足1212PF PF PB PB +=+,当m 变化时,给出下列四个命题:①点P 的轨迹关于y 轴对称;②存在m 使得椭圆C 上满足条件的点P 仅有两个;③OP 的最小值为2;④OP ,其中正确命题的序号是______.二、选择题13. “1k <-”是“方程221324x y k k +=++表示焦点在x 轴上的椭圆”的( )条件A. 充分非必要B. 必要非充分C. 充分必要D. 既非充分又非必要14. 双曲线221kx y -=的一条渐近线与直线210x y ++=垂直,则此双曲线的离心率是( )A. B.C.2D.215. 给出下列四个命题:①若复数1z ,2z 满足120z z -=,则12z z =;②若复数1z ,2z 满足1212z z z z +=-,则120z z ⋅=;③若复数z 满足22z z =-,则z 是纯虚数;④若复数z 满足z z =,则z 是实数,其中真命题的个数是( ) A. 1个B. 2个C. 3个D. 4个16. 已知F 为抛物线2y x =的焦点,点A ,B 在抛物线上且位于x 轴的两侧,且2OA OB ⋅=u u u r u u u r(其中O 是坐标原点),则ABO ∆与AFO ∆的面积之和的最小值是( )A. 2B. 3C.D.三、解答题17. 已知复数z 满足2274z z i -=+,求z .18. 已知复数()221iz i m i =++-(其中i 是虚数单位,m R ∈). (1)若复数z 是纯虚数,求m 的值;(2)求1z -的取值范围.19. 假定一个弹珠(设为质点P ,半径忽略不计)的运行轨迹是以小球(半径1R =)的中心F 为右焦点的椭圆C ,已知椭圆的右端点A 到小球表面最近的距离是1,椭圆的左端点B 到小球表面最近的距离是5..(1)求如图给定的坐标系下椭圆C 的标准方程;(2)弹珠由点A 开始绕椭圆轨道逆时针运行,第一次与轨道中心O发生变轨,变轨后的轨道是一条直线,称该直线的斜率k 为“变轨系数”,求k 的取值范围,使弹珠和小球不会..发生碰撞. 20. 已知曲线C的参数方程是2412x t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(参数t R ∈). (1)曲线C 的普通方程;(2)过点()2,1A 的直线与该曲线交于P ,Q 两点,求线段PQ 中点M 的轨迹方程. 21. 由半圆()2210x y y +=≤和部分抛物线()()210,0y a x y a =-≥>合成的曲线C 称为“羽毛球形线”,且曲线C 经过点()2,3M .(1)求a 的值;(2)设()1,0A ,()1,0B -,过A 且斜率为k 的直线与“羽毛球形线”相交于P ,Q ,Q 三点,是否存在实数k ,使得QBA PBA ∠=∠,若存在,求出k 的值;若不存在,请说明理由.22. 已知椭圆C :()222210x y a b a b +=>>经过点1,2M ⎛⎫ ⎪ ⎪⎝⎭,()0,1N -,直线l :y kx m =+与椭圆C 相交于A ,B 两点,与圆2223x y +=相切与点T . (1)求椭圆C 的方程;(2)以线段OA ,OB 为邻边作平行四边形OAPB ,若点Q 在椭圆C 上,且满足OP OQ λ=u u u r u u u r(O 是坐标原点),求实数λ的取值范围;(3)线段AT BT ⋅是否为定值,如果是,求AT BT ⋅的值;如果不是,求AT BT ⋅的取值范围.参考答案一、填空题1.2. 14x =-3. 44. 15. 56i +6. [)4,+∞7. (-∞8.9.310. 5052 11. 5 12. ①③【第9题解析】设1F 关于12F PF ∠平分线的对称点为'1F ,由题意及椭圆对称性,可知'11F PF ∆为等边三角形,'1PF x ⊥轴且经过2F ,∵122F F c =,∴122c PF PF a a +==⇒=. 【第10题解析】设()(),0n n n n A x y y >,其中222019n n nx y -=, n E 为等轴双曲线,其渐近线方程为y x =±,∴2n n n B A C π∠=,∴1122n n n n n a A B A C =⋅⋅=2248076n n x y n -==, ∴12201912201950580762a a a ++⋅⋅⋅+++⋅⋅⋅+==. 【第11题解析】设直线AB 的方程为()1x t y =-,()11,A x y ,()22,B x y ,由2AP PB =u u u r u u u r ,知122x x =-,()()()2222214844044x t y t x tx m t x y m⎧=-⇒+++-=⎨+=⎩, ∴()()122222222212222288444422244t t x x x x t t m t m t x x x x t t ⎧⎧+=-=-=⎪⎪++⎪⎪⇒⎨⎨--⎪⎪=-==⎪⎪++⎩⎩,①当0t =时,1m =,20x =; ②当0t ≠时,()()222222222264324414m t t xt t m t-==⇒+=+-+()236411mt m m -⇒=≠-, 此时()()2222364222213241mm m tm x t m ----==+-()22516109444m m m --+-+-==≤, 当5m =时,2x 取得最大值2;综上,5m =.【第12题解析】由题意,点P 为椭圆C :22216x y m +=与椭圆Γ:222166y x m+=-的交点(共4个),①正确;②错误;点P 靠近坐标轴时(0m →或m →OP 越大,点P 远离坐标轴时,OP 越小,易得23m =时,取得最小值,此时C :22163x y +=,Γ:22163y x +=,两方程相加得222222x y +=⇒=,即OP 的最小值为2,③正确;椭圆上的点到中心的距离小于等于a ,由于点P不在坐标轴上,∴OP <.二、选择题 13-16:BCBB【第15题解析】①④正确,②可利用向量理解,设1z 、2z 在复平面上对应点1Z 、2Z ,则120OZ OZ ⋅=u u u u r u u u u r,反例可以是11z =,2z i =;③的反例0z =. 【第16题解析】1,04F ⎛⎫⎪⎝⎭,设()11,A x y ,()22,B x y ()120,0y y ><,其中211x y =,222x y =, 121212222OA OB x x y y y y ⋅=⇒+=⇒=-u u u r u u u r,()21122212121*********1ABO yy S y y y y y y y y ∆==-=-,21111111012481AFO y y S y ∆==, ∴112199288ABO AFO y y S S y y ∆∆+=-=+3≥=. 三、解答题17. 32z i =+或12z i =-+.18. ()()211z m m i =++-,(1)12m =-;(2)1z -=5=≥. 19.(1)由题意,2462a c a C a c c ⎧-==⎧⇒⇒⎨⎨+==⎩⎩:2211612x y +=;(2)设()(),,0P x y x y >,联立2211612x y +=与2213x y +=,可求出()2,3P ,设直线方程为()32y k x -=-,即()320kx y k -+-=,弹珠和小球不会发生碰撞,说明圆心()2,0到直线()32kx y k -+-的距离大于圆半径1,1>,解得(k ∈-.20.(1)2212y x -=;(2)点差法:设()11,P x y ,()22,Q x y ,(),M x y ,其中122x x x +=,122y y y +=,()()2211121222221212y x x x x x y x ⎧-=⎪⎪⇒-+⎨⎪-=⎪⎩()()121212122PQ y y y y y y k x x -+-=⇒=-()121222x x x y y y +==+, 12MA y k x -=-,由PQ MA k k =,可得M 的轨迹方程为22240x x y y --+=. 21.(1)1a =.(2)由题意得PQ 方程为()1y k x =-,代入21y x =-得:210x kx k -+-=,所以1x =或1x k =-,所以点Q 的坐标为()21,2k k k --.PQ 方程()1y k x =-代入221x y +=得()22221210k x k x k +-+-=,所以1x =或2211k x k -=+,所以点P 的坐标为22212,11k k k k ⎛⎫-- ⎪++⎝⎭. 因为QBA PBA ∠=∠,所以BPBQ k k =-,即2222221111k k k k k kk --+=--++,即2210kk --=, 解得1k =(负值舍去).因此存在实数1k =,使QBA PBA ∠=∠. 22. 椭圆的内准圆(1)2212x y +=;(2)由直线l 与圆2223x y +=3=,即223220m k --=,设()11,A x y ,()22,B x y ,()00,Q x y ,()2222222124220x y k x kmx m y kx m ⎧+=⇒+++-=⎨=+⎩12221224122212km x x k m x x k ⎧+=-⎪⎪+⇒⎨-⎪=⎪+⎩()121222212my y k x x m k ⇒+=++=+, 由向量的平行四边形法则,知OP OA OB OQ λ=+=u u u r u u u r u u u r u u u r且0λ≠. (0λ=,即0m =时,A ,B 关于原点对称,无法构成平行四边形OAPB )∴()()1202012002412212km x x x x k y y m y y k λλλλ⎧-⎧+=⎪⎪=+⎪⎪⇒⎨⎨+⎪⎪==⎪⎪+⎩⎩, ∵点Q 在椭圆上,∴()()222242221212km m k k λλ⎡⎤⎡⎤-⎢⎥⎢⎥+=++⎢⎥⎢⎥⎣⎦⎣⎦,化简得()222412m k λ=+① 由223220m k --=,得22232k m =-,代入①式,得2222441313m m m λ==--,由2320m -≥,得223m ≥,∴224483313m m <≤-,即24833λ<≤② 又0∆>,得2212k m +>③,由①③,得2224m m λ>,∵0m ≠,∴204λ<<④, 由②④,得24833λ<≤,解得3333λ⎡⎛∈--⎪ ⎢⎪ ⎣⎭⎝⎦U ;(3)由(2)知,2222212i m x x k -=+,而()()()2212121212y y kx m kx m k x x km x x m =++=+++222212m k k-=+, ∴2212122322012m k OA OB x x y y k--⋅=+==+u u u r u u u r ,∴OA OB ⊥u u u r u u u r , ∴223Rt AOT Rt OBT AT BT OT∆∆⇒⋅==:.。
上海市2019年高二上学期期末数学试卷-Word版含解析
上海市2019年高二上学期期末数学试卷-Word版含解析___高二(上)期末数学试卷一、填空题(共48分,每空4分)1.抛物线C的方程为y = 3 - x^2;2.实数k的取值范围为k ≤ 1;3.参数方程为x = a cosθ,y = b sinθ;4.普通方程为(x^2/4) + (y^2/9) = 1;5.实数a的取值范围为2/3 ≤ a ≤ 3/2;6.动圆圆心的轨迹方程为(x-2)^2 + y^2 = 1;7.焦点坐标为(√(k+2),0)和(-√(k+2),0);8.2x+3y的最大值为3√2;9.直线的方程为y = x - 1;10.实数a的取值范围为0 < a < √2;11.y = x^2/4;12.椭圆C的最小值为2;13.2个;14.充分必要条件;15.2条;16.双曲线的一部分。
二、选择题(共20分,每题5分)13.B;14.A;15.B;16.B。
三、解答题(共52分,8+10+10+12+12)17.已知抛物线C:y=2x2和直线l:y=kx+1,O为坐标原点.1)证明:l与C必有两交点。
解:将直线l代入抛物线C的方程中,得到2x^2 - kx - 1 + 2 = 0.由于k不为0,所以该方程必有两个实根,因此直线l与抛物线C必有两个交点。
2)设l与C交于A,B两点,且直线OA和OB斜率之和为1,求k的值。
解:由于A和B在抛物线C上,所以它们的纵坐标分别为2x_A^2和2x_B^2,横坐标分别为x_A和x_B。
根据题意,有(x_A + x_B)/2 = 1,即x_A + x_B = 2.又根据直线OA和OB斜率之和为1,有(x_A +x_B)/(2x_Ax_B) = 1,即x_Ax_B = (x_A + x_B)/2 = 1.将x_A和x_B代入x_Ax_B = 1,得到x_A = √2,x_B = 1/√2.将x_A和x_B代入2x^2 - kx - 1 + 2 = 0,得到k = 2√2 - 1.18.斜率为1的动直线L与椭圆(x^2/4) + (y^2/9) = 1相交于A、B两点,过点A作椭圆的切线,交椭圆于点M,求点M的轨迹方程。
上海市浦东新区2019-2020学年高二数学上学期期末考试试题 (含解析)
an
满
1,1 n 2019
(
1 2
)n
,
n
2020
,
①当1 n 2019 时,
lim
n
an
lim1
n
0
②当 n 2020 时,
当
n
为奇数时,
lim
n
an
1 2n
0
当
n
为偶数时,
lim
n
an
1 2n
0
综上所述,
lim
n
an
0
.
故选:B
【点睛】本题主要考查数列的极限求法,注意运用常见数列的极限.考查计算能力,属于基础
12.若实数 x, y 满足 x2 y2 1 ,则 x2 y2 6x 8 y 25 的取值范围为_____.
【答案】4, 6
【解析】
【分析】
依题意,本题求圆
x2
y2
1
上的点到点
3,
4 的距离的取值范围,先求出圆心到点
3,
4 ,从
而可得出圆 x2 y2 1 上的点到点 3, 4的最小距离和最大距离,进而得出取值范围.
【解析】
【分析】
先求出 AB 的中点 M 的坐标,再求出直线 AB 的斜率,根据两直线垂直时斜率乘积为 1得到
垂直平分线的斜率,最后用点斜式公式即可求出直线方程.
【详解】解:设 M
x,
的坐标为
y ,
则
x=
1+ 3 2
=
2
,
y
=
2 +0 2
=1
M
,所以
2,1 .
因为直线
AB
的斜率为
上海市2019-2020年度高二上学期期末数学试卷(理科)D卷
上海市2019-2020年度高二上学期期末数学试卷(理科)D卷姓名:________ 班级:________ 成绩:________一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (共12题;共24分)1. (2分)下列语句中不是命题的为()A . 向英雄致敬B . 闪光的东西并非都是金子C . 如果一个人骄傲自满,他就要落后D . 3-5=-12. (2分)已知椭圆的两个焦点分别为、,.若点在椭圆上,且,则点到轴的距离为()A .B .C .D .3. (2分)命题“”的否定是()A .B .C .D .4. (2分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线的准线交于A,B两点,,则C的实轴长为()A .B .C . 4D . 85. (2分)已知命题p:,则是()A .B .C .D .6. (2分) (2015高一上·深圳期末) 在正四面体S﹣ABC中,若P为棱SC的中点,那么异面直线PB与SA 所成的角的余弦值等于()A .B .C .D .7. (2分)角的终边经过点A,且点A在抛物线的准线上,则()A .B .C .D .8. (2分) (2019高二上·柳林期末) 已知直线a、b,平面α、β,则a∥α的一个充分条件是()A . a∥β,β∥αB . a⊥b,b⊥αC . a∥b,b∥α,a⊄αD . b⊂α,a∥b9. (2分) (2016高一下·肇庆期末) 在△ABC中,已知| |=| |=4且• =8,则该三角形是()A . 等边三角形B . 等腰直角三角形C . 等腰三角形D . 不能判断形状10. (2分) (2018高三上·山西期末) 已知双曲线的焦点到渐进线的距离等于实半轴长,则该双曲线的离心率为()A .B . 2C .D .11. (2分) (2016高二上·怀仁期中) 如图,在正方体AC1中,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A . 点H是△A1BD的垂心B . AH的延长线经过点C1C . AH垂直平面CB1D1D . 直线AH和BB1所成角为45°12. (2分) (2018高三上·西安模拟) 是双曲线上一点,双曲线的一条渐近线为分别是双曲线的左、右焦点,若,则()A . 9B . 2C . 10D . 2或10二、填空题:. (共4题;共4分)13. (1分) (2015高二上·莆田期末) 已知 =(2,﹣3,1), =(2,0,3),则• =________.14. (1分) (2017高二上·哈尔滨月考) 已知椭圆方程为,直线与该椭圆的一个交点在轴上的射影恰好是椭圆的右焦点,则 ________.15. (1分) (2016高二上·大庆期中) 已知双曲线 =1上一点M的横坐标为4,则点M到左焦点的距离是________.16. (1分) (2017高二下·牡丹江期末) 设命题:n N, > ,则为________三、解答题:解答应写出文字说明、证明过程或演算步骤. (共4题;共40分)17. (10分)(2019高三上·上海月考) 已知集合,设,,若是成立的充分不必要条件(1)求出集合(2)求实数的取值范围18. (10分) (2017高三下·漳州开学考) 已知椭圆C: =1(a>b>0)的离心率为,且过定点M(1,).(1)求椭圆C的方程;(2)已知直线l:y=kx﹣(k∈R)与椭圆C交于A、B两点,试问在y轴上是否存在定点P,使得以弦AB 为直径的圆恒过P点?若存在,求出P点的坐标和△PAB的面积的最大值,若不存在,说明理由.19. (10分)(2017·厦门模拟) 在平面直角坐标系xOy中,△ABC的周长为12,AB,AC边的中点分别为F1(﹣1,0)和F2(1,0),点M为BC边的中点.(1)求点M的轨迹方程;(2)设点M的轨迹为曲线T,直线MF1与曲线T另一个交点为N,线段MF2中点为E,记S=S +S ,求S的最大值.20. (10分) (2016高二上·安徽期中) 如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2 .M 是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (共12题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题:. (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题:解答应写出文字说明、证明过程或演算步骤. (共4题;共40分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、。
2019-2020学年高二上学期期末考试数学试题(解析版)
2019-2020学年高二上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.已知等比数列中,,,则该数列的公比q为A. 2B. 1C.D.【答案】D【解析】解:等比数列中,,,该数列的公比.故选:D.根据等比数列的通项公式,利用,即可求出q的值.本题考查了等比数列的通项公式的应用问题,是基础题目.2.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为A. B. C. D.【答案】B【解析】解:因为抛物线的准线方程为,则由题意知,点是双曲线的左焦点,所以,又双曲线的一条渐近线方程是,所以,解得,,所以双曲线的方程为.故选:B.由抛物线标准方程易得其准线方程为,而通过双曲线的标准方程可见其焦点在x 轴上,则双曲线的左焦点为,此时由双曲线的性质可得a、b的一个方程;再根据焦点在x轴上的双曲线的渐近线方程为,可得,则得a、b 的另一个方程那么只需解a、b的方程组,问题即可解决.本题主要考查双曲线和抛物线的标准方程与几何性质.3.在三棱柱中,D是的中点,F是的中点,且,则A. ,B. ,C. ,D. ,【答案】A【解析】解:根据向量加法的多边形法则以及已知可得,,,,故选:A.根据向量加法的多边形法则可得,,从而可求,.本题主要考查了平面向量加法的三角形法则及多边形法则的应用,解题的关键是要善于利用题目中正三棱柱的性质,把所求的向量用基本向量表示.4.已知点在函数的图象上,则数列的前n项和的最小值为A. 36B.C. 6D.【答案】B【解析】解:点在函数的图象上,则,,当时,取得最小值为.故选:B.点在函数的图象上,的,,由二次函数性质,求得的最小值本题考查了等差数列前n项和的最小值,属于基础题.5.“”是“方程表示的曲线是焦点在y轴上的椭圆”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:若方程表示的曲线是焦点在y轴上的椭圆,则,即,解得,即“”是“方程表示的曲线是焦点在y轴上的椭圆”的充要条件,故选:C.根据椭圆的性质,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据椭圆方程的性质是解决本题的关键.6.下列结论错误的是A. 命题p:“,使得”,则¬:“,”B. “”是“”的充分不必要条件C. 等比数列2,x,8,中的D. 已知a,,,则的最小值为8.【答案】D【解析】解:对于命题p:,,则¬:,使得,正确;对于B,“”“,或”,故“”是“”的充分不必要条件,故正确;对于C,等比数列2,x,8,中的,正确;对于D,由于a,,,则,当且仅当时,,取等号,所以D不正确.故选:D.对于A:利用命题的否定定义即可得出;根据充要条件的定义,可判断B;利用等比数列的通项公式求解即可判断C的正误;所求式子乘以1,而1用代换;判断D的正误;本题以命题的真假判断与应用为载体,考查了四种命题,命题的否定,充要条件等知识点,难度中档.7.若不等式对于一切恒成立,则a的最小值是A. 0B.C.D.【答案】C【解析】解:不等式对于一切恒成立,即有对于一切恒成立.由于的导数为,当时,,函数y递减.则当时,y取得最小值且为,则有,解得.则a的最小值为.故选:C.由题意可得对于一切恒成立运用函数的导数判断右边的单调性,求得最小值,令不大于最小值即可.本题考查不等式的恒成立问题,考查函数的单调性的运用,考查运算能力,属于中档题和易错题.8.设函数在R上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是A. 函数有极大值和极小值B. 函数有极大值和极小值C. 函数有极大值和极小值D. 函数有极大值和极小值【答案】D【解析】解:由函数的图象可知,,,并且当时,,当,,函数有极大值.又当时,,当时,,故函数有极小值.故选:D.利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.本题考查函数与导数的应用,考查分析问题解决问题的能力,函数的图象的应用.9.如图,长方体中,,点E,F,G分别是,AB,的中点,则异面直线与GF所成的角是A.B.C.D.【答案】A【解析】解:由题意:是长方体,E,F,G分别是,AB,的中点,连接,,为异面直线与GF所成的角.连接,在三角形中,,,,,.,即异面直线与GF所成的角为.故选:A.异面直线所成的角通过平移相交,找到平面角,转化为平面三角形的角求解,由题意:E,F,G分别是,AB,的中点,连接,,那么就是异面直线与GF 所成的角.本题考查两条异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.10.已知a,,且,则的取值范围是A. B. C. D.【答案】A【解析】解:a,,且,设,,则,即为,由a,b为二次方程的两根,可得,解得,则的取值范围是.故选:A.a,,设,,,由a,b为二次方程的两根,运用判别式法,解二次不等式即可得到所求范围.本题考查了换元法和构造法、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.11.已知函数的定义域为R,并且满足,且当时其导函数满足2f{{'}}(x)'/>,若则A. B.C. D.【答案】C【解析】解:函数对定义域R内的任意x都有,关于直线对称;又当时其导函数满足,当时,,在上的单调递增;同理可得,当时,在单调递减;,,,又,,在上的单调递增;故选:C.由,可知函数关于直线对称,由,可知在与上的单调性,从而可得答案.本题考查抽象函数及其应用,考查导数的性质,判断在与上的单调性是关键,属于中档题.12.已知点,分别是双曲线的左,右焦点,过且垂直于x轴的直线与双曲线交于M,N两点,若,则该双曲线的离心率e的取值范围是A. B. C. D.【答案】B【解析】解:当时,,得,则,则,则,,,若,则只要即可,则,即,即,则,即,则,得,,,故选:B.求出交点M,N的坐标,若,则只要即可,利用斜率公式进行求解即可.本题主要考查双曲线离心率的计算,根据向量数量积的关系转化为求是解决本题的关键考查学生的转化能力.二、填空题(本大题共4小题,共20.0分)13.已知向量,若,则k的值为______.【答案】【解析】解:;;;解得.故答案为:.可求出,根据即可得出,进行数量积的坐标运算即可求出k的值.考查向量垂直的充要条件,向量坐标的加法和数量积运算.14.若“”是“”的必要不充分条件,则a的取值范围是______.【答案】或【解析】解:若“”是“”表示,则,,则,即实数a的取值范围是,故答案为:根据必要不充分条件的定义转化为集合真子集关系进行求解即可.本题主要考查充分条件和必要条件的应用,结合子集关系是解决本题的关键.15.若数列的前n项和为,则数列的通项公式是______.【答案】【解析】解:当时,,解得当时,,整理可得,即,故数列从第二项开始是以为首项,为公比的等比数列,故当时,,经验证当时,上式也适合,故答案为:把代入已知式子可得数列的首项,由时,,可得数列为等比数列,且公比为,代入等比数列的通项公式分段可得答案.本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.16.设点和点分别是函数和图象上的点,且,,若直线轴,则M,N两点间的距离的最小值为______.【答案】2【解析】解:当时,0'/>,函数在上单调递增.点和点分别是函数和图象上的点,且,,若直线轴,则,即,则M,N两点间的距离为.令,,则,,故在上单调递增,故,故在上单调递增,故的最小值为,即M,N两点间的距离的最小值为2,故答案为2.求出导函数,根据题意可知,令,求出其导函数,进而求得的最小值即为M、N两点间的最短距离.本题主要考查了利用函数的导数求出函数的单调性以及函数的极值问题,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知是首项为1的等比数列的前n项的和,,,成等差数列,求的值;若,求.【答案】解:由题意,,显然,分,分解得分,分,分两式相减,得分分,分分【解析】利用已知条件,列出方程求解的值;化简数列的表达式,利用错位相减法求解数列的和即可.本题考查数列求和,等差数列以及等比数列的综合应用,考查转化思想以及计算能力.18.已知函数在点处的切线方程是.求实数a,b的值;求函数在上的最大值和最小值其中e是自然对数的底数.【答案】解:因为,,分则,,函数在点处的切线方程为:,分直线过点,则由题意得,即,分由得,函数的定义域为,分,,0⇒x > 2'/>,在上单调递减,在上单调递增分故在上单调递减,在上单调递增,分在上的最小值为分又,,且.在上的最大值为分综上,在上的最大值为,最小值为分【解析】求出函数的导数,通过切线方程棱长方程即可求实数a,b的值;求出函数的导数,判断函数的单调性,然后求解函数的极值,然后求函数在上的最大值和最小值.本题考查函数的导数的应用,切线方程以及函数的最值的求法,考查转化思想以及计算能力.19.如图所示,在底面为平行四边形的四棱锥中,,平面ABCD,且,,点E是PD的中点.求证:平面AEC;求二面角的大小.【答案】解:平面ABCD,AB,平面ABCD,,且.以A为坐标原点建立如图所示空间直角坐标系;分证明:,0,,,,设平面AEC的法向量为,则,取,得.又2,,所以,,又平面AEC,因此:平面分平面BAC的一个法向量为,由知:平面AEC的法向量为,设二面角的平面角为为钝角,则,得:所以二面角的大小为分【解析】由已知得,,且以A为坐标原点建立如图所示空间直角坐标系;设平面AEC的法向量为,由,得平面AEC 求出平面BAC的一个法向量为,由知:平面AEC的法向量为,设二面角的平面角为为钝角,,可得二面角的大小本题考查了空间线面平行的判定,及向量法求二面角,属于中档题.20.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知米,米.Ⅰ要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?Ⅱ当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.【答案】解:Ⅰ设DN的长为米,则米,由得又得解得:或即DN的长取值范围是Ⅱ矩形花坛的面积为当且仅当,即时,矩形花坛的面积最小为24平方米.【解析】Ⅰ设DN的长为米,则米,表示出矩形的面积,利用矩形AMPN的面积大于32平方米,即可求得DN的取值范围.化简矩形的面积,利用基本不等式,即可求得结论.本题考查根据题设关系列出函数关系式,并求出处变量的取值范围;考查利用基本不等式求最值,解题的关键是确定矩形的面积.21.已知椭圆的右焦点F与抛物线焦点重合,且椭圆的离心率为,过x轴正半轴一点且斜率为的直线l交椭圆于A,B两点.求椭圆的标准方程;是否存在实数m使以线段AB为直径的圆经过点F,若存在,求出实数m的值;若不存在说明理由.【答案】解:抛物线的焦点是,,,又椭圆的离心率为,即,,则故椭圆的方程为;分由题意得直线l的方程为,由,消去y得,由,解得.又,.设,,则,.分,,分分若存在m使以线段AB为直径的圆经过点F,则必有,即,分解得或又,.即存在使以线段AB为直径的圆经过点分【解析】由抛物线得焦点坐标,结合已知条件及椭圆的离心率可求出c,a 的值,由,求出b,则椭圆的方程可求;由题意得直线l的方程为,联立,消去y得,由,解得m的范围,设,,则,,求出,由,,求出,若存在m使以线段AB为直径的圆经过点F,则必有,求出实数m的值即可.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、数量积运算,考查了推理能力和计算能力,是中档题.22.已知函数,其中e为自然对数的底数,Ⅰ判断函数的单调性,并说明理由Ⅱ若,不等式恒成立,求a的取值范围.【答案】解:Ⅰ由,得,当时,,为R上的减函数;当时,令,得,若,则,此时为的单调减函数;若,则,此时为的单调增函数.综上所述,当时,为R上的减函数;当时,若,为的单调减函数;若,为的单调增函数.Ⅱ由题意,,不等式恒成立,等价于恒成立,即,恒成立.令,则问题等价于a不小于函数在上的最大值.由,函数在上单调递减,令,,.在上也是减函数,在上也是减函数,在上的最大值为.故,不等式恒成立的实数a的取值范围是.【解析】Ⅰ求出原函数的导函数,然后对a分类,当时,,为R上的减函数;当时,由导函数为0求得导函数的零点,再由导函数的零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;Ⅱ,不等式恒成立,等价于恒成立,分离参数a,可得恒成立令,则问题等价于a不小于函数在上的最大值,然后利用导数求得函数在上的最大值得答案.本题考查利用导数研究函数的单调性,考查函数最值的求法,训练了利用分离变量法求函数的最值,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄浦区高二上期末数学试卷
2020.1
一、填空题
1.已知点(1,2)(3,4)A B --、,则向量BA =
.
2.计算1002
2
22lim 100n n n n
→∞-=-.
3.已知直线l 经过(0,1)(1,2)P Q -、两点,则直线l 的一个法向量是
(答案不唯一).
4.已知直线:20l x ay +-=经过圆22:2430C x y x y +-+-=的圆心,则直线l 的倾斜角的大小是
(结果用反三角函数值表示).
5.已知向量(1,1) (1,1)αβ=-=-
、
,则向量α
在向量β 方向上的投影的数值是.6.已知直线1:210l ax y -+=、2:(1)30l x a a y ++-=,若12l l ⊥,则实数a =.7.已知数列{}()n a n *∈N 满足11a =,且11
n n n
a a n +=
+,则通项公式n a =.
8.若等比数列{}()n a n *∈N 各项的和为4,则首项1a 的取值范围是
.
9.过点(2,2)P -作直线l 与圆22:(1)(1)2C x y ++-=相切,则直线l 的一般式方程是
.
10.已知等差数列{}()n a n *∈N 中,若10100a =,则等式12122019n n
a a a a a a -+++=+++⋯⋯(2019,)n n *<∈N 恒成立;运用类比思想方法,可知在等比数列{}()n
b n *∈N 中,若1001b =,
则与此相应的等式
恒成立.
11.已知点(,0)(0,)A a B b 、,椭圆22
22:1(0)x y C a b a b
+=>>经过点(2,D -,点F 为椭圆
的右焦点,若FA B △的一个内角为120︒,则椭圆C 的方程是
.
12.已知点(1,0)M -、(1,0)N ,若直线l 的图像上存在点P ,使得||||4PM PN +=成立,则说直线l 是“T 型直线”.给出下列直线:(1):20l y +=;
(2):250l x -=;
(3):240l x y --=;
(4):330l x y ++=;(5):(21)10l m x y +++=(常数m ∈R ).其中代表“T 型直线”的序号是
.(要求写出所有T 型直线的序号)
二、选择题
13.平面直角坐标系上动点(,)M x y 6+=,则动点M 的轨迹是().
A .直线
B .线段
C .圆
D .椭圆
14.已知1111
()1()23313
n n f n n *=+
++++∈-N ⋯,记()(1,)P f k k k *=∈N ≥,若(1)f k P Q +=+,则Q =().
A .1
1
3k +B .11
11
31
3k k +++-C .
111111
3132313k k k k ++++++++-⋯D .
1
111
31323k k k +++++15.已知a ∈R ,若不论a 为何值时,直线:(12)(32)0l a x a y a -++-=总经过一个定点,则这个定点的坐标是(
).A .(2,1)
-B .(1,0)
-C .21
(,77
-D .12(,)
77
-16.已知平面直角坐标系内曲线1:(,)0C F x y =,曲线200:(,)(,)0C F x y F x y -=,若点00(,)P x y 不在曲线1C 上,则下列说法正确的是(
).
A .曲线1C 与2C 无公共点
B .曲线1
C 与2C 至少有一个公共点C .曲线1C 与2C 至多有一个公共点
D .曲线1C 与2C 的公共点的个数无法确定
三、解答题
17.已知向量(1,1) (0,1)αβ=--=
、
.(1)若向量()()t t αβαβ⋅++⋅∥
,求实数t 的值;
(2)若向量(,)c x y = 满足(1)c y x αβ=-⋅+-⋅ ,求||c
的值.
18.已知(1,1)(2,2)(3,1)M N P -、、,圆C 经过M N P 、、三点.(1)求圆C 的方程,并写出圆心坐标和半径的值;
(2)若过点(1,1)Q 的直线l 与圆C 交于A B 、两点,求弦A B 的长度||A B 的取值范围.
19.已知数列{}n a 满足1a a =,121()n n a a n *+=+∈N .(1)若数列{}n a 是等差数列,求通项公式n a ;
(2)已知2a =,求证数列{}1n a +是等比数列,并求通项公式n a .
20.已知各项为正数的数列{}n a 的前n 项和为n S ,且1()n a a n *=+∈N .(1)求1a 的值,并求1n a +的解析式(用含n a 的式子表示);
(2)若对于一切正整数n ,有3n n S a λ+≤恒成立,求实数λ的取值范围.
21.已知直线1:4l x =,点(1,0)F ,点(,)M x y 是平面直角坐标系内的动点,且点M 到直线1l 的距离是点M 到点F 的距离的2倍.记动点M 的轨迹为曲线C .
(1)求曲线C 的方程;
(2)过点F 的直线
2l 与曲线C 交于A B 、两点,若OA B △(O 是坐标系原点),求直线2l 的方程;
(3)若(2)中过点F 的直线2l 是倾斜角不为0的任意直线,仍记2l 与曲线C 的交点为A B 、,设点G 为线段A B 的中点,直线OG 与直线1l 交于点D ,求DFB ∠的大小.。