信号分析与处理_习题答案
信号分析与处理答案第二版完整版
信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。
解已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
信号分析与处理答案第二版完整版
信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。
解已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
南京理工大学研究生课程信号分析与处理作业答案
1. 证明周期信号)(t f 的傅里叶级数可表示为如下指数形式)()(11∑∞-∞==n t jn e n F t f ωω其中 ∞-∞==⎰-,...,,)(1)(011n dt e t f T n F Tt jn ωω证明:)( 22212221)22(21)sin cos (21)(11111111110110101110∑∑∑∑∑∑∑∞-∞=∞=∞--=∞=--∞--=∞=-∞==-+-+=-+++=-+++=++=n t jn n tjn n n tjn n n n n tjn n n tjn n n n n tjn n n t jn n n n n ne n F e jb a e jb a a e jb a e jb a a e jb a e jb a a t n b t n aa t f ωωωωωωωωωω 当0=n 时⎰⎰=⨯==TTdt t f T dt t f Ta F 00)(1)(22121)0(当0≠n 时()dte tf Tdt t n j t n t f Tdt t n t f jdt t n t f T jb a n F T tjn TTTn n ⎰⎰⎰⎰-=-=⎥⎦⎤⎢⎣⎡-⨯=-=0011010111)(1sin cos )(1sin )(cos )(2212)(ωωωωωω2. 证明在能量误差最小准则下,用)sin cos (211110t n q t n pp n Nn nωω∑=++近似表示周期函数)(t f ,则N p p p ,...,,10和N q q ,...,1如何取值? 能量误差最小,即min )sin cos (21)(021110=⎥⎦⎤⎢⎣⎡+--⎰∑=dt t n q t n p p t f Tn Nn n ωω 0)sin cos (21)(021110=⎥⎦⎤⎢⎣⎡+--∂∂⎰∑=dt t n q t n p p t f p Tn N n n nωω 0cos )sin cos (21)(2101110=⎥⎦⎤⎢⎣⎡+--⎰∑=tdt n t n q t n p p t f Tn Nn n ωωωn TTn p Tdt t n p t n t f 2cos cos )(0121==⎰⎰ωω dt t n t f T p Tn ⎰=01cos )(2ω,N n ...,2,1=同理dt t n t f Tq Tn ⎰=01sin )(2ω,N n ...,2,1= 3. 证明:①实信号频谱共轭对称性⎰∞∞--=dt e t f F t j ωω)()()()(**)(ωω-=⎪⎪⎭⎫⎝⎛=⎰∞∞---F dt e t f t j②具有共轭对称频谱特性的信号一定是实信号[]⎰⎰∞∞-∞∞--+==ωωωωωωωd eF F d eF t f tj tj )()(21)()(*⎰⎰∞∞-∞∞--+=ωωωωωωd e F d eF tj tj )(21)(21*⎰∞∞--+=ωωωd eF t f tj )(21)(21*[])()(21)(21)(21**t f t f d eF t f tj +=⎪⎪⎭⎫ ⎝⎛+=⎰∞∞-ωωω )()(*t f t f ≡4. 设)(t x 为因果信号,即0<t 时,0)(=t x 。
信号分析与处理课后习题答案
信号分析与处理课后习题答案第五章 快速傅里叶变换1.如果一台通用计算机的速度为平均每次复乘需要50us ,每次复加需要10us ,用来就散N=1024点的DFT ,问:(1)直接计算需要多少时间?用FFT 计算呢?(2)照这样计算,用FFT 计算快速卷积对信号进行处理是,估计可实现实时处理的信号最高频率? 解:分析:直接利用DFT 计算:复乘次数为N 2,复加次数为N(N-1);利用FFT 计算:复乘次数为20.5log N N ,复加次数为2log N N ;(1) 直接DFT 计算:复乘所需时间2215010245052.4288T N us us s =⨯=⨯=复加所需时间2(1)101024(10241)1010.47552T N N us us s =-⨯=-⨯= 所以总时间1262.90432DFT T T T s =+=FFT 计算:复乘所需时间3220.5log 500.51024log 1024500.256T N N us us s =⨯=⨯⨯⨯= 复加所需时间422log 101024log 1024100.1024T N N us us s =⨯=⨯⨯= 所以总时间为340.3584FFT T T T s =+= (2) 假设计算两个N 长序列1()x n 和2()x n 的卷积计算过程为如下:第一步:求1()X k ,2()X k ;所需时间为2FFT T ⨯第二步:计算12()()()X k X k X k =•,共需要N 次复乘运算所需时间为501024500.0512To N us us s =⨯=⨯=第三步:计算(())IFFT X k ,所需时间为FFT T所以总时间为230.35840.0512 1.1264FFT T T To s s s =⨯+=⨯+= 容许计算信号频率为N/T=911.3Hz2.设x(n)是长度为2N 的有限长实序列,()X k 为x(n)的2N 点得DFT 。
信号分析与处理答案(苪坤生 潘孟贤 丁志中 第二版)习题答案
第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。
(1) )()1(31)(n x n y n y =--解 当激励为)(n δ时,响应为)(n h ,即:)()1(31)(n n h n h δ+-=由于方程简单,可利用迭代法求解:1)0()1(31)0(=+-=δh h ,31)0(31)1()0(31)1(==+=h h h δ,231)1(31)2()1(31)2(⎪⎭⎫ ⎝⎛==+=h h h δ…,由此可归纳出)(n h 的表达式:)()31()(n n h n ε=利用阶跃响应和冲激响应的关系,可以求得阶跃响应:)(])31(2123[311)31(1)31()()(10n k h n s n n k nk nk ε-=--===+=-∞=∑∑(2) )()2(41)(n x n y n y =--解 (a)求冲激响应)()2(41)(n n h n h δ=--,当0>n 时,0)2(41)(=--n h n h 。
特征方程0412=-λ,解得特征根为21,2121-==λλ。
所以: n n C C n h )21()21()(21-+= …(2.1.2.1)通过原方程迭代知,1)0()2(41)0(=+-=δh h ,0)1()1(41)1(=+-=δh h ,代入式(2.1.2.1)中得:121=+C C0212121=-C C 解得2121==C C , 代入式(2.1.2.1):0,)21(21)21(21)(>-+=n n h n n …(2.1.2.2)可验证)0(h 满足式(2.1.2.2),所以:)(])21()21[(21)(n n h n n ε-+=(b)求阶跃响应通解为 n n c C C n s )21()21()(21-+=特解形式为 K n s p =)(,K n s p =-)2(,代入原方程有 141=-K K , 即34=K完全解为34)21()21()()()(21+-+=+=n n p c C C n s n s n s通过原方程迭代之1)0(=s ,1)1(=s ,由此可得13421=++C C134212121=+-C C 解得211-=C ,612=C 。
信号分析与处理课程习题2参考解答-2010(共5篇)
信号分析与处理课程习题2参考解答-2010(共5篇)第一篇:信号分析与处理课程习题2参考解答-2010P57-101Ω-j52-j5Ω(1)方法1:先时移→F[x(t-5)]=X(Ω)e,后尺度→F[x(2t-5)]=X()eΩt05Ω-j-j1Ω1Ω方法2:P40时移+尺度→F[x(at-t0)]=X()ea→F[x(2t-5)]=X()e2 |a|a221Ω-j(2)方法2:P40时移+尺度→F[x(at-t0)]=X()e|a|aΩt0aΩ→F[x(-t+1)]=X(-Ω)ejΩ(3)P42频域卷积定理→F[x1(t)⋅x2(t)]=X1(Ω)*X2(Ω)2π→F[x(t)⋅cos(t)]=X(Ω)*[πδ(Ω+1)+πδ(Ω-1)]=X(Ω+1)+X(Ω-1)2π22P57-12F[x(t)]=⎰x(t)e-∞∞-jΩtdt=⎰τ-2E(t+)eτ2ττdt+⎰22Eτ8ωττωτ(-t+)e-jΩtdt=2sin2()=Sa2()τ2424ωτP57-13假设矩形脉冲为g(t)=u(t+)-u(t-),其傅里叶变换为G(Ω),则22F[x(t)]=F[E⋅g(t+)-E⋅g(t-)]=E⋅G(Ω)eEΩτ=⋅G(Ω))2j2P57-15ττττjΩτ-E⋅G(Ω)e-jΩτ=E⋅G(Ω)(ejΩτ-e-jΩτ)图a)X(Ω)=|X(Ω)|e-1jΩ⎧AejΩt0,|Ω|<Ω0=⎨|Ω|>Ω0⎩0,→x(t)=F[X(Ω)]=2π⎰Ω0AejΩt0ejΩtdΩ=AΩ0Asin(Ω0(t+t0))=Sa(Ω0(t+t0))π(t+t0)π图b)X(Ω)=|X(Ω)|ejΩ⎧-jπ⎪Ae,-Ω0<Ω<0⎪jπ⎪=⎨Ae2,0<Ω<Ω0⎪0,|Ω|>Ω0⎪⎪⎩→x(t)=F[X(Ω)]=2π-1⎰-Ω0Ae-jπejΩt1dΩ+2π⎰Ω0Ae2ejΩtdΩ=jπA2A2Ω0t(cos(Ω0t-1))=-sin()πtπt2第二篇:高频电子信号第四章习题解答第四章习题解答4-1 为什么低频功率放大器不能工作于丙类?而高频功率放大器则可工作于丙类?分析:本题主要考察两种放大器的信号带宽、导通角和负载等工作参数和工作原理。
信号分析与处理答案及考点提要
令y(n) = x1(n) + jx2(n)
3.解:(1)直接-I型结构:
(2)直接-II型结构:
(3)级联型结构:
(4)并联型结构
4.解:
(1)求阶数 。
带入 的计算公式得:
,所以取 =5
(2)求归一化系统函数 。由阶数 =5直接查表可得到5阶巴特沃斯归一化低通滤波器系统函数 为:
(3)去归一化,由归一化系统函数 得到实际滤波器系统函数 。
Y(k) = DFT[y(n)],k = 0,1,…, N-1
则X1(k) = DFT[x1(n)] = Yep(k) = 0.5[Y(k)+Y*(N-k)]
X2(k) = DFT[jx2(n)] = Yop(k) = 0.5[Y(k)-Y*(N-k)]
2N点得DFT[x(n)] = X(k)可由X1(k)和X2(k)得到
提示:幅度谱中,在 处:幅值为2;在 处,幅值为1;在 处,幅值为-3!!(一定要画成负的)……另外注意幅度谱是偶函数,所以左右两边关于y轴对称;
画相位谱前,需要把f(t)变换成余弦函数的形式,如上式所示。然后在 处:相位为0;在 处,相位为30度;在 处,相位为-45度(一定要画成负的!)……另外注意相位谱是奇函数,所以左右两边关于原点对称。
利用FFT计算:复乘次数为 ,复加次数为 ;
(1)直接DFT计算:
复乘所需时间
复加所需时间
所以总时间FFT计算: Nhomakorabea复乘所需时间
信号分析与处理作业答案机械工业出版社赵光宙主编[1]
F
e − jtδ (t − 2) ← F e − j 2(ω +1) ⎯→
20
14.求下列函数的傅里叶逆变换: (2)
解:已知 根据频移特 性, 根据线性性质
e − jω 0t − e jω 0t ← F 2πδ (ω + ω 0 ) − 2πδ (ω − ω 0 ) ⎯→
X (ω ) = δ (ω + ω 0 ) − δ (ω − ω 0 )
∫
T0 2 T − 0 2
x (t )e − jnω0t dt
16
1 1 1 1 = ∫ [ + cos(πt )]e − jnπt dt 2 −1 2 2 1 1 − jnπt 1 1 = ∫e dt + ∫ cos(πt )e − jnπt dt 4 −1 4 −1 1 1 − jnπt 1 1 jπt = ∫e dt + ∫ (e − e − jπt )e − jnπt dt 4 −1 8 −1 ⎧1 ⎪2 n = 0 ⎪1 ⎪ =⎨ n = ±1 ⎪4 ⎪ 0 其它 ⎪ ⎩
33
9.如题图3-4所示系统是由几个子系统组合而成的,各 子系统的单位冲激响应分别为 h1 (t ) = U (t )
30
第四章
31
3. 考虑一离散系统,其输入为x(n),输出为y(n),系统的 输入输出关系为y(n)=x(n)x(n-2) 1 系统是有记忆的,输出与n-2时刻有关 2 3 当输入为Aδ(n)时,y(n)= Aδ(n) •Aδ(n-2)=0 系统是不可逆的,当输入x(n)= δ(n) 和x(n)= δ(n+2) 时,有相同的输出信号y(n)= 0
π (2) cos( 4 n)
2π 解:N = ( ) m = 8( m = 1) π /4 2π π 基本频率为Ω 0 = = N 4
信号分析与处理第2版_赵光宙(第3_4章)习题答案
⎞ ⎟ 1 ⎡2 3π π ⎤ 2 ⎟ = 2π ⎢ n sin( 4 n) − n sin( 4 n)⎥ ⎦ ⎣ ⎟ ⎠
=
1 nπ
πn ⎤ 3πn ⎡ sin( ) − sin( )⎥ ⎢ 4 4 ⎦ ⎣
8.设 x(n) ↔ x(Ω) 对于如下序列,用 x(Ω) 表示其 DTFT (3) x(n) − x(n − 2) 利用 DTFT 的线性时移特性:
1
∞
1 ⎡ ⎣
∞
2
(
n =−∞
⎤ ⎡8 nπ )δ (ω − nω1 )⎥ ∗ ⎢ 2 ⎥ ⎦ ⎢ ⎣ T0
n = −∞
∑ 2πδ (ω − nω )⎥ ⎥
1
∞
⎤ ⎦
n = −∞
∑X
− nω1 ) =
8π T0
n = −∞
∑ Sa
∞
2
(
nπ nπ )δ (ω − nω1 − nω0 ) = 4ω0 Sa 2 ( )δ (ω − nω1 − nω0 ) 2 2 n =−∞
∫
(t )e
− jω1t
8 dt = T
∫
T0 16 δ (t )e − jnω1t dt T − 0 16
=
8 T0
所以 δ T1 (t ) =
n = −∞ 0 ∞
∑T
∞
8
e jnω1t
F 对上式进行 Fourier 变换,可得 δ T1 (t ) ← ⎯→
8 T0
n = −∞
∑ 2πδ (ω − nω )
∑
∑
∑
⎧ 1 n ⎪( ) (3) x3 (n) = ⎨ 2 ⎪ ⎩ 0 x3 ( n ) =
n = 0,2,4,L 其它
信号分析与处理_习题答案.
∫ ∫ [ ] T
x(t − t0 )
=
t
−∞ x(τ − t0 )dτ =
t −t0 −∞
x(λ)dλ = y(t − t0 ) ,时不变系统。
因果系统。
(3) y(t) = x 2 (2t)
T ax1 (t ) + bx2 (t ) ≠ aT x1 (t ) + bT x2 (t ) ,非线性系统。
= ay1 (t ) + by2 (t )
,线性系统。
T x (t − t0 )= x(t − t0 − 2) + x(2 − t − t0 ) ≠ y(t − t0 ) ,时变系统。
t 有可能小于 2 − t ,故为非因果系统。
t
∫ (2) y(t) = x(τ )dτ −∞
T ax1 (t ) + bx2 (t )= aT x1 (t ) + bT x2 (t ) ,线性系统。
(2) x(2 − t) ;
dx(t)
(5)
;
dt
(3) x(1 − 2t) ;
t
∫ (6) x(x )dx −∞
x(t)
4
4
4
4
2
2
2
2
-2 o 2
t
-1 o 1 2 3 t
题 1.3 图
o 1 2 3 4 t -1 o 1 2 t
2
t
∫ ξ(ξ)dξ −∞
10
4
-2 o 2 t
8
6
d 2
-2
-4 o 2 4 6 8t
4 2
−2
o 2t
1.4 给定序列
2n + 1 −3 ≤ n ≤ −1
信号分析与处理(王云专)第4章习题答案
第4章习题答案1.已知)(1t x 与)(2t x 的波形如题图4.1所示,求)()(21t x t x *,并画出波形。
解:τττd t x x t x t x ⎰+∞∞--=*)()()()(2121⎪⎩⎪⎨⎧<<= 020 2)(1其它t tx τ, ⎩⎨⎧<= 01 |t | 1)(2其它τx 当1-<t时,0)()(21=*t x t x当11<<-t时,12120(1)()()24t t x t x t d ττ++*==⎰当31<<t 时,4)1(12)()(22121--==*⎰-t d t x t x t ττ当3>t时,0)()(21=*t x t x所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--<<+<=*其它 0 3t 1 4)1(11t 1- 4)1(-1t 0)()(2221t t t x t x2.求)(1t x 与)(2t x 的褶积(1))(1t x =⎩⎨⎧-0e t α 00<≥t t ,)(2t x =⎩⎨⎧-0e t β 00<≥t t ,),0,(βαβα≠>解:⎰+∞∞--=*=τττd t x x t x t x t y )()()()()(2121当0<t时,0)(=t y当0>t时,()()01()[1]tt t t y t e e d e e ατβτβαβταβ------=⋅=--⎰ 即 ()121[1] t 0 ()()0 t 0 t t e ex t x t βαβαβ---⎧->⎪-*=⎨⎪<⎩(2))(1t x =)1()(--t u t u ,)(2t x =)2()(--t u t u 解:⎰+∞∞--=*=τττd t x x t x t x t y )()()()()(2121当0<t时,0)(=t y当10<<t时,t d t y t==⎰0)(τ当21<<t时,1)(10==⎰τd t y当32<<t 时,t d t y t -==⎰-3)(12τ当3>t时,0)(=t y即 ⎪⎪⎩⎪⎪⎨⎧<<<<<<=*=其它0 3 t 2 t -32 t 1 1 1t 0 )()()(21t t x t x t y(3))(1t x =tt u -e )(,)(2t x =)1(-t u解:当1<t 时,0)(=t y当1>t时,111)(+----==⎰t t e d e t y ττ即 ⎩⎨⎧<>=*=+11 t e -1)()()(1-21t t x t x t y t(4))(1t x =)(t f ,)(2t x =)(0t t -δ解:)()()()()()(0021t t f d t t f t x t x t y -=--=*=⎰+∞∞-ττδτ(5))(1t x =)cos(t ω,)(2t x =)1()1(--+t t δδ 解:ωωδωδωsin sin 2)1(cos )1(cos )()()(21⋅-=-*-+*=*=t t t t t t x t x t y3.求三角形脉冲⎪⎩⎪⎨⎧-=∆021)(t t x τ 22ττ><t t 的谱函数。
信号分析与处理第2版-赵光宙习题答案(第1-2章)
4) + j sin(2t + π
2
4) dt = lim
T
1dt = lim 2T = ∞
T →∞ −T
T →∞ −T
T →∞ −T
T →∞
∫ ∫ ∫ P = lim 1
T
2
e j(2t+π 4) dt = lim
1
T
cos(2t + π
4) +
j sin(2t + π
2
4) dt = lim
1
T 1dt = lim 2T = 1
=
=
(方法 2)
x1
(t
)
=
g
⎜⎛ ⎝
t
−
τ 2
⎟⎞, ⎠
其中g
(t
)
=
⎪⎪⎧1 ⎨ ⎪⎪⎩0
t <τ
t
2 >τ
,
g(t)↔F τSa⎜⎛ ωτ ⎟⎞
⎝2⎠
2
∴
x1
(t
)
F
↔
e− jw(τ
2)
⋅τ
⋅
Sa⎜⎛ ⎝
ωτ 2
⎟⎞ ⎠
(c)
(方法 1)由 Fourier 变换定义有:
∫ ∫ ( ) ( ) x3 ω
=
3 kπ
e− jk (π
2)
sin⎜⎛ ⎝
kπ 2
⎟⎞ ⎠
= 3 e− jk(π 2) sin⎜⎛ kπ ⎟⎞ ⎜⎛ kπ ⎟⎞, k = ±1, ± 2L
2
⎝2⎠ ⎝2⎠
∫ ∫ a0
=1 2
1
1.5dt
−
1
0
2
《信号分析与处理》(第二版)_徐科军、黄云志_课后答案
《信号分析与处理》(第二版)_徐科军、黄云志_课后答案Chap1. 1.4()()()()()()()()()()()()()()()()()()()1212122121122121222y 11102y 0.5111y 0.5 1.513y 013013y 0.51110.5 1.513tttt t x t x t x x t d x x t x x t d t d t t t x x t d t d t t t t t or t t or t t t t t t t ττττττττττττττττττ+∞-∞----=*=-=-≤≤=≤≤??=-=-=+-<≤=-=-=-++<<=≤-≥≤-≥??=+-<≤??-++<<?1.8()()()()()()()()000000001200220222cos sin 222cos 0,1,2,2sin 0,1,2,n n n T T T n T T n T a x t a n t b n t a x t dtT a x t n t dtn T b x t n t dtn T ∞=---=+Ω+Ω==Ω==Ω=∑LL傅立叶级数公式()()[]()()()[]()()()∑∞=?Ω-Ω-+=-=-==<≤<≤-=1002212201cos cos cos 1cos 141cos 1cos 15.020220 (a)n n n t n n n t n n n t x n n b n n a a T t t T t T t x ππππππππ代入公式得:()()()()()()[]()()[]()()∑∞=Ω-?Ω-Ω-+=-=-===Ω=Ω-=10022222012212cos 1cos cos 11411cos 115.0cos 2(b)n n n Tjn t n n t n n n t x n b n n a a n n X en X Tt x t x πππππππ得到:根据时移性质:()()()()()[]()()[]()∑?∑∞=-∞=Ω-+=-=Ω==Ω+=1022322020201003cos cos 1221cos 12cos 41cos 2 (c)n T n n n t n n n t x n n dt t n t x T a a t n a a t x ππππ偶对称,1.12()()dt e t x j X t j ?+∞∞-Ω-=Ω频谱密度函数:()()()()()()[]()()()()()()()()()[]()()()()()000222sin 02sin 4102sin 412sin 42121001-010011-011(1)2122212212222212212221211==??? ??Ω?=???Ω?Ω=Ω+ΩΩ-==ΩΩ+ΩΩ-=??=Ω??? ??Ω-=-+=??=Ω--++=><<<<-=>≤≤+<≤-+=-F F T Sa F j t x F F F j dt t x d F F e e dt t x d F F t t t dt t x d t t t dt t dx t t t t t t x jw jw 其中:ττττδπττδπτττττδτδτδτττττττττττττ()()()()()()()()()Ω+??Ω=Ω+??? ??ΩΩ=Ω??? ??Ω=Ω??≥<≤<===<≥<≤=Ω-Ω-Ω-∞-?πδδπτττ22222210212101010001110 (2)j j j te Sa jw F e Sa j X eSa F t t t f d f t x t t t t t x 时移特性,可得根据矩形脉冲的频谱及谱利用积分特性求解其频()()()()()()()()[]Ω=Ω+Ω-=Ω--Ω+=Ω??>≥><-=→??≥<-=Ω-Ω-→Ω-Ω-Ω----j e e a j t x F e a j e j a e j a j X a t e a t et x a t x t x t t t x j j a j j j e t a t a e e 22lim 2110,10,101111 (3) 20221122时的极限,可以看成式求解,件,故不能直接用定义由于不满足绝对可积条1.22 ()()()()()()()()()()()()()()()()()()()()()()()()2)cos()cos(cos cos cos cos 1lim cos cos cos cos 1lim cos cos cos cos 1lim2221212222222112122222222211112122211122222111ττττθτθθτθθτθτθθττΩ+Ω=-ΩΩ+-ΩΩ=+-Ω+Ω++-Ω+Ω=+-Ω++-Ω+Ω++Ω=-=--∞→--∞→-∞→+∞∞-*A A dt t A t A t t A Tdt t A t A t t A T dt t A t A t A t A T dtTT TTT TTTChap2.2.7 (1)左移 (2)右移 (3)先翻转再右移 (4)先翻转再左移 (5)压缩2.10 ()()()()()∑+∞-∞=-*=*=k k n h k R n h n R n y()()()()1111111000212232132--=+++++=-≥--=+++++=-<≤=<+-++--+a a a a a a a a n y N n aa a a a a n y N n n y n N n n N n N n nΛΛ完全重叠部分重叠无重叠Chap3. 3.1()()()()()0n k k kn k k n h k x n h n x n y -+∞-∞=-+∞-∞=?=-*=*=∑∑βα()()()()()()()()()()()=≠-=?=++>=+-≠-=?=-+≤≤=<---+=---=-+------∑∑βααβαβαβαββαβααβαβαβαβα0100010100-11-10100000n n N N n k N n nk k n n n n k nn k kn N n y N n n n n n y N n n n n y n n N n n n n n n 完全重叠部分重叠无重叠3.2见书P109-112 (1)()()0ωω-j e X (2)()d e dX j jw (3)()jwe X - (4)()jweX-*(5)()jw kj e X e ω- (6)()()jw jw e X e X --21**π(7)()()()jw jw e X e X --21*- 3.8()()()()()()()()()34,23,12,0114,13,12,11,10=========h h h h x x x x x()()()()[]()()()()[]卷积点循环卷积等于其线性故)(点循环卷积)()线性卷积(881L 36 6 6 6 6 23 5 6 6 6 3 1 01=-+== -??? ?==-*=∑∑∞+-∞=∞+-∞=N M n y k n h k x n y N n y k n h k x n y k N N k 注y(1)=0,y(1)=1, y(2)=3…… 3.11()()()()()()()()....2,1,0212101021010-=======--=--=-=--=-=∑∑∑∑∑rN k r kX en x en x W n x k Y en x Wn x k X n rkN jN n rNnkj N n knrN N n Nnkj N n knNN n πππ3.14 见书P118通常待分析的信号是连续信号,为了能应用离散傅立叶变换需要对连续时间信号进行采样,若m s f f 2≤,采样信号的频谱中周期延拓分量互相重叠,这就是混叠现象。
信号分析与处理 中国电力出版社第三章习题解答第二版
习题33-1 如题3-1图所示电路,已知12R =Ω,24R =Ω,1L H =,0.5C F =,()2()t S u t e t V ε-=,列出()i t 的微分方程,求其零状态响应。
(S u t ()t题3-1图解:设通过电容C 的电流为)(t i c ,根据KVL 定律列写回路方程,可得)())()(()()()(12t u t i t i R dtt di Lt i t R s c =+++ )()()()())()())()((2212111212t u dt t i d CL R dt t di C R R t i R dt t di L t i R dtt di L t i R dt dCi s c =+++++= 整理得,)(2)(6)(5)(22t e t i dt t di dtt i d tε-=++ 两边求拉斯变换,在零状态响应下312211)3)(2)(1(2)(12)()65(2+++-+=+++=+=++s s s s s s s i s s i s s求拉斯反变换得)()2()(32t e e e t i t t t ε---+-=3-2 已知描述系统的微分方程和初始状态如下,试求系统的零输入响应、零状态响应和全响应。
(1)22()()43()()d y t dy t y t x t dt dt ++=,(0)(0)1y y '==,()()x t t ε= (2)22()()()44()3()d y t dy t dx t y t x t dt dt dt++=+,(0)1y =,(0)2y '=, ()()t x t e t ε-=解:(1)求零状态响应)(t y zi当激励为零时,0)(3)(4)(22=++t y dt t dy dt t y d特征方程,0342=++λλ,解特征方程根,3,121-=-=λλ,则齐次解为t t zi e c e c t y 321)(--+=,代入初始条件:1)0()0(21=+==c c y y zi ,13)0()0(21''=--==c c y y zi ,解得1,21-==c c ,即零输入响应)()2()(3t e e t y t t zi ε---= 求零状态响应)(t y zs ,)()(t t x ε=,设方程的特解,0)(c t y p =,将其代入微分方程得,31)(=t y p )()31(321t e c e c y t t zs ε++=--,代入初始条件,031)0()0(21=++==c c y y zs03)0()0(21''=--==c c y y zs ,解得61,2121=-=c c零状态响应,)()612131(3t e e y tt zs ε--+-=; 全响应,).()652331(3t e e y y y tt zi zs ε---+=+= (2)求零输入响应)(t y zi当激励为零时,齐次微分方程,0)(4)(4)(2=++t y dtt dy dt t y d 特征方程,0442=++λλ,解得特征根,221-==λλ,则齐次解t zi e t c c t y 221)()(-+=,代入初始条件,4,2)0(,1)0(2'1====c y c y即零输入响应,)()14()(2t e t t y t zi ε-+=; 求零状态响应)(t y zs ,)()(t e t x t ε-=;设方程的特解,tp e c t y -=0)(,代入微分方程得,tp e t y -=2)(t t zs e e t c c y --++=2)(221,代入初始条件,2,02)0(11-==+=c c y zs1,01)0(22'-==+=c c y zs零状态响应,)(]2)2([2t e e t y t t zs ε--++-=; 全响应,)(]2)13[(2t e e t y y y t tzs zi ε--++=+=。
信号分析与处理试题与答案
信号分析与处理试题与答案1. 设随机信号x(n)中含有加性噪声u(n),s(n)为有用信号,则:)()()n (n u n s x += ]()([)(s m n x n s E m R x +=)]()([m n s n s E +=)]()()()([m n u n s m n s n s E +++= )m (s R =2. 不改(FFT)的程序直接实现IFFT 的方法 : 由∑-=--==11,,1,0 ,)(1)(N k nkN N nWk X Nn x 得:∑-==*-=*101101N k nkN N ,,,n,W )k (X N )n (x ∑-===-=****1011011N k nk N N ,,,n )]}k (X {FFT[N]W )k (X [N )n (x1)先取共轭 2)执行FFT 程序 3)对运算结果取共轭,并乘以常数N1 3. 解:1)dt t t t )2()]3cos(5[513-+⎰∞-δ=0 2)10002.02=ππ, 周期=100 3)解:22)1()(ππ++=-s e s X s 当aa 1<时:4)1111110111111)()()()()()(22----∞=-∞=-∞=---∞=-∞-∞=--∞=∞=-----+-=+=+=+==∑∑∑∑∑∑∑z a z a z a az z a az azza zazn x z X n n n n n nn nn n n nnnnn当a a 1>时:az a 1>> 4. 1).混叠现象:在采样前加抗混叠滤波器。
2).频谱泄漏:增加采样点数或其他类型的窗函数 3)栅栏效应:在数据的末端补零。
4)频率的分辨率:增加信号的长度。
5. 解:)(n x *)(n h =2 3 5 9 6 6 4{ )(n x 与)(n h 5点的循环卷积为:} 5 9 6 8 7{ )(n x 与)(n h 8点的循环卷积为:}0 2 3 5 9 6 6 4{ 6.解过程如下:1)0(=x 1)2(-=x 2)1(=x 3)3(=x 5)0(=X jX +=2)1(5)2(-=X jX -=2)3(2)1(0)0(11==X X 1)1(5)0(22-==X X 04W jW -=14--4W -4W-7. 解:选汉明窗 πω25.0=∆=Nπ8 N=32 )(n h d ⋅--=)()](sin[απαωn n c 5.1521=⋅-=N α)()]312cos(46.054.0[*)13()]13(25.0sin[)(n R nn n n h N πππ---==∴8.解:数字低通滤波器的截止频率为ωc=0.25π,则巴特沃斯模拟滤波器Ωc 为:T TT c c 828.0225.0tan 22tan 2=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=Ωπω 模拟滤波器的系统函数为:)828.0/(11)/(11)(sT s s H c a +=Ω+=将双线性变换应用于模拟滤波器,有:11111124159.0112920.0)]1/()1)[(828.0/2(11)()(11----+-=-+=+-+==--z z z z s H z H z z T s a。
信号分析与处理_习题答案.
= ay1 (t ) + by2 (t )
,线性系统。
T x (t − t0 )= x(t − t0 − 2) + x(2 − t − t0 ) ≠ y(t − t0 ) ,时变系统。
t 有可能小于 2 − t ,故为非因果系统。
t
∫ (2) y(t) = x(τ )dτ −∞
T ax1 (t ) + bx2 (t )= aT x1 (t ) + bT x2 (t ) ,线性系统。
2
O
n
-2
-2
题 1.4 图 3
1.5 信号 x(t) 的波形如题 1.5 所示。
∫ (1)画出 y(t) = dx(t) 的波形;(2)画出 y(t) = t x(x )dx 的波形。
dt
−∞
-10
x(t) 2 1
-1 O 1 t
题 1-5 图
1
-1
O
-1
1t
-2
2.5 2
1
-1
O
1t
1.6 判定下列系统是否为线性的,时不变的? (1) y(t) = x(t − 2) + x(2 − t)
T {ax1[n] + bx2[n=]} ax1[n] + bx2[n] + 2{ax1[n −1] + bx2[n −1]} = a{x1[n] + 2x1[n −1]} + b{x2[n] + 2x2[n −1]}
= ay1[n] + by2[n]
,线性系统。
T {x[n − n0 ]}= x[n − n0 ] + 2x[n − n0 −1]= y[n − n0 ] ,时不变系统。
信号分析与处理第一章答案坤生二版
1第一章习题参考解答1.1 绘出下列函数波形草图。
(1) ||3)(t e t x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x nn(3) )(2sin )(t t t x επ=(4) )(4sin )(n n n x επ=(5) )]4()([4cos )(--=-t t t e t x t εεπ)]4()1([3)(---=n n n x n εε2(7) t t t t x cos )]2()([)(πδδ--=(8) )]1()3([)(--+=n n n n x δδ(9) )2()1(2)()(-+--=t t t t x εεε(10) )5(5)]5()([)(-+--=n n n n n x εεε(11) )]1()1([)(--+=t t dtd t x εε(12) )()5()(n n n x --+-=εε(13) ⎰∞--=t d t x ττδ)1()((14) )()(n n n x --=ε31.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。
(1) ||3)(t e t x -=解 能量有限信号。
信号能量为:()⎰⎰⎰⎰∞-∞-∞∞--∞∞-+===02022||2993)(dt edt edt e dt t x E ttt ∞<=⋅-⋅+⋅⋅=∞-∞-9)21(92190202tte e(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x nn解 能量有限信号。
信号能量为: ()∞<=+=+==∑∑∑∑∑∞=--∞=∞=--∞=∞-∞=35)41(4])21[(2)(0102122n n n nn n n n n n x E(3) t t x π2sin )(=解 功率有限信号。
周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。
214cos 2124cos 1)2(sin )2(sin 121212121212121212222=-=-===⎰⎰⎰⎰⎰-----tdt dt dt t dt t dt t TP T T ππππ(4) n n x 4sin )(π=解 功率有限信号。
信号分析与处理第2章习题解答第二版
解:(1)定义:
(2)
(3)
方法一:利用频域卷积定理
图1
方法二:利用频移特性
方法三:利用时域微性质
2-16已知 ,证明:
(1)若 是关于t的实偶函数,则 是关于 的实偶函数;
(2)若 是关于t的实奇函数,则 是关于 的虚奇函数。
证明:(1)若 是关于t的实偶函数,即
,则 ,
所以, 是关于 的实偶函数;
题2.2图
解:(一)定义式求解
三角形式:信号奇对称
指数形式:
(二)利用一个周期的傅里叶变换求傅里叶级数的系数。
①取 区间的 构成单周期信号,其傅里叶变换
则傅里叶级数为:
②利用时域微积分性质, 的波形如图1所示。
图1
③利用时域移位性质求解。
图2
参考图2,有
当k为偶数时 ;当k为奇数时 。
是奇对称奇谐函数,傅里叶级数中只含有奇次谐波。
图2-34题2.4图
解:(1)三角形式表达式中, ,
,
,
即三角形式的表达式为: 。
(2)傅里叶指数表达式中,
= ,
。
2-5若周期信号 和 的波形如题2.5图所示。 的参数为τ=0.5μs,T=1μs,A=1v; 的参数为τ= 1.5μs,T= 3μs,A= 3v,分别求:
题2.5图
(1) 的谱线间隔和带宽;
(1) (2)
(3) (4)
解:(1) ,
(2)
,
(3)
即 。
(4)
。
2-19利用拉普拉斯变换的性质求下列信号函数的拉氏变换:
(1) (2)
(3) (4)
(5) (6)
(7) (8)
解:(1) ;(7)
信号分析与处理第一章答案芮坤生二版
2 x(n) x(n 1) x(n) 2n1 2n1 2n
10
1.8 判断下列信号是否为周期信号,若是周期的,试求其
最小周期。
(1) x(t) cos(4t ) 6
解
周期信号,
T1
2
(2) x(t) sin(2t)(t) 解 非周期信号。 (3) x(t) et cos(2t) 解 非周期信号。
x(t)
1
t
-1 0 1 2
题图 1.3
4
(1) x(t 2)
x(t 2)
1
0 1 23
t
4
(2) x(t 2)
x(t 2)
1
t
-3 -2 -1 0
(3) x(2t)
x(2t)
1
t
-1/2 0 1
(4) x( 1 t) 2
x(t / 2)
1
t
-2 -1
012
3
4
(5) x(t)
x(t)
(11)
0
-2 -1 0 1 2 3 4 t
(12) x(n) (n 5) (n)
(12) 1
0 -3-2 -1 0 1 2 3 4 5 6 7 8 910 n
(13)
t
x(t) ( 1)d
(13)
1
2
0
01 t
(14) x(n) n(n)
(14)
(6) x(n) cos( n 3) 8
解 周期信号, N1 16。
(7) x(n) cos(7 n) 9
解 周期信号, N1 18。
(8) x(n) con(16n) 解: 非周期信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∫
t −∞
x(τ )dτ
(3) y (t ) = x 2 (2t ) (5) y (t ) = x(t ) ,其中 x(t ) 为实信号 解: (1) y (t ) = x(t − 2) + x(2 − t )
(4) y ( = t ) x (1 − t )ε (t ) (6) y (t ) = x(t ) cos(t )
t 有可能小于 1 − t ,非因果系统。
(5) y (t ) = x(t ) ,其中 x(t ) 为实信号。
T ax1 ( t ) + bx2 ( t ) = ax1 ( t ) + bx2 ( t ) ≠ ay1 ( t ) + by2 ( t ) ,非线性系统。 T x ( t − t0 ) = x ( t − t0 ) = y ( t − t0 ) ,时不变系统。
= W =
∞
e sin (ωt ) e ( t ) dt ∫ ∫=
-∞
∞
∞ 2 -at 2 at 0
e
1 - cos ( 2ωt ) dt 2
∞ 1 ∞ -e 2 at dt - ∫ e 2 at cos ( 2ωt ) dt ∫ 0 0 2
= e dt ∫
−2 at 0
−1 −2 at ∞ 1 = e 0 2a 2a
− at
sin(ωt ) ε (t )
(2) cos(10t ) + cos(30t )
(3) cos(2t ) + sin(π t )
(4) 5sin (8t )
2
(5) ε (t ) − ε (t − 10)
(6) x ( n ) = 2
1 n n≥0 ( ) n<0 0
解:(1)只在大于零的时间段内有信号,非周期信号;判断能量值 若 a > 0 则为指数衰减信号为能量信号。
t 有可能小于 2t ,非因果系统。 (4) y (t ) = x(1 − t )ε (t )
T ax1 ( t ) + bx2 ( t )= aT x1 ( t ) + bT x2 ( t ) ,线性系统。 T x ( t − t0 ) = x(1 − t − t0 )ε (t ) ≠ y (t − t0 ) ,时变系统。
(4) y[n] = e x[ n ]
n] T { x1[n] + x2 [n= ]} e x1 [ n ]+ x2 [= e x1 [ n ]e x2 [ n ] ≠ y1[n] + y2 [n] ,非线性系统。
p = lim
def
1 75 75 p1 = lim = T →∞ T T →∞ 8 8
<∞
功率信号
(5)能量信号,非周期信号;
1 n ( ) n ≥ 0 (6) x ( n ) = 2 n<0 0
指数衰减信号则为能量信号,非周期信号
∞ 1 4 1 1 W ∑ = = = ∑ = 1 3 2 n 0= n 0 4 = 1− 4 ∞ 2n n
1 ∞ −2 at 2 jωt 1 ∞ −2( a − jω )t −2( a + jω )t t e ( e + e −2 jω= dt e +e dt ) ∫ 0 2 0 2 ∫0 1 1 1 −2 a − jω t ∞ −2 a + jω t ∞ e ( ) 0 + e ( ) 0 a 2 −2 ( a − jω ) −2 ( a + jω ) −1 2a a = = −1) 2 2 ( 4 a +ω 2 ( a2 + ω 2 )
y (t ) 只与当前时刻的输入有关,故为因果系统。
(6) y (t ) = x(t ) cos(t )
T ay1 ( t ) + by2 ( t ) ,线性系统。 ax1 ( t ) + bx2 ( t ) = ax1 ( t ) + bx2 ( t ) cos ( t ) =
余弦信号在一个周期内积分为零。
T 2 T − 2
p = lim
def
T →∞
1 p1 = lim 1 = 1 T →∞ T
2
<∞
功率信号
5 4.5 4 3.5 3 2.5 2 1.5 1
(3)功率信号,非周期信号; (4) 5sin (8t )
5 π 周期信号 T = 5sin 2 (8 = t) 1 − cos (16t ) 2 8
T x ( t − t0 ) = x ( t − t0 ) cos ( t ) ≠ y ( t − t0 ) ,时变系统。
因果系统。 1.7 判定下列离散系统是否为线性的,时不变的? (1) y ( n ) = x ( n ) + 2 x ( n − 1) (3) y ( = n ) n[ x ( n ) − x ( −n )] 解: (1) y[n] = x[n] + 2 x[n − 1] (2) = y (n)
x(t) 4 2 o
4 2 -1 o1 2 3 t
4 2 o1 2 3 4 t
4 2 -1 o 1 2 t
-2
2
t
题 .3 图
2
4 2 o 2 4 6 8 t
-2 -2 -4
o
1.4 给定序列
2 n + 1 −3 ≤ n ≤ −1 x(n) 1 0≤n≤3 = 0 其它n
(2)画出 2 x (2 − n ) 的波形; (3)画出 2 x (2 − n ) x ( n ) 的波形。 (1)画出 x ( n ) 的波形; 解:
有限幅值的周期信号——功率信号
0.5 0
p1 = ∫ =
T 2 T − 2 T
25 x(t ) dt = 4 ∫
2
T 2 T − 2
[1 − 2 cos(16t ) + cos
0
2
(16t ) dt
]
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
25 3 75 cos(32t ) + 1 25 2 dt = T T= T 1 − 2 cos(16t ) + ∫ 2 4 2 8 4 −2
1.3 已知信号 x (t ) 的波形如题 1.3 所示,试画出下列各信号的波形。 (1) x (t − 1)ε (t ) ; (4) x ( t − 2) ; (2) x (2 − t ) ; (5) (3) x (1 − 2t ) ; (6)
1 2
dx (t ) ; dt
∫
t
−∞
x (x )d x
,线性系统。
T { x[n − n0 ]} = x[n − n0 ] + 2 x[n − n0 − 1]= y[n − n0 ] ,时不变系统。
因果系统。 (2) y[n] =
m =0
∑ x[n − m]
10
线性,时不变,因果系统。 (3) y[n] = n{x[n] − x[−n]}
T {ax1[n] + bx= n {ax1[n] + bx2 [n] − ax1[−n] − bx2 [−n]} 2 [ n]} = a { x1[n] − x1[−n]} + b { x2 [n] − x2 [−n]} = ay1[n] + by2 [n]
d
−∞
∫ 10
8 6 4
t
ξ (ξ)dξ
2
t
2
−2
o
2
t
2 n -2
O
1 O -1 -3 -5 n
题 1.4 图 1
2 n -2
O -2
题 1.4 图 3 1.5 信号 x(t ) 的波形如题 1.5 所示。
(1)画出 y (t ) =
dx(t ) 的波形; (2)画出 y (t ) = dt
∫
t
m =0
∑ x(n − m)
x(n)
10
(4) y ( n ) = e
T {ax1[n] + bx2 [n = ]} ax1[n] + bx2 [n] + 2 {ax1[n − 1] + bx2 [n − 1]} = a { x1[n] + 2 x1[n − 1]} + b { x2 [n] + 2 x2 [n − 1]} = ay1[n] + by2 [n]
,线性系统。
T x ( t − t0 ) = x(t − t0 − 2) + x(2 − t − t0 ) ≠ y (t − t0 ) ,时变系统。
t 有可能小于 2 − t ,故为非因果系统。
(2) y (t ) =
∫
t −∞
x(τ )dτ
T ax1 ( t ) + bx2 ( t )= aT x1 ( t ) + bT x2 ( t ) ,线性系统。
设 y (t ) = T x ( t )
T = ax1 (t − 2) + bx2 (t − 2) + ax1 (2 − t ) + bx2 (2 − t ) ax1 ( t ) + bx2 ( t ) = ay1 ( t ) + by2 ( t )
= a [ x1 (t − 2) + x1 (2 − t ) ] + b [ x2 (t − 2) + x2 (2 − t ) ]
−∞
x (x )dx 的波形。
1
x(t) 2 1 -1 1 t