量子理论的发展
量子力学的基本原理
1.简介量子力学的历史和发展量子力学是现代物理学的重要分支,它描述了微观世界中粒子的行为和相互作用。
以下是量子力学历史和发展的简介:•早期量子理论的兴起:在20世纪初,科学家们通过研究辐射现象和黑体辐射问题,开始怀疑经典物理学的适用性。
麦克斯∙普朗克的量子假设和爱因斯坦的光电效应理论为量子理论的发展奠定了基础。
•波粒二象性的提出:在这个阶段,德国物理学家路易斯∙德布罗意提出了物质粒子(如电子)也具有波动性的假设,即波粒二象性。
这一假设通过实验证明,如电子衍射实验,为量子力学奠定了基础。
•薛定谔方程的建立:奥地利物理学家埃尔温∙薛定谔于1926年提出了著名的薛定谔方程,用于描述微观粒子的运动和行为。
这个方程成功地解释了氢原子的能级和谱线,奠定了量子力学的数学基础。
•不确定性原理的发现:德国物理学家瓦尔特∙海森堡于1927年提出了著名的不确定性原理,指出在测量过程中,无法同时准确确定粒子的位置和动量。
这一原理挑战了经典物理学的确定性观念,成为量子力学的核心概念之一。
•量子力学的完备性和广泛应用:随着时间的推移,量子力学逐渐发展成为一个完善的理论体系,并在许多领域得到广泛应用。
它解释了原子和分子的结构、核物理现象、固体物理、粒子物理学等多个领域的现象,并为现代科技的发展提供了基础。
量子力学的历史和发展是科学进步的重要里程碑,对我们理解微观世界的行为和深入探索宇宙的奥秘具有重要意义。
2.波粒二象性和不确定性原理的解释在量子力学中,波粒二象性和不确定性原理是两个核心概念,对我们理解微观世界的行为提出了挑战,下面是它们的解释:•波粒二象性:根据波粒二象性的理论,微观粒子(如电子、光子等)既可以表现出粒子的特性,也可以表现出波的特性。
这意味着微观粒子既可以像粒子一样具有局部位置和动量,也可以像波一样展现出干涉和衍射的现象。
这种波粒二象性的解释可以通过德布罗意的波动假设来理解。
根据德布罗意的假设,微观粒子具有与其动量相对应的波长,这与光波的性质相似。
量子力学的发展过程
量子力学的发展过程量子力学的发展过程可以追溯到19世纪末和20世纪初。
以下是量子力学的主要发展里程碑:1. 波动理论:19世纪末,物理学家开始研究光的波动性质。
爱尔兰物理学家赫兹通过实验证明了电磁波的存在,并对光的传播进行了详细研究。
这奠定了波动理论的基础。
2. 光量子假说:1900年,德国物理学家普朗克提出了光量子假说,认为光是由一个个离散的能量包(即光子)组成的。
这一假说在解释黑体辐射现象方面具有关键性的意义。
3. 康普顿散射:1923年,美国物理学家康普顿进行了关于X射线与电子相互作用的实验,发现X射线与电子碰撞后会发生散射现象,并且散射光的波长发生了变化。
这一发现验证了光具有粒子性质,并为量子力学的发展提供了重要线索。
4. 德布罗意假说:1924年,法国物理学家德布罗意提出了他的物质波假说。
他认为,物质粒子也具有波动性质,波长与动量成反比。
德布罗意的假说后来在实验中得到了证实,巩固了量子力学的基础。
5. 薛定谔方程:1926年,奥地利物理学家薛定谔提出了薛定谔方程,描述了量子力学中粒子的波函数演化。
这一方程成为了量子力学的核心。
6. 测不准原理:1927年,德国物理学家海森堡提出了测不准原理,指出无法同时准确确定粒子的位置和动量。
这一原理改变了人们对物理观测的理解,突出了观测与粒子之间的不可分割性。
7. 玻尔模型:1927年,丹麦物理学家玻尔提出了量子力学的第一个成功模型-玻尔模型。
该模型基于能级和量子跃迁的概念,解释了氢原子光谱的规律。
8. 标准模型:自1920年代以来,许多物理学家对量子力学进行了深入研究。
通过玻尔模型的进一步完善和量子力学的数学基础的发展,形成了现代物理学的框架。
目前,量子力学已经与相对论等其他物理学理论结合在一起,形成了标准模型,成为理解微观物质行为的重要理论。
量子力学的发展历程
量子力学的发展历程量子力学的发展历程一、前言量子力学是20世纪物理学最重要的发现之一,它是现代物理学的基础。
它已经成为物理学,化学,电子学,材料学,晶体学等领域的核心概念和基础理论之一。
量子力学从20世纪初开始发展,至今已经发展了一个多世纪,取得了丰硕的成果,影响深远,极大地推动了科学技术的发展。
今天,我们聚焦于量子力学的历史发展,看看它是怎样一步步诞生、发展和完善的。
二、量子力学的发展1.经典物理学的基础量子力学的发展,最初要从1900年德国数学家马克斯·普朗克(Max Planck)提出的“计量物理学”开始。
他假设,在微观尺度上,物质是可以分解的,这种粒子受到热能的影响,可以以某种形式储存能量,如热量和热力学系统,这极大地推动了经典物理学的发展。
2.量子说的出现1905年,爱因斯坦提出的“光粒子理论”在物理学史上引起了轰动,他重新定义了光的实质:它不仅是一种电磁波,也是一种传播光子或量子的波动。
由于光子的效应受量子理论的约束,从而推动了量子说的出现。
3.波动力学的发展在爱因斯坦的光粒子理论基础上,1924年,德国物理学家路易斯·普朗特(Louis de Broglie)提出了“粒子波力学”这一概念,他认为,粒子也可以有波力学性质,这是经典物理学中受量子效应影响的一个重大突破,它大大促进了量子力学的发展。
4.量子力学的形成1926年,德国物理学家爱因斯坦、布鲁克、加登和赫兹等人提出了一系列量子力学原理,将量子说的理论和粒子波力学的研究有机结合起来,形成了量子力学这一新的物理学理论,它使科学家们能够以一种全新的视角深入揭示物质的本质,从而构成了现代科学技术的基础。
5.量子力学的发展量子力学的发展,在20世纪30年代的第二次工业革命中取得了重要成果,新的物理学理论和新的物理实验技术推动了数字电子技术的发展,持续发展到今天,它在物理学,化学,电子学,材料学,晶体学等领域都起到了重要作用,使量子力学在现代物理学中发挥着不可替代的重要作用。
尼尔斯玻尔的量子理论科学史上的重大突破
尼尔斯玻尔的量子理论科学史上的重大突破尼尔斯·玻尔的量子理论:科学史上的重大突破在科学史上,尼尔斯·玻尔是量子力学领域最为杰出的科学家之一。
他的贡献奠定了量子理论的基础,并在20世纪之后的科学领域产生了深远的影响。
本文将重点介绍尼尔斯·玻尔的量子理论,并探究其在科学史上的重大突破。
一、玻尔的量子理论的提出尼尔斯·玻尔于1913年提出了他的量子理论,该理论被称为玻尔的原子模型。
在此之前,科学家们对于原子结构仅有零散的认识,无法解释元素周期表以及光谱等现象。
玻尔的原子模型通过引入量子的概念,成功解释了这些现象,并给出了可靠的计算方法。
玻尔的原子模型认为,原子中的电子存在于离散的能级上,每个能级对应着一定的能量。
当电子跃迁时,能量的差异将以光子的形式释放出来。
这一理论不仅解释了光谱现象,还能够解释元素周期表和化学键的形成等问题,为当时的科学界带来了巨大的创新。
二、量子理论的发展玻尔的原子模型奠定了量子力学的基础,随后有许多科学家不断对其进行深入的研究和改进。
其中,最重要的两个突破是海森堡和薛定谔的量子力学理论。
1925年,德国物理学家海森堡提出了著名的矩阵力学,进一步发展了玻尔的原子模型。
该理论通过对物理量的矩阵表示以及矩阵运算的规则,成功解释了许多物理现象,特别是微观世界的性质。
几乎与此同时,奥地利物理学家薛定谔独立地提出了波动力学。
薛定谔将电子视为一种波动,通过波函数描述了电子的状态和行为。
其薛定谔方程成为量子力学的基本方程,为今后的研究奠定了坚实基础。
三、量子理论的深化与应用自玻尔及海森堡、薛定谔之后,量子理论经历了长足的发展。
研究者们进一步探索了量子力学的数学基础,发展了更为完备和普遍的理论框架。
同时,量子力学在不同领域的应用也不断拓展。
量子力学在原子物理、核物理、固体物理等领域都起到了重要作用。
例如,电子显微镜通过利用电子的波动性质,可以观察到微观尺度上的物体;核磁共振成像技术则利用原子核的量子性质来探测人体内部的结构。
量子力学的历史和发展
量子力学的历史和发展量子论和相对论是现代物理学的两大基础理论。
它们是在二十世纪头30年发生的物理学革命的过程中产生和形成的,并且也是这场革命的主要标志和直接的成果,量子论的诞生成了物理学革命的第一声号角。
经过许多物理学家不分民族和国籍的国际合作,在1927年它形成了一个严密的理论体系。
它不仅是人类洞察自然所取得的富有革命精神和极有成效的科学成果,而且在人类思想史上也占有极其重要的地位。
如果说相对论作为时空的物理理论从根本上改变人们以往的时空观念,那么量子论则很大程度改变了人们的实践,使人类对自然界的认识又一次深化。
它对人与自然之间的关系的重要修正,影响到人类对掌握自己命运的能力的看法。
量子论的创立经历了从旧量子论到量子力学的近30年的历程。
量子力学产生以前的量子论通常称旧量子论。
它的主要内容是相继出现的普朗克量子假说、爱因斯坦的光量子论和玻尔的原子理论。
热辐射研究和普朗克能量子假说十九世纪中叶,冶金工业的向前发展所要求的高温测量技术推动了热辐射的研究。
已经成为欧洲工业强国的德国有许多物理学家致力于这一课题的研究。
德国成为热辐射研究的发源地。
所谓热辐射就是物体被加热时发出的电磁波。
所有的热物体都会发出热辐射。
凝聚态物质(固体和液体)发生的连续辐射很强地依赖它的温度。
一个物体被加热从暗到发光,从发红光到黄光、蓝光直至白光。
1859年,柏林大学教授基尔霍夫(1824—1887年)根据实验的启发,提出用黑体作为理想模型来研究热辐射。
所谓黑体是指一种能够完全吸收投射在它上面的辐射而全无反射和透射的,看上去全黑的理想物体。
1895年,维恩(1864—1928年)从理论分析得出,一个带有小孔的空腔的热辐射性能可以看作一个黑体。
实验表明这样的黑体所发射的辐射的能量密度只与它的温度和频率有关,而与它的形状及其组成的物质无关。
黑体在任何给定的温度发射出特征频率的光谱。
这光谱包括一切频率,但和频率相联系的强度却不同。
量子理论的发展史讲义
物理天空的第二乌云: “黑体辐射”
黑体(“绝对黑体”)是指在任何温度下都能全都吸收落 在它上面的一切辐射而没有反射和透射的理想物体,是用 来研究热辐射的。
黑体辐射的特点是: 各种波长(颜色)的辐射能量的分布形 式只取决于黑体的温度,而同组成黑体的物质成分无关。
对“黑体辐射”的研究导致“紫外灾难”
定性问题。正在他日夜苦思之际,
他在一位朋友汉森ห้องสมุดไป่ตู้
(H.M.Hansen)向他提到氢光谱的巴耳末公式, 劝他认真考虑
这个事实。
同时, 斯塔克(J.Stark)的著作中有关价电子跃迁产生辐射的思
想也对他有启发。
他把这些事情联系到了一起, 突然头脑里出现了一个飞跃。
后来,玻尔回忆到: “当我一看到巴耳末公式,我对整个 事情就豁然开朗了。”于是玻尔很快就写出了著名的“三 部曲”,题名“原子构造和分子构造”——I、II、III的三 篇论文,经卢瑟福推荐,发表在1913年《哲学杂志》上。
普朗克的量子假说的出台
但是,当时普朗克的辐射公式是根据实验数据凑出来的半 经验定律,得不到合理的理论解释。
为了寻找这个公式的理论根据,普朗克紧张地工作了两个 月,终于发现,要对这个公式作出合理的解释,惟一可能 的出路是假设: 物体在发射辐射和吸收辐射时,能量不是连 续变化的,而是以一定数量值的整数倍跳跃式地变化的。
19世纪末期, 实验已经能对热辐射所产生的光谱及其强度的 分布进行精密的测定。
1893年, 德国物理学家维恩发现黑体的温度(绝对温度)同所发 射能量最大的波长成反比(维恩位移定律)。1896年维恩通过 半理论半经验的办法, 找到了一个可用来描述能量分布曲线 的辐射定律。
这个定律或说公式, 在短波部分同实验很符合, 但在长波部 分却偏离很大。
量子是怎么发明的原理
量子是怎么发明的原理
量子理论是在20世纪初由一系列科学家独立发展而成的。
以下是量子理论的关键发展和原理:
1. 黑体辐射:根据经典物理学,理论上认为热物体会不断辐射出电磁波。
然而,根据普朗克(Max Planck)的研究,他发现通过假设能量的辐射只能是离散的量子形式,才能解释黑体辐射实验的结果。
2. 光电效应:爱因斯坦对光电效应提出了解释。
光电效应是指当光照射在金属表面时,会导致电子被释放出来。
爱因斯坦通过引入能量量子,即光子,解释了光电效应的性质。
3. 单电子双缝干涉实验:Young的双缝干涉实验是基于波动理论的,然而当实验被重复进行时,只能发现光以粒子的形式通过双缝而不是波。
这启示了量子理论的发展。
4. 玻尔模型:尼尔斯·玻尔在量子理论的建立中起了重要作用。
他提出了玻尔模型,指出原子的电子只能存在于特定的能级中,而且在跃迁时能量的转移是量子化的。
5. 不确定性原理:根据海森堡的不确定性原理,粒子的位置和动量无法同时被准确测量。
这表明在量子层面,测量是不可避免地与测定对象相互影响的。
总的来说,量子理论的发展源于对实验结果的观察和探索,其基本原理涉及到能量量子化、光子、波粒二象性和不确定性原理等。
这些原理解释了微观世界的物理现象,并为量子力学提供了理论基础。
量子力学发展史详细
量子力学发展史详细量子力学是一门研究微观世界中微观粒子行为的科学。
它的发展历程可以追溯到19世纪末和20世纪初。
1897年,英国物理学家汤姆孙发现电子,并确定其具有粒子性质。
几年后,他提出了原子的模型,即“面包糠模型”,将电子沿轨道分布在原子核周围。
1913年,丹麦物理学家玻尔提出了原子的第一个量子理论,即玻尔模型。
他指出,电子只能沿特定的轨道运动,并具有特定的能量级。
这些轨道和能量级被称为量子态。
1924年,法国物理学家德布罗意提出了粒子具有波动性的假设,即德布罗意波。
他认为,所有物质都具有波粒二象性,没有完全的粒子性和波动性之分。
这为后来量子力学的建立做出了贡献。
1926年,德国物理学家薛定谔发表了量子力学的基本方程,即薛定谔方程。
这个方程描述了微观粒子的运动方式,通过求解薛定谔方程,可以得出粒子的能量和波函数。
1927年,丹麦物理学家卡尔·逻辑提出了量子力学的基本原则,即哥本哈根解释。
这个解释指出,测量结果是随机的,而波函数则代表了系统的概率分布。
20世纪上半叶,许多科学家在量子力学的基础上进行了深入研究。
其中,保罗·狄拉克提出了狄拉克方程,描述了电子的相对论性运动。
此外,玻恩、海森堡、狄拉克等人还对量子力学的理论框架进行了修正和发展,建立了量子场论。
随着时间的推移,量子力学在理论和实验上取得了许多重要的突破。
例如,量子电动力学的建立、量子力学的统计解释、量子纠缠和量子计算等。
总之,量子力学的发展历史是一部充满探索和突破的故事。
通过科学家们的努力和不断的研究,量子力学为我们理解微观世界的规律提供了重要的理论基础。
量子学说发展历程
量子学说发展历程量子学说是20世纪物理学的重要发展之一,它从经典物理学的基础出发,通过对微观世界的观察和实验现象的解释,逐渐形成了一套独特的理论体系。
以下是量子学说的发展历程。
1. 热辐射问题:19世纪末,物理学家们在研究热辐射时发现了一个难题,即黑体辐射频谱的问题。
经典物理学无法解释黑体辐射的能量分布曲线,这一问题成为量子学说发展的起点。
2. 普朗克量子假设:1900年,德国物理学家普朗克提出了一个大胆的假设,即辐射能量具有量子化的性质。
他认为辐射能量以离散的方式传播,而不是连续的。
这样,普朗克解决了黑体辐射问题,并开启了量子理论的研究。
3. 波粒二象性:根据普朗克的量子假设,爱因斯坦在1905年提出了光的粒子性质,并解释了光电效应。
他认为光是由粒子(光子)组成的,这种观点与经典物理学中的光的波动理论形成了对比。
4. 玻尔原子模型:1913年,丹麦物理学家玻尔提出了玻尔原子模型,成功解释了氢原子光谱的奇异特性。
玻尔认为原子的电子绕核运动具有离散的能级,只有当电子跃向一个能级到另一个能级时,才能发射或吸收特定的光子能量。
5. 德布罗意波:1924年,法国物理学家德布罗意提出了物质波(德布罗意波)的概念,他认为物质具有粒子与波动的性质。
德布罗意的理论被后来的实验证实,为量子力学的发展做出了重要贡献。
6. 海森堡量子力学:1925-1926年,德国物理学家海森堡和英国物理学家狄拉克等人独立发展了矩阵力学,提出了运动量和位置的不确定性原理。
海森堡量子力学通过矩阵运算和波函数描述了微观粒子的性质,成为现代量子力学的基础。
7. 薛定谔方程:1926年,奥地利物理学家薛定谔提出了薛定谔方程,也称为波动力学。
薛定谔方程通过波函数描述了微观粒子的运动规律,成功地解释了氢原子以外的原子和分子的性质。
8. 量子力学的发展:20世纪中叶以后,量子力学得到了广泛的应用和发展。
在量子力学的框架下,德国物理学家狄拉克提出了量子电动力学,并成功地解释了电子的自旋性质。
量子理论发展史
量子理论发展史20世纪初,Planck提出了能在全波段与观测结果符合的黑体辐射能量密度随频率分布的公式,即Planck公式。
要从理论上导出Planck公式,需假定物体吸收或发射电磁辐射,只能以“量子”(quantum)的方式进行,每个“量子”的ε.由于能量不连续的概念在经典力学中是完全不容许的,所以尽管这能量为hv=个假设能堆到出与实际观测极为符合的Planck公式,在相当长的时间内量子假设并未受到重视。
Einstein在用量子假设说明光电效应问题时提出了光量子概念,他认为辐射场就是由光量子组成,采用光量子概念后光电效应中的疑难迎刃而解。
Einstein 和P.J.W.Debye进一步把能量不连续的概念应用于固体中原子的振动,成功解释了温度趋于零时固体比热容趋于零的现象。
至此,物理学家们才开始重视能量不连续的概念,并用它来解决经典物理学中的其它疑难问题。
比较突出的是原子结构与原子光谱的问题。
1896年,汤姆生提出原子结构的葡萄干面包模型,即正电荷均匀分布于原子中,电子以某种规则排列镶嵌其中。
1911年,卢瑟福根据α粒子的散射实验提出了原子的有核模型:原子的正电荷及几乎全部质量集中于原子中心很小的区域,形成原子核,电子围绕原子核旋转。
有核模型可以很好解释α粒子的大角度散射实验,但引来了两大问题:(1)原子的大小问题。
在经典物理框架中思考卢瑟福的有核模型,找不到一个合理的特征长度。
(2)原子的稳定性问题。
电子围绕原子核的加速旋转运动。
按照经典电动力学,电子将不断辐射能量而减速,轨道半径不断缩小,最后掉到原子核上,原子随之塌缩。
但现实世界表明,原子稳定地存在于自然界。
矛盾就这样尖锐地摆在面前,亟待解决。
此时,丹麦年轻的物理学家玻尔来到卢瑟福的的实验室,他深深为此矛盾吸引,在分析了这些矛盾后,玻尔深刻认识到原子世界必须背离经典电动力学。
玻尔把作用量子h(quantum of action)引进卢瑟福模型,提出原子的量子论:一是原子的具有离散能量的定态概念,一是两个定态之间的量子跃迁概念和频率条件。
量子场论的发展历程
量子场论的发展历程量子场论是现代物理学中最基本的理论之一,它成功地将粒子、波动和相互作用纳入了同一个框架下。
本文将探讨量子场论的发展历程,从量子力学到现代量子场论的发展,以及相关研究的开展和重要成果的涌现。
1. 量子力学的逐步发展20世纪初,物理学家们开始思考物质和能量的本质,尝试找到一种更全面、准确的描述物理现象的方法。
量子力学的出现使这个目标成为现实。
量子力学的原理迥异于经典物理学,它通过一系列相关思想和数学模型来描述物质和能量的行为。
该理论描述了粒子的行为,例如电子、质子和中子等,以及波动性质,如电磁波和声波等。
2. 量子场的提出20世纪30年代,物理学家开始研究物质的相互作用问题。
他们发现了粒子不断地交换能量与动量,并且这种相互作用是通过在空间中存在的场来完成的。
这种与场的相互作用引发了物理学家的注意,于是有人提出了量子场的概念,同时也有了量子场论的雏形。
3. 量子场的研究在20世纪40年代,物理学家们已经能够利用量子场来描述粒子之间的相互作用。
但是,这种描述过于复杂,因此需要更整齐、合理的方法。
在20世纪50年代,经过大量的研究和探索,物理学家发展出了一种称为费曼图的工具,可以有效地处理量子场之间的相互作用。
费曼图可以图像化粒子之间的相互作用,为理解量子场论提供了便利。
4. 量子场论的发展量子场论的发展在1940年代至1960年代之间十分活跃。
物理学家们提出了各种场的类型,如轻子、重子、电磁力场和强相互作用场等。
量子场论的数学公式也变得更为简单,使用了量子力学的结果,并进行了更完善的整合。
此外,物理学家发现了在单个方程中表达多个场的能力,这在此后的理论中起到了重要作用。
5. 现代量子场论的进展自20世纪以来,物理学家们不断努力研究量子场论,对它进行了改进和升级,从而形成了现代量子场论的框架。
现代量子场论在现代物理学研究中发挥了重要作用,并产生了许多日新月异的新结果。
例如,标准模型理论所描述的粒子和场类型,如夸克、轻子、光子、电弱相互作用场、强相互作用场和标量玻色子等,已经被证明符合实验结果。
第七章量子理论发展史
第七章量子理论发展史量子理论是物理学的重要分支之一,它描述了微观世界中的粒子行为,如原子、分子和基本粒子等的行为。
量子理论的发展历经了几十年的探索和研究,下面将对量子理论的发展史进行探讨。
19世纪末,物理学家们发现了一些实验结果与当时的经典物理学理论相悖。
例如,黑体辐射实验和光电效应实验,无法用经典物理的理论来解释。
为了解决这些困扰,麦克斯韦和普朗克等物理学家提出了量子理论的雏形。
1900年,普朗克提出了量子化假设,即能量不连续,而是以不可分割的量子单位出现。
这个概念首次引入了能量量子化的概念,为量子理论的发展奠定了基础。
接着,爱因斯坦利用光电效应现象解释了光的粒子性,提出了光量子的概念,并称之为光子。
这一理论奠定了量子力学的基石。
1913年,玻尔提出了玻尔模型,解释了氢原子光谱现象。
他提出了一个简单的原子模型,即电子在轨道上绕着原子核运动,在其中一可能的轨道上存在能量量子化的状态。
玻尔模型的提出,为原子结构的理解提供了一个框架,也为量子力学的发展提供了一种启示。
1925年至1926年间,根据矩阵力学和波动力学的发展,海森堡和薛定谔分别提出了量子力学的两个等价形式。
海森堡提出了矩阵力学,通过代数和矩阵运算的方法描述了粒子的行为,而薛定谔提出了波动力学,将粒子的行为转化为波函数的描述。
这两种形式都能描述量子力学体系的物理现象,它们的提出标志着量子力学的建立。
1927年,海森堡提出了不确定性原理,即无法同时精确测量粒子的位置和动量。
这个原理挑战了牛顿力学中的确定性观念,并深刻影响了科学哲学的发展。
不确定性原理的提出,标志着量子力学的成熟。
随后的几十年里,量子力学经受了严谨的数学推导和实验验证。
许多著名的物理学家,如狄拉克、费米、玻姆和海森堡等,对量子理论进行了深入的研究和发展。
他们提出了量子场论、费米-狄拉克统计和玻姆对称等重要概念,并为量子力学的应用奠定了基础,如核物理、固体物理和量子信息等领域的应用。
简述量子力学发展历程
简述量子力学发展历程量子力学是一种描述微观世界的物理学理论,自20世纪早期以来一直在不断发展和扩展。
以下是量子力学的发展历程及其重要里程碑:1. 早期的研究:在20世纪早期,一些物理学家开始探索微观世界的规律。
其中最著名的是德国物理学家马克斯·玻恩(Max Born)和保罗·狄拉克(Paul Dirac)。
他们在1925年发表了一篇名为《量子力学原理》(The Principles of Quantum Mechanics)的论文,提出了量子力学的基本原理。
2. 波粒二象性:在20世纪30年代,波粒二象性成为量子力学中的一个重要概念。
这意味着,微观粒子既可以像粒子一样表现,也可以像波一样表现,而这两种表现方式在某些情况下可以相互转换。
这个概念为量子力学的发展奠定了基础。
3. 不确定性原理:在20世纪40年代,不确定性原理成为量子力学中的一个基本原理。
它表明,在某些情况下,我们无法同时准确地知道粒子的位置和动量。
这个原理推动了量子计算和量子通信等领域的研究。
4. 量子纠缠:在20世纪50年代,量子纠缠成为量子力学中的一个重要概念。
当两个或更多的粒子发生纠缠时,它们之间的关系类似于经典物理学中的两个物体之间的关系。
这个概念为量子计算和量子通信等领域的研究奠定了基础。
5. 量子隐形传态:在20世纪60年代,量子隐形传态成为量子力学中的一个重要概念。
它表明,可以通过量子隐形传态的方法将信息从一个地方传递到另一个地方,而不需要实际传递物质。
这个概念为量子通信等领域的研究奠定了基础。
6. 量子计算:在20世纪70年代和80年代,量子计算成为量子力学的一个重要研究方向。
通过利用量子纠缠和量子隐形传态等概念,研究人员可以开发更高效的计算机算法。
7. 量子纠错:在20世纪90年代,量子纠错成为量子力学的一个重要研究方向。
它表明,可以利用量子纠错的方法来解决经典物理学中的错误预测问题。
这个研究为量子通信和量子计算机等领域的研究奠定了基础。
量子力学基础理论研究现状及发展趋势展望
量子力学基础理论研究现状及发展趋势展望引言:量子力学作为现代物理学的重要支柱,已经成为解释微观世界的主要理论之一。
它在过去一个世纪里,取得了众多重要的成就和突破,但仍然存在一些未解之谜。
本文将介绍量子力学基础理论的现状,并展望其未来的发展趋势。
一、量子力学基础理论的现状:1. 波粒二象性:量子力学提出了波粒二象性的概念,将光既看作粒子,又看作波动现象。
这一概念在解释电子、质子等微观粒子行为时发挥了重要作用,得到了广泛应用。
2. 不确定性原理:根据量子力学的不确定性原理,对一个粒子的位置和动量的同步精确测量是不可能的。
这一原理揭示了微观世界的本质限制,影响了物理学的发展方向。
3. 量子态表示:量子力学采用波函数表示粒子的状态,通过波函数的叠加与体现了微观粒子概率性质。
量子态表示为理解量子力学的薄弱方面提供了强有力的工具。
4. 干涉与纠缠:量子力学中干涉与纠缠的现象反映了粒子之间的相互作用和耦合效应。
这些现象与经典力学的差异体现了量子力学独特的性质,为量子信息和计算提供了丰富的资源和思路。
二、量子力学基础理论的发展趋势:1. 应用拓展:量子力学基础理论将在更多领域得以应用,如量子通信、量子计算、量子模拟等。
随着量子技术的不断发展,这些领域将获得更多的突破和创新,并为科技进步提供新的驱动力。
2. 理论完善:量子力学基础理论的完善将继续是研究的重要方向。
对于一些量子力学的基本概念和原理,仍然存在着争议和未解之谜,比如量子测量的解释,波函数坍缩的机制等。
未来的研究将致力于找到更加合理和全面的解释。
3. 新的数学工具和框架:随着量子力学的发展,新的数学工具和框架将得到广泛应用,如量子信息、量子图论等。
这些工具和框架将为量子力学的研究提供更多的手段和途径。
三、量子力学基础理论研究的挑战:1. 精度和可控性:对于量子系统的精确控制和测量依然是一个巨大的挑战。
随着实验技术的进步,科学家们将继续努力克服这一挑战,以实现更高的控制精度和测量准确度。
量子力学的发展史
量子力学的发展史量子力学是现代物理学中最为重要的分支之一,它的发展历史可以追溯到20世纪初。
在这个时期,人们开始对物质的微观结构进行了深入的研究,发现了许多神奇而又令人困惑的现象。
这些现象在当时的经典物理学中无法解释,因此人们开始寻找新的理论来描述它们。
1900年,德国物理学家普朗克提出了能量量子化假设,这种假设认为能量并不是连续的,而是以粒子的形式存在,这种粒子被称为光子。
这一假设为量子理论的发展打下了基础。
1913年,丹麦物理学家玻尔提出了原子的量子化假设,认为原子的电子只能存在于特定的能级上,而不能存在于任意的能级上。
这种假设解释了许多原子光谱现象,成为了现代量子力学的基础。
1924年,法国物理学家德布罗意提出了波粒二象性假设,认为所有的物质都具有波动性,而且波动的频率和能量之间存在着一种对应关系。
这种假设不仅解释了光的粒子性和物质的波动性,还为后来的量子力学打下了重要的基础。
1925年,德国物理学家海森堡提出了矩阵力学,这是量子力学的一个重要分支。
矩阵力学认为量子力学中的物理量不是像经典物理学中那样具有确定的数值,而是具有一些可能性,这些可能性可以通过矩阵来描述。
这种做法在当时引起了很大的反响,成为了量子力学的重要发展方向之一。
1926年,奥地利物理学家薛定谔提出了波函数的概念,这是量子力学的又一个重要分支。
波函数是描述量子力学中物体状态的数学函数,通过对波函数的求解,可以得出物体的各种物理量。
这种方法在当时得到了广泛的应用,成为了量子力学的基本方法之一。
1927年,德国物理学家海森堡提出了著名的不确定性原理,这是量子力学的又一个重要成果。
不确定性原理认为,对于某些物理量,比如位置和动量,我们无法同时知道它们的精确数值,只能知道它们的概率分布。
这种做法在当时引起了很多争议,但后来证明是正确的。
随着量子力学的发展,人们不断发现新的量子现象,比如量子纠缠、量子隧穿等。
这些现象不仅深化了我们对物质微观结构的认识,还为未来的量子技术发展奠定了基础。
简述量子力学的发展
简述量子力学的发展一、旧量子论的产生和发展由于人们在十六、十七世纪对机械运动的基本规律已有了比较系统、比较完整的了解,经过伽里略、牛顿等科学家进行科学实验和推理,从而产生了物理学;到了十八世纪,物理学迅速地向前发展,以牛顿力学为基础,先后形成了热学和分子运动论、电磁学理论。
到了十九世纪中期,形成了完整的、系统的经典物理学理论体系。
运用这种经典理论,人们成功地解释了许多物理现象,解决了不少生产实际问题。
由于经典物理学在发展过程中几乎没有遇到什么重大难题,因而当时有许多物理学家错误地认为经典物理学理论是物理学的“最终理沦”,往后没有什么重大的工作可做了,只是解一下微分方程和对具体问题进行解释。
但是,也就是在物理学家举杯庆贺经典物理学取得辉煌成就的时候,在经典物理学晴朗的天空中,不断出现了几朵•乌云”—经典理论无法解释的实验事实。
其中最著名的是开耳芬称之为•第一号乌云”的迈克尔逊—莫雷实验与:第二号乌云”的黑体辐射实验, 此外还有光电效应实验和原子光谱的实验规律等。
当时大多数物理学家都希望并且相信,能用经典物理学理论驱散这些•乌云”。
结果发现上述的实验事实,用经典物理学理论无法解释,号称“完美无缺”的经典物理学开始破产,人们在对•第一号乌云”的研究中,引出了狭义相对论,而在对:第二号乌云”的研究中,引出了量子理论。
人们从日常经验知道,一个物体(固体或液体)温度升高时,会向四周放射热量,这种现象叫做•热辐射”。
在十九世纪后半期,由于热机广泛使用,电照明的需要和冶金技术的变革,引起了热辐射的研究,发现了绝对黑体(置于温度恒定的热槽中的开有一个小孔的金属封闭空腔辐射能量随波长而变化的实验曲线。
在这个实验曲线面前,为了解答辐射能量分布随不同的波长而异,许多物理学家都力图从经典物理学理论出发推导出黑体辐射的具体能谱分布公式,维恩、端利一金斯等就是其中的几个。
2893年,德国物理学家维恩(Wien)应用经典物理学的热学理论创立了一种黑体辐射能量的理论,他所提出的公式可以较准确地描述辐射能量在光谱紫端的分布情况,但不适用于波长较大的红端。
量子力学的发展历程
扭转经典物理局面——量子力学的发展历程量子力学是20世纪最为重要的科学领域之一,其发展历程极其丰
富多彩,也充满着不少惊人的发现。
下面,我们就来回顾一下量子力
学发展的几个关键时刻。
第一个里程碑是1900年,德国物理学家普朗克提出了量子化概念,通过假设能量不是连续的而是离散的,解释了黑体辐射的问题。
这个
假设对于当时的经典物理学是一个巨大冲击。
接下来的一个重要事件是1913年,玻尔发现了氢原子的能级结构,并提出了波尔理论。
这个理论成为了量子力学的基石之一。
在波尔理
论的框架中,电子的能量只能取离散值,这种离散的粒子称为量子。
1924年,印度物理学家玛丽·库里发现波尔理论无法解释一些实验,提出了概率波理论。
1930年代,祖基尔和艾因斯坦等人争论量子
力学的理论基础,在统计解释和波恩规则等方面有了重要进展。
中心课题之一是量子纠缠和测量问题。
贝尔不等式告诉我们,在
一些情况下,量子力学预测的结果是经典统计学无法解释的。
贝尔的
实验对于量子力学在多粒子系统中的应用提供了奠基性的实验支持。
此外,由于量子力学和经典物理学间的巨大鸿沟,发生了许多的
争端和争议。
例如,艾因斯坦就通过思想实验提出了著名的“薛定谔
的猫”问题。
可以说,科学史上没有一个科学领域,像量子力学这样
具有如此深刻和广泛的影响力。
量子力学发展简史
量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。
不确定性也指量子力学中量子运动的不确定性。由于观测对某些量的干扰,使得与它关联的量(共轭量)不准确。这是不确定性的起源。
不确定性,经济学中关于风险管理的概念,指经济主体对于未来的经济状况(尤其是收益和损失)的分布范围和状态不能确知。
在量子力学中,不确定性指测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。
在经典物理学中,可以用质点的位置和动量精确地描述它的运动。同时知道了加速度,甚至可以预言质点接下来任意时刻的位置和动量,从而描绘出轨迹。但在微观物理学中,不确定性告诉我们,如果要更准确地测量质点的位置,那么测得的动量就更不准确。也就是说,不可能同时准确地测得一个粒子的位置和动量,因而也就不能用轨迹来描述粒子的运动。这就是不确定性原理的具体解释。
量子力学发展史
量子力学发展史量子力学是一门研究微观粒子的科学,是近代物理学的重要分支。
量子力学的发展可以分为几个阶段:1. 1900年,瑞士物理学家阿尔伯特·爱因斯坦发表了论文《光电效应的统计学意义》,提出了能量是分离的粒子形式存在的概念,为量子力学的发展奠定了基础。
2. 1925年,爱因斯坦又发表了论文《原子结构的几何学意义》,提出了波动原理,即微观粒子的运动不是连续的,而是呈现波动形式。
3. 1926年,德国物理学家爱因斯坦、荷兰物理学家伯恩和德国物理学家布鲁诺·布拉格发表了论文《量子力学的基本原理》,提出了量子力学的基本原理。
4.后来,量子力学得到了进一步发展,出现了许多新的理论和方法,如矩阵力学、相对论量子力学、量子场论等。
这些理论和方法为解决许多微观粒子问题提供了有力的工具。
量子力学的发展为我们了解许多微观现象,如原子核、原子、分子、固体等提供了重要的理论基础,并在在量子力学发展的后期,又有许多重要的理论和发现。
这些理论和发现对我们对宇宙的认识和对技术的发展都有着深远的影响。
1. 1957年,美国物理学家李·汉密尔顿发现了量子动力学的不完备性定理,表明在量子力学描述中,存在一些现象是无法解释的。
2. 1964年,美国物理学家约翰·斯蒂芬·哈勃和美国物理学家罗伯特·沃恩发现了哈勃效应,表明在微观世界中,光的行为具有粒子性和波动性。
3. 1971年,美国物理学家詹姆斯·霍尔发现了霍尔效应,表明在微观世界中,电流也具有粒子性和波动性。
4. 1980年,美国物理学家理查德·费曼提出了量子计算的概念,并建立了量子计算的理论框架。
这为量子计算的实现提供了理论依据。
5. 1997年,美国物理学家罗伯特·沃恩和美国物理学家史蒂芬·埃里克森实现了量子力学发展的最新进展包括:1. 2012年,美国物理学家弗兰克·纽瓦克和欧拉·格林尼提出了量子力学的“量子信息”理论,表明量子力学可以用来进行量子信息的存储和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6 量子理论的发展背景玻尔理论成功地解释了原子的稳定性及氢原子光谱的规律性。
为人们认识微观世界和建立近代量子理论打下了基础。
但玻尔理论是经典与量子的混合物,存在着许多不协调。
如它既保留了经典的确定性轨道,又假定量子化条件来限制电子的运动。
它不能解释稍微复杂的问题,正是这些困难,迎来了物理学的大革命。
1.量子力学:研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。
2.线索:德布罗意→薛定谔→薛定谔波动方程海森堡→波恩,提出矩阵力学→→→→量子力学3.代表人物:玻尔、泡利、索末菲、海森堡、G·P·汤姆逊、戴维森、等一德布罗意波的提出1.德布罗意(Louis Victorde Broglie,1892~1989)法国物理学家。
1892年8月15日生于下塞纳的迪耶普。
出身贵族。
1910年获巴黎大学文学学士学位,1913年获理学硕士学位。
第一次世界大战期间,在埃菲尔铁塔上的军用无线电报站服役。
战后一方面参与他哥哥的物理实验工作,一方面拜朗之万为师,研究与量子有关的理论物理问题,攻读博士学位。
1923年9~10月间,连续在《法国科学院通报》上发表三篇短文:《辐射─波和量子》、《光学─光量子、衍射和干涉》、《物理学─量子、气体动理论及费马原理》,在1924年通过的博士论文《量子论研究》中提出了德布罗意波(相波)理论。
1927年由美国贝尔实验室的戴维孙(C.J.Davisson)、革未(L.H.Germer)及英国的汤姆孙(G.P.Thomson)通过电子衍射实验证实,1929年获诺贝尔物理学奖,成为第一个以学位论文获得诺贝尔奖金的学者。
1932年任巴黎大学物理教授,1933年被选为法国科学院院士。
1942年任该院常任秘书,1962年退休,1987年3月去世,享年95岁。
主要著作有:《波动力学导论》,《物质和光:新物理学》,《物理学中的革命》,《海森伯不确定关系和波动力学的概率诠释》等。
2.思维过程德布罗意是爱因斯坦光量子假说的追随者,但他深感爱因斯坦地光量子理论并没有使从牛顿-惠更斯时代起就存在的光的微粒说和波动说的分歧得到解决,只不过是使光的微粒说又重新抬头而已。
因此他战后重新开始理论物理学的研究时,就把自己工作的重点放在用统一的理论描述光的行为,即想给光量子假说再披上一件波动的外衣,同时希望能把这一结论推广到实物粒子上。
德布罗意在获得诺贝尔奖的演讲《电子的波动性》中说:人们无法理解,为什么对于光来说,需要两种相互矛盾的学说,即波动说和微粒说。
为什么原子中的电子只有可能进行某些运动,而按经典概念它应当有无穷多的运动。
……当我开始思考这些困难时,主要有两个问题吸引着我。
第一个问题是,不能认为光量子理论是令人满意的,因为它是用ω=hν这个关系式来确定光微粒的能量,其中包含着频率ν。
可是纯粹的粒子理论不包含任何定义频率的因素。
对于光来说,单是这个理由就需要同时引进粒子的概念和周期的概念。
另一个问题是,确定原子中电子的稳定运动涉及到整数,而至今物理学中涉及整数的只有干涉现象和本征振动现象。
这使我想到,不能用简单的微粒来描述电子本身,而应当赋予它们以周期的概念。
于是我得出指导我进行研究的全部概念,对于物质和辐射,尤其是光,需要同时引进微粒概念和波动概念。
3.物质波假设的提出1924年,德布罗意在博士论文中提出:不仅光具有波粒二象性,一切实物粒子(如电子、原子、分子等)也都具有波粒二象性;具有确定动量P 和确定能量 E 的实物粒子相当于频率为ν和波长为λ的波,二者之间的关系如同光子和光波的关系一样,满足:这种和实物粒子相联系的波称为德布罗意波或物质波。
德布罗意在论文中提出如下预言:“从很小的孔穿过的电子束能够呈现衍射现象,这或许就是人们能借以寻找关于我们的想法的实验证据的方向。
”但德布罗意的论文当时并没有受到重视,他希望用实验来检验他的理论的建议,也未得到实验物理学家的响应。
①他曾向道维耶先生提过建议,请他用电子进行实验以获得衍射和干涉现象,但道维耶正忙于其他工作,没有按照他的建议去做;②德布罗意的导师也认为他的思想大胆的近乎荒唐,不知该如何评价他论文,于是将论文的副本寄给了爱因斯坦,爱因斯坦认为德布罗意理论体现了光子和物质微粒之间的对称性,并称赞德布罗意“已揭开了巨大帷幕的一角”。
4.德布罗意波的实验验证X 射线照在晶体上可以产生衍射,如果物质波理论正确,那么电子打在晶体上也能观察电子衍射。
(1)戴维孙-革末实验(1927)电子束在晶体表面散射实验时,观察到了和X射线在晶体表面衍射相类似的衍射现象,从而证实了电子具有波动性。
戴维森实验装置原理图C.J.戴维森与G.P.革末电子衍射现象的发现缘于一次偶然事故,1925年4月,他们在进行高真空条件下镍对电子的散射实验(粒子性行为)时液态空气瓶爆裂,真空装置被打破,镍靶被进入的空气严重氧化。
经过长时间加热镍靶并改进实验装置后再重新实验,发现散射电子的角分布完全发生了改变。
出现了同X射线衍射相似的图样。
后经查寻原因发现,是因为在对镍靶加热过程中,多晶镍重新结晶成几块较大的单晶体的缘故。
但当时并不知道这一现象的本质就是电子衍射。
1926年夏C.J.戴维森到英国牛津参加一次科学会议,获悉德布罗意理论,这才想到上述现象可能就是德布罗意波。
回到美国后,马上又重新做实验,并于1927年公布了实验结果,完全证实了德布罗意理论。
(2)电子衍射实验21927年G.P.汤姆逊(J.J.汤姆逊之子)也独立完成了电子衍射实验。
但他是在德布罗意理论启发下自觉进行实验的。
他采用了高能电子束穿过细晶体粉末或薄金属片做透射实验,很快得到了衍射环,并计算出了相应的波长。
G.P.汤姆逊与C.J.戴维森共获1937 年诺贝尔物理学奖。
3、约恩逊(1960)电子的单缝、双缝、三缝和四缝衍射实验图象单缝衍射双缝衍射三缝衍射四缝衍射量子围栏(Quantum Corral)中的驻波1993年克罗米(M·F·Corrie)等人用扫描电子显微镜技术,把铜(111)表面上的铁原子排列成半径为7.13nm的圆环性量子围栏,并观测量到了围栏内的同心圆柱状驻波,直接证实了物质波的存在.物质波被广泛用作探索手段.例核反应产生的中子( =0.1nm)可作为晶体探测器.二波动力学的建立1.薛定谔简介(E.SchrÖdinger, 1887~1961)奥地利理论物理学家,波动力学的创始人。
薛定谔1887年生于维也纳。
1906~1910年,在维也纳大学物理系学习。
1910年获得博士学位。
毕业后,在维也纳大学第二物理研究所工作。
第一次世界大战期间,他服役于一个炮兵要塞,利用闲暇研究理论物理学。
战后回到第二物理研究所。
1920年移居耶拿,担任M.维恩的物理实验室助手。
1921年,薛定谔受聘到瑞士苏黎士大学任数学物理学教授,在那里工作了6年。
1927年接替普朗克任柏林大学理论物理学教授。
同年当选为普鲁士科学院院士。
1933年受德国纳粹党徒的迫害,离开苏黎士到英国任牛津大学物理学教授。
同年和狄拉克一起荣获诺贝尔物理学奖。
1936年回到奥地利的格拉兹,1938年奥地利沦陷,薛定谔在格拉兹再度受到纳粹的迫害,于9月1日仅“带了一只小小皮箱”逃往爱尔兰的都柏林,在都柏林高级研究所,成为理论物理学的领导。
在那里,他逗留了17年。
在此期间,他继续从事科学研究,并发表了许多论文。
1956年,他回到奥地利,成为维也纳大学物理系的名誉教授。
奥地利政府给了他极大的荣誉,设立了以他的名字命名的国家奖金,并把第一次奖金授予他本人。
1957年薛定谔接受了德国高级荣誉勋章。
他还被许多大学和科学团体授予荣誉学位,其中包括英国伦敦皇家学会、柏林普鲁士科学院、奥地利科学院等。
1961年1月4日,在奥地利的阿尔卑巴赫山村病逝。
2.与爱因斯坦的讨论1925年前后,爱因斯坦正在研究气体理论,刚完成《单原子理想气体的量子理论》论文,但文中存在一个饽论。
他收到德布罗意的博士论文后,发现这一饽论可以用德布罗意的理论很好的解决,于是续写了一篇论文《单原子理想气体的量子理论Ⅱ》,于1925年发表。
薛定谔当时也在研究气体理论,他对爱因斯坦的论文很不理解,认为有错,于1925年2月5日写信给爱因斯坦进行讨论。
爱因斯坦在回信中建议他仔细研究德布罗意的博士论文,这促使了薛定谔对德布罗意物质波思想的极大关注,并迅速掌握了德布罗意的新思想。
到薛定谔发表波动力学之前,薛定谔与爱因斯坦之间共同通了九封信。
在1926年4月23日薛定谔给爱因斯坦的一封信中他说:“如果不是你的关于气体简并的第二篇论文把德布罗意的思想摆在我面前,单靠我个人的力量,这个波动力学是根本无法建立起来的。
”3.德布罗意思想的影响1925年,著名物理学家德拜主持了一个瑞士联邦技术学院与苏黎世大学联合物理学讨论会,他指定由薛定谔报告德布罗意理论。
当薛定谔介绍完之后,德拜评论说,讨论波动而没有一个波动方程,太幼稚了。
几个星期以后,在另一次报告会上,薛定谔说:“我的同事德拜说,要有一个波动方程,好,我已经找到了。
”这次讨论会,实际上就是薛定谔事业的开端。
1926年上半年,薛定谔以《作为本征值问题的量子化》为总题目,连续发表了六篇论文,系统的阐明了他的新理论。
他运用玻尔原子理论、矩阵力学、爱因斯坦波粒二相性思想和德布罗意物质波理论的内容,致力于用波函数来描述微观客体在时空中的定态运动变化,建立相应的波动方程,并求解得到与实验相符的结果,创立了波动力学体系。
4.波动力学的建立在1926年1月份发表的论文中,他引入了波函数的概念,建立了氢原子的定态薛定谔方程:02222=⎪⎭⎫ ⎝⎛++∇ψψr e E K m 其中K=h/2π,根据边界条件,E 只能取某些确定值这个方程才有稳定解,从而得出E 的本征值为:,,,,其中32122242=-=n hn me E n π 这样量子化就成了薛定谔方程的自然结果。
由此得出量子化是本征值的问题的结论。
从而取代了认为规定的玻尔-索末菲量子化条件。
在1926年发表的第二篇论文中,薛定谔建立了更为一般的含时间的薛定谔方程,并讨论了它的解。
在5、6月份发表的《量子化的本征值问题》的第三、第四篇论文中,薛定谔详细叙述了与时间无关的微扰理论(定态微扰)和含时微扰的微分方程。
完成了波动力学的建立。
由于薛定谔方程是在不发生实物粒子的产生泯灭,且实物粒子的速度远小于光速两个假设的基础上建立的,因而是非相对论性的理论。
5.波函数Ψ的物理意义薛定谔认为,波函数Ψ代表着电荷在实际空间中的连续分布,并定义ΨΨ*为电荷分布的“权重函数”,而电荷P=e ΨΨ*。
他认为波包就是粒子最密集的地方。
但这种波包的数学形式(波函数)会随时间无限扩展,因而波包会在极短的时间内消失,不符合实物粒子的稳定性。